УДК 519.178

АЛГОРИТМЫ ПОСТРОЕНИЯ ПРОСТРАНСТВЕННОГО СУПЕРГРАФА

Е.М. Сухова

Научный руководитель: доцент, к.ф.-м.н., М.Е. Семенов Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина, 30, 634050

E-mail: ems16@tpu.ru

ALGORITHMS FOR CONSTRUCTING A SPATIAL SUPERGRAPH

E.M. Suhova

Scientific Supervisor: Ass. Pr., PhD, M.E. Semenov Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050

E-mail: ems16@tpu.ru

Abstract. In the paper, we proposed two algorithms for constructing a supergraph in order to identify key relations in data with a network structure. On the Brightkite dataset, we have obtained the data compression by 3 and 9 times, respectively. The software implementation of the algorithms have been made using the NetworkX Python library.

Введение. Граф представляет собой математическую абстракцию реальных систем любой природы, поэтому теория графов, как раздел математики, используется в самых разных предметных областях. Экспоненциальный рост объемов информации предопределяют необходимость разработки эффективных алгоритмов для преобразования исходных с сетевой структурой в графовые модели. Под суперграфом SG(V', E') будем понимать подмножество вершин и ребер исходного графа G(V, E), которые выявлены или заданы по определенному правилу, например, через функцию расстояния, учитывающую топологические отношения пространственных объектов [1, 2]. На таких моделях можно применять различные алгоритмы для решения задач кластеризации, выявления мостов, узлов сочленений, поиска покрытий, в том числе кликовых, имеющих прикладное значение в различных предметных областях.

Цель работы – создание и программная реализация алгоритма построения пространственного суперграфа для выявления ключевых отношений в данных, имеющих сетевую структуру.

Материалы и методы исследования. Для вычислительных экспериментов мы использовали набор данных с сетевой структурой Brightkite [3]. Данный набор содержит *m*=214 078 рёбер и *n*=58 228 вершин, а также атрибутивную информацию вершин: идентификатор пользователя (id), время регистрации в сети (check-in-time), координаты местонахождения пользователя (latitude – широта, longitude – долгота). Анализ исходных данных показал, что граф содержит 547 компонент связности, средняя степень вершин равна 7,353. В работе мы использовали максимальную компоненту связности с 56739 вершинами.

Алгоритм 1 (пространственный порог). Каждой вершине были присвоены декартовы координаты местонахождения пользователя, для всех ребер определен вес, как евклидово расстояние.

Далее для построения суперграфа мы ввели пространственный порог $R = \frac{1}{m} \sum_{i=1}^{m} p_i$, где p_i — длина ребра,

m — количество ребер. Если вес ребра графа больше R, то ребро исходного графа удаляем, при этом это ребро запоминаем для дальнейшего использования (рис. 1, красные ребра). В итоге, мы получаем группу географически близко находящихся друг к другу вершин, которую будем называть *компонентой связности* (рис. 1, центр). Каждую компоненту стягиваем в одну вершину — эта вершина и будет вершиной суперграфа. Координаты супервершины находим как географический центр компоненты связности. Соединяем компоненты связности учитывая ранее помеченные ребра.

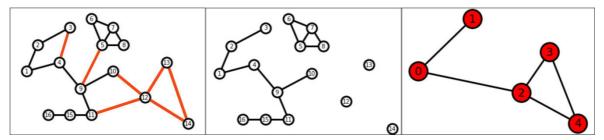


Рис. 1. Исходный граф, красным отмечены ребра с весом больше R (слева), расположение компонент связности (по центру), суперграф (справа)

Алгоритм 2 (мосты). Для проведения процедуры стягивания мы предлагаем использовать мосты (рис. 2, слева выделены красным). После удаления мостов получаем компоненты связности, которые затем стягиваем в одну вершину. Если в графе встречается цепь из двух и более мостов подряд, например, ребра (11, 15) и (15, 16), то мы удаляем только последнее ребро (11, 15), которое соединено с другой компонентой связности.

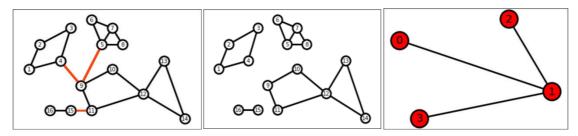


Рис. 2. Исходный граф, красным отмечены ребра-мосты (слева), расположение компонент связности (по центру), суперграф (справа)

Таким образом, Алгоритм 1 позволяет получить граф, в котором возможен цикл, а Алгоритм 2 позволяет получить дерево.

Результаты. С использованием пространственные характеристик (θ, φ) мы отобразили вершины графа на сферу (рис. 3 слева) в декартовой системе координат по формулам:

$$x = r \sin \theta \cos \varphi$$
, $y = r \sin \theta \sin \varphi$, $z = r \cos \theta$,

где $-\theta$, ϕ координаты широты и долготы соответственно, r = 6371 км - радиус Земли. Для определения расстояние между всеми вершинами u и v мы использовали евклидово расстояние:

$$d = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2}, i \neq j.$$

Зависимость количества вершин в суперграфе от порога R приведена на рис. 3. Видно, что при R=100 км количество вершин 28276, которое плавно снижается до 24113 с увеличением до R=1000 км, а затем претерпевает качественное изменение.

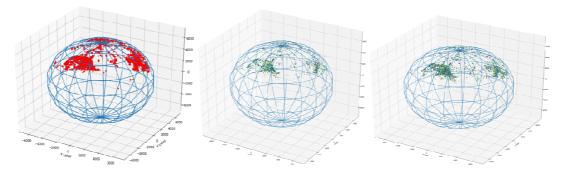


Рис. 3 Исходный граф (слева), результат работы 1 алгоритма (по центру), результат работы 2 алгоритма (справа)

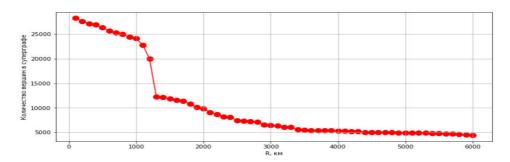


Рис. 4. Количество вершин графа в зависимости от пространственного порога

Заключение. Предложенные алгоритмы имеют практическое значение для выявления сообществ [4]. Таким образом, было разработано и программно реализовано два алгоритма построения суперграфа с использованием атрибутов вершин исходного графа. Алгоритм 1, на основе среднеарифметического расстояния, позволил нам сократить количество вершин в 9 раз, в то время как Алгоритм 2 с мостами позволил сократить в 3 раза. Использование данных алгоритмов значительно упрощает работу с сетевыми структурами.

СПИСОК ЛИТЕРАТУРЫ

- 1. Mukherjee S.S., Chakrabarti S. Graphon Estimation from Partially Observed Network Data. 2019., p. 1-12
- 2. Еремеев С.В. Алгоритм построения моделей пространственных отношений на основе темпоральных графов // Сборник трудов III международной конференции и молодежной школы «Информационные технологии и нанотехнологии» Самара: Новая техника, 2017. С. 482-489.
- 3. Cho E., Myers S. A., Leskovec J., Friendship and Mobility: Friendship and Mobility: User Movement in Location-Based Social Networks ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 2011. https://snap.stanford.edu/data/loc-brightkite.html
- 4. Scripps J., Tan P., Esfahanian A. Node Roles and Community Structure in Networks. New York: ACM, 2007. 36 p.