		Минерализатор					
Соединения	MKA 91	AlF ₃ [1]	B_2O_3	AlF_3/B_2O_3	NH ₄ Cl	AlF ₃ /NH ₄ Cl	
		3 %	2 %	3 %/2 %	5 %	3 %/5 %	
Al_2O_3	97,9	98,18	98,09	98,40	98,42	98,55	
Fe ₂ O ₃	0,7	0,71	0,70	0,68	0,21	0,35	
Na ₂ O+K ₂ O	1,3	1,01	1,14	0,87	1,26	1,00	
SiO ₂	0,1	0,10	0,07	0,05	0,11	0,10	

Таблица 1. Состав образцов МКА 91 после кальцинации

Применение 5 % хлорида аммония в качестве минерализатора позволяет снизить содержание $\mathrm{Fe_2O_3}$ до 0,21 %, который в МКА 91 преимущественно представлен в виде индивидуальных частиц немагнитной окалины и/или физически связанных с $\mathrm{Al_2O_3}$ частиц. Удаление примеси $\mathrm{Fe_2O_3}$ происходит по механизму образования хлораммонийных комплексов с последующей возгонкой при нагревании [2]. Существенного воздействия хлорида аммония на щелочность не установлено. При использовании смеси минерализаторов $\mathrm{AlF_3/NH_4Cl}$ (3 %/5 %)

содержание примеси Fe_2O_3 в обработанном материале снижается до 0.35 %, уменьшения степени удаления примеси предположительно связано с преобладанием исследуемой системе процесса образования стойких к воздействию Cl-иона фторсодержащих соединений железа.

Дальнейшие исследования будут направлены на оптимизацию процесса обесщелачивания в выбранных системах минерализации и определения технико-эксплуатационных свойств обработанных материалов.

Список литературы

- 1. Киселёв А. Д., Малютин Л. Н. // Химия и химическая технология в XXI веке, 2021. Т. 1. С. 70–71.
- 2. Борисов В. А., Крайденко Р. И. // Техника и технология нефтехимического и нефтегазового производства, 2020. С. 37.

ХИМИЧЕСКАЯ ПОСТОБРАБОТКА ПОВЕРХНОСТИ СТЕРЖНЕВЫХ КОНСТРУКЦИЙ, ПОЛУЧЕННЫХ ПОСЛОЙНЫМ ЭЛЕКТРОННО-ЛУЧЕВЫМ ПЛАВЛЕНИЕМ ИЗ ТИТАНОВОГО СПЛАВА

М. П. Козадаева, А. А. Павельева, Д. А. Храпов Научный руководитель – к.ф.-м.н., в.н.с. М. А. Сурменева

Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина, 30, 634050,mariakoz71@gmail.com

Введение. Аддитивные технологии являются перспективным методом для производства костных имплантатов. При аддитивном производстве частицы порошка, которые не были полностью расплавлены, остаются на поверхности и в порах изделий [1]. Наличие таких частиц недопустимо для использования в медицине. Сложность удаления порошка с внутренних поверхностей возрастает с увеличением плотности структурной сетки.

Химическое травление является наиболее перспективным методом в технологии костных

имплантатов, так как жидкость имеет способность проникать во внутренние поры, удалять порошок, а также улучшать свойства поверхности, например, ее шероховатость.

Теоретическая часть. Наиболее агрессивным реагентом по отношению к титану и его сплавам является плавиковая кислота. Для предотвращения наводораживания и охрупчивания металла применяют смесь плавиковой и азотной кислот в определенный пропорциях [2]. Реакция растворения металла и оксида протекает в несколько ступеней. Каждая из кислот оказывает

Таблица 1. Параметры травления

Помоглати	Группы			
Параметр	1	2	3	
Общее время, мин	15			
Количество актов травления	10	3	1	
Время одного акта травления, мин	1,5	5	15	
Потеря массы, г	9,37	9,54	8,81	
Изменение пористости, %	18	17	22	

свое влияние на процесс [3]. Суммарная реакция процесса растворения титана:

$$Ti + 6HF + 2HNO_3 \rightarrow$$

 $\rightarrow H_2[TiF_6] + NO_2 \uparrow + NO \uparrow + 3H_2O$

Материалы и методы. Титановые образцы с объемно-центрированной кубической формой ячейки и градиентной пористостью для данного исследования были получены методом послойной электронно-лучевого плавления ARCAM A2 EBM (Мёльндаль, Швеция). Топографический и элементный анализы осуществлялись с использованием сканирующего электронного микроскопа (СЭМ) Quanta 200 3D, FEI. Механические испытания на сжатие проводились на установке INSTRON 3369.

Травление проводилось раствором с соотношением молярных концентраций HNO_3 : HF=1:2. Образцы были поделены на 3 группы в зависимости от количества актов травления образцов в растворе. Общее время травления для всех образцов составило 15 минут. До и после травления образцы были промыты дистиллированной водой.

Результаты и обсуждение. Параметры режимов травления и результаты взвешивания приведены в таблице 1.

Список литературы

- 1. Koptyug A. V. // Нанотехнологии. Разработка Применение, 2016. № 4. С. 12–25.
- 2. Sefer B. Dobryden I., Almqvist N. // Corrosion, 2017. № 73. P. 394–407.
- 3. Milošev I., Kapun B., Šelih V. S. // Acta Chim. Slov., 2013. № 60. P. 543–555.

Снимки СЭМ показали, что многостадийное травление способствует образованию более равномерной поверхности. На поверхностях всех групп образцов наблюдался частично стравленный поверхностный слой. На поверхности и внутри каналов образцов из групп 1 и 2 наблюдается минимальное количество приплавленных частиц порошка металла, внутри каналов образцов из группы 3 частицы порошка практически не стравились.

Элементный анализ показал формирование оксида титана на поверхности образцов 1 и 2 групп [3]. Присутствие фтора из травильного раствора в слоистых областях характерно для всех групп образцов, что соответствует результатам предыдущих исследований [4]. Исследование фторсодержащих титановых поверхностей *in vitro* показало улучшение биосовместимости [5].

Механические свойства после травления улучшены, но четкой зависимости между параметрами и кратностью травления не выявлено.

Авторы выражают благодарность проф. А. В. Коптюгу за помощь в подготовке образцов. Работа выполнена при финансовой поддержке гранта РНФ20-73-10223.

- 4. Macak J. M., Tsuchiya H., Taveira L. J. Biomed. // Mater. Res., 2005. 75A. P. 928–933.
- 5. Lamolle S. F., Monjo M., Rubert M. // Biomaterials, 2009. № 30. P. 736–742.