ПОЛУЧЕНИЕ НИЗКОЗАСТЫВАЮЩИХ ДИЗЕЛЬНЫХ ТОПЛИВ ПУТЕМ ДОБАВЛЕНИЯ НЕФТЯНЫХ СМОЛ, н-ПАРАФИНОВ И ДЕПРЕССОРНОЙ ПРИСАДКИ

А. М. Орлова

Научный руководитель - к.т.н., доцент ОХИ ИШПР М. В. Киргина

Национальный исследовательский Томский политехнический Университет 634050, Россия, г. Томск, проспект Ленина, 30, orlovaalina41@gmail.com

На сегодняшний день поиск технологий и методик получения низкозастывающих дизельных топлив (ДТ) для регионов, находящихся в арктическом климатическом поясе не утратило своей актуальности [1]. Низкотемпературные характеристики, такие как температура помутнения (T_{Π}) , предельная температура фильтруемости ($\Pi T \Phi$) и температура застывания (T3) ДТ во многом зависят от углеводородного состава топлива, а именно от содержания длинноцепочных алканов (н-парафинов), имеющих высокую температуру кристаллизации [2]. Введение депрессоров, как синтетических (А) так и природных (нефтяные смолы, А,), позволяет ДТ оставаться подвижным при более низких температурах, блокируя рост кристаллов при взаимодействий с начальными центрами кристаллизации н-парафинов.

В работе приведены результаты исследований влияния добавления депрессоров различной природы на низкотемпературные свойства образца ДТ – F (таблица 1).

Как можно заметить из результатов определения низкотемпературных свойств, добавление синтетических и природных депрессоров приводит к улучшению ПТФ (Δ16 °C и 1 °C соответственно) и T_3 ($\Delta 29$ °C и 8 °C соответственно). Одновременное добавление депрессоров синтетического и природного происхождения дает лучший результат в отношении ПТФ (Δ 19 °C).

Как было отмечено ранее, эффективность действия депрессорной присадки определяется содержанием парафинов нормального строения (Р) в составе ДТ. В таблице 2 показано изменение низкотемпературных свойств смесей ДТ с депрессорами при введении в смеси дополнительных н-парафинов.

Как можно заметить из результатов определения низкотемпературных свойств, добавление н-парафинов к смесям ДТ с синтетическими депрессорами улучшает низкотемпературные свойства ДТ и приводит к снижению ПТФ и Тз $(\Delta 3 \, ^{\circ}\text{C})$ и повышению $T\pi \, (\Delta 5 \, ^{\circ}\text{C})$.

Добавление н-парафинов к смесям ДТ с природными депрессорами приводит к ухудшению всех низкотемпературных свойств; добавление н-парафинов к смесям ДТ с синтетическими и природными депрессорами приводит к улучшению низкотемпературных свойств ДТ в отношении ПТФ и T_3 ($\Delta 2$ °C и 4 °C соответственно).

Таблица 1. Низкотемпературные свойства смесей ДТ с депрессорами

Образец	Тп	Тз			
	°C				
F	0	0	-8		
FA _s	-2	-16	-37		
FA _n	0	-1	-16		
FA _s A _n	-2	-19	-36		

Таблица 2. Низкотемпературны свойства смесей ДТ с депрессорами и н-парафинами

*****	1 /1		7 7 1	1 1	1	
Образец	Тп	Δ	ПТФ	Δ	Тз	Δ
	°C					
FA _s	-2	<i>5</i> ^	-16	2.1	-37	2.1
FPA _s	3	5↑	-19	- 3↓	-40	3↓
FA _n	0	54	-1	1↑	-16	13↑
FPA _n	5	5↑	0		-3	
FA _s A _n	-2	0	-19	2↓	-36	4↓
FPA _s A _n	-2		-21		-40	

Список литературы

- 1. Указ Президента РФ от 26.10.2020 № 645 «О Стратегии развития Арктической зоны Российской Федерации и обеспечения национальной безопасности на период до 2035 года» // Собрание законодательства РФ, 02.11.2020. № 44. С. 6970.
- 2. Орлова А. М., И. Богданов, М. В. Киргина // Нефтепереработка и нефтехимия науч-

но-технические достижения и передовой опыт: научно-информационный сборник: / Центральный научно-исследовательский институт информации и технико-экономических исследований нефтеперерабатывающей и нефтехимической промышленности (ЦНИИТЭнефтехим), 2021. — № 6. — С. 11–16.

ИССЛЕДОВАНИЕ НИЗКОТЕМПЕРАТУРНЫХ СВОЙСТВ ДИЗЕЛЬНОГО ТОПЛИВА И ИХ ВЗАИМОСВЯЗИ С ЕГО УГЛЕВОДОРОДНЫМ СОСТАВОМ И ФИЗИКО-ХИМИЧЕСКИМИ СВОЙСТВАМИ

А. А. Павлова, А. А. Бердникова Научный руководитель – к.т.н. Е. В. Францина

Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина 30, аар129@tpu.ru

Важными эксплуатационными характеристиками дизельного топлива являются температуры помутнения (T_{II}), застывания (T_{IJ}) и фильтруемости (T_{IIII}) [1]. Изучение углеводородного состава топлива и выявление взаимосвязи с его низкотемпературными свойствами является одной из основных задач.

Целью данной работы является анализ углеводородного состава и физико-химических свойств образцов дизельных топлив и оценка их влияния на низкотемпературные характеристики.

В качестве объекта исследования были взяты образцы дизельного топлива различного углеводородного состава. Для каждого образца были определены углеводородный состав и физико-химические свойства. Изучение проводилось при помощи измерителя низкотемператур-

ных показателей нефтепродуктов ИНПН SX-800 и метода хромато-масс-спектрометрии. Результаты исследования представлены в таблицах 1 и 2

При анализе таблиц полученных результатов можно сделать следующие выводы:

- 1. Наихудшими низкотемпературными свойствами обладает образец ДФ № 4, для которого T_3 =-14,3 °C и $T_{\text{птф}}$ =-6,4 °C. Это связано с тем, что для данной фракции характерно высокое содержание парафинов (63,46 % мас.), наибольший коэффициент нормальности парафинов 2,50, самый широкий фракционный состав 162 °C и самая высокая температура выкипания 90 % фракции 358 °C.
- 2. Наилучшими низкотемпературными свойствами обладает образец ДФ № 1 (T_3 = -33,2 °C и $T_{\text{птф}}$ = -27,4 °C). Для образца характерны

Таблица 1. Физико-химические свойства дизельных фракций

Свойства	ДФ № 1	ДФ № 2	ДФ № 3	ДФ № 4	ДФ № 5	ДФ № 6	ДФ № 7
Своиства	дФлет	дФлег	дФлез	дФлет	дФиез	дФл≝о	дФл≝т
Температура выки- пания 10 %, °C	187	186,5	187,5	196	191,5	187	190
Температура выки- пания 90 %, °C	301,5	299,5	302	358	318	300,5	319
Широта фракцион- ного состава, °С	114,5	113	114,5	162	126,5	113,5	129
T _n , °C	-26,4	-25,9	-26,4	-3	-16,1	-24,6	-16
Т _{птф} , °С	-27,4	-27	-27,2	-6,4	-20,2	-26,2	-20,5
T ₃ , °C	-33,2	-33,7	-32,4	-14,3	-23,2	-33,5	-23