

Fig. 1. UniSim model for removal with EGlycol

also CO_2 compete for preference in the absorption reaction with the amine.

Thus, a study was developed to monitor the transformation and purification of natural gas by amine using the programs Aspen and UniSim and a conclusion was drawn upon the best program for the evaluation of impurities removal. In Figure 1, the model using UniSim is shown.

In conclusion, UniSim is a great modeling tool. But in certain conditions of pressure and tempera-

References

- Marques, Mariana Ribeiro. Modelling the Natural Gas Sweetening and Dehydration prior to Liquefaction. Thesis (Master degree in Chemical Engineering) – Tecnico de Lisboa. Lisboa, 2014. – 129 p.
- 2. R. K. Abdulrahman and I. M. Sebastine, "Natural gas sweetening process simulation and optimization: A case study of Khurmala field in Iraqi Kurdistan region," Journal of Natural

ture, the software is ineffective to solve the presented problems. The Amines package that is included in the software is limited by the maximum concentration of solution that can be used, depending on the type of amine used. Thus, only a 35 % mass concentration study can be carried out with the DEA, since other formulations were not accepted by the program.

Gas Science and Engineering, no. 14, pp. 116–120, 2013.

 Gutierrez, Juan Pablo; Erdmann, Eleonora; Manca, David. Optimal Design of a Carbon Dioxide Separation Process with Market Uncertainty and Waste Reduction. E-processes MDPI Journal, v. 7, p. 17, 2019. Available at: https:// www.mdpi.com/2227-9717/7/6/342.

SYNTHESIS AND APPLICATION OF ZEOLITES IN THE PROCESSES OF FIELD PREPARATION AND PROCESSING OF PETROLEUM FEEDSTOCK

M. O. Patz

Scientific supervisors – PhD, professor E. N. Ivashkina

National Research Tomsk Polytechnic University matheus_osmar@hotmail.com

The ash from materials from the combustion of solid fuels for energy production can be an environmental liability due to the large amount of waste [1, 2]. One application for one of the residues, ash, can be used in the synthesis of zeolites, which in addition to being more valuable products, have several industrial applications due to their special ion exchange, adsorption and catalysis characteristics [2, 3].

The ease of use of this residue and its low cost have led to an increase in the volume of scientific work aimed at its use in the creation of new prodТом 2

ucts. Thus, given that it is a source of Al (aluminum) and Si (silicon) for the production and synthesis of zeolite, the progress of research is obvious [3].

There are seven main regions in Russia where coal reserves and production are concentrated, two of which are the Krasnoyarsk Territory and the Kemerovo Region. [1, 3] Several power plants have been installed in the country, 59 in total in operation, the largest of which is located in Surgut and has a capacity of 5.597 MW (megawatts) [2].

One of the main residues from thermal energy production concerns coal ash, which is characterized as solid waste from energy production [1-3]. In Russia, about 20 million tons of ash and slag waste are generated annually, consisting of fly ash and hydraulic ash [2, 3].

The use of waste for the production of municipal goods is widely considered today as a solution to reduce the amount of waste sent to landfills, which, unfortunately, is not followed in Russia [2].

It is known that part of the ash is used in the country in the production of clinker used for the production of cement in the construction industry, the rest is dumped in ash dumps or used to cover depleted mine shafts. Coal ash has a wide variation in ash composition, from 47 % to 65 % silica (SiO_2) and 16 % to 29 % aluminum or dialuminum trioxide (Al_2O_3) , with some ash being considered a good attraction for zeolite production [1–3].

Within the framework developed, various types of coal ash and materials for zeolite synthesis will be analyzed and experimental developments carried out for zeolite synthesis will be selected. Subsequently, the synthesis will be optimized to increase the yield of the synthesized zeolite and an evaluation of the capacity of the material will be performed. The synthesized zeolite will then be used either for environmental purposes, to separate oil and water produced during oil production, or for catalytic purposes to create a catalyst to improve the purification of light olefins in heavy feedstock.

Thus, for the purpose of ecological use of raw materials, adsorption applications in oil and water separation and catalysis, the use of coal ash for the synthesis of zeolites is a promising application, which in the future can be realized for the synthesis of fluid catalytic cracking (FCC) catalytic catalyst by adding rare metals. to zeolite, restructuring of the molecular structure and the possibility of subsequent use as a catalyst.

References

- 1. OFFICE OF FOSSIL ENERGY (FE), "A Brief History of Coal Use" Washington, 2013.
- 2. U. S. Geological Survey (USGS)10 "The National Coal Resource Assessment Overview: Chapter C. – An Introduction to Coal Quality," Reston, 2009.
- J. d. C. IZIDORO, "Síntese e caracterização de zeólita pura a partir de cinzas volantes de carvão," Dissertação (Doutorado em Ciências na Área de Tecnologia Nuclear - Materiais) – Programa de Pós-Graduação em Ciências na Área de Tecnologia Nuclear - Materiais, Instituto de Pesquisas Energéticas e Nucleares, 2013.

STUDY OF LOW-TEMPERATURE PROPERTIES OF DIESEL FUEL AND THEIR RELATIONSHIP WITH ITS HYDROCARBON COMPOSITION AND PHYSICOCHEMICAL PROPERTIES

A. A. Pavlova, A. A. Berdnikova

Scientific supervisor – Candidate of Engineering Sciences, researcher E. V. Frantsina Linguistic advisor – Candidate of Engineering Sciences, researcher E. V. Frantsina

> National Research Tomsk Polytechnic University Lenin Avenue 30, 634050, Tomsk, Russia, aap129@tpu.ru

Important performance characteristics of diesel fuel are cloud point (CP), pour point (PP) and cold filter plugging point (CFPP) [1]. The study of the hydrocarbon composition of the fuel and the identification of the relationship with its low-temperature properties is one of the main tasks. The purpose of this work is to analyze the hydrocarbon composition and physicochemical properties of diesel fuel samples and evaluate their effect on low-temperature characteristics.

Samples of diesel fuel of various hydrocarbon composition were taken as the object of study. For each sample, the hydrocarbon composition