Хэ Лин (Китай), Ян Анькан (Китай), Козлов Виктор Николаевич (Россия)

Томский политехнический университет, г. Томск Научный руководитель: Козлов Виктор Николаевич, канд. техн. наук, доцент

АНАЛИЗ НАПРЯЖЁННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ РЕЖУЩЕГО КЛИНА ПРИ ОБРАБОТКЕ СТАЛИ

При косоугольном несвободном резании внимание уделяется напряжениям в главной секущей плоскости, которая проходит перпендикулярно основной плоскости и **проекции** главной режущей кромки на основную плоскость (рис. 1). При расположении этой плоскости на расстоянии более двух радиусов при вершине *r* от вершины инструмента напряжённое состояние считается приближённым к плоскому, т.е. во всех главных секущих плоскостях наблюдается одинаковое напряжённо-деформированное состояние (НДС) [1-4].

Поскольку основная внешняя нагрузка от силы резания приходится на главную режущую кромку, переднюю и заднюю поверхности, примыкающие к ней, то можно рассматривать НДС простого режущего клина при прямоугольном свободном резании, что существенно упрощает задачу и позволяет избавиться от неопределённости от сил, действующих со стороны вспомогательной режущей кромки 6 (рис. 1).

Неопределённость нагрузки со стороны вспомогательной режущей кромки вызвана сложностью экспериментального исследования её влияния на контактные напряжения в этой области из-за объёмного деформированного состояния вблизи вершины [1, 2]. С другой стороны, это влияние на НДС режущей части незначительно из-за меньшей, по сравнению с главной режущей кромки, внешней нагрузке, особенно при небольшой подаче *s* (в англоязычной литературе *f*) (менее 0,3 мм/об) и большом вспомогательном угле в плане φ_1 (более 20°).

Поэтому в наших экспериментах выполнялось несвободное косоугольное резание с постоянной глубиной резания t = 2 мм, постоянным главным углом в плане $\varphi = 45^{\circ}$, а для уменьшения влияния контакта по вспомогательной режущей кромке использовались малый радиус при вершине r = 0,05 мм и большой вспомогательный угол в плане $\varphi_1 = 45^{\circ}$.

II Международная научно-практическая конференция «Научная инициатива иностранных студентов и аспирантов»

Рис. 1. Положение основной плоскости (а) и сечение режущего инструмента в главной секущей плоскости N-N (б). 1 – вершина режущей части; 2 – передняя поверхность; 3 – главная задняя поверхность; 4 – вспомогательная задняя поверхность; 5 – главная режущая кромка; 6 – вспомогательная режущая кромка; 7 – след передней поверхности на главной секущей плоскости; 8 – след главной задней поверхности на главной секущей плоскости

Ширина контакта стружки с передней поверхностью принималась равной ширине среза $b_{cpe3a} = t/\sin \varphi$ из-за очень небольшого уширения стружки. Продольная подача *s* (мм/об) изменялась в разных сериях экспериментов от 0,07 до 0,52 мм/об. На процесс образования стружки влияет не подача *s* сама по себе, а толщина среза, которая рассчитывается по формуле: $a = s \cdot \sin \varphi$ (мм).

Для приложения внешней нагрузки были определены эпюры (распределение) контактных напряжений на передней поверхности и фаске износа по задней поверхности для разных толщин среза a от 0,05 до 0,368 мм и переднего угла γ от -10 до +35°.

Рис. 2. Пример 3Д модели режущего клина с направлениями осей

Расчёт НДС режущего клина выполнялся методом конечных элементов с использованием программы Ansys (ANSYS). После создания 3Д модели с необходимыми размерами задаются направления осей, которые соответствуют направлению осей технологических составляющих силы резания (рис. 2). Т.к. рассматривалось прямоугольное свободное резание диска с радиальной подачей *s*, то направление оси ОХ было задано вдоль режущей кромки.

Рис. 3. Пример эпюр нормальных σ и касательных т контактных напряжений на передней поверхности режущего клина с направлениями осей OZ и OY при расчёте НДС методом конечных элементов. Сталь 40X-T15K6, $\gamma = +7^{\circ}$, **a** =0,368 мм

Для приложения контактных напряжений на передней поверхности длина контакта стружки с ней разбивалась на участки шириной b, равной ширине контакта стружки с передней поверхностью b_{crp} , и длиной l_i , которая назначалась в зависимости от интенсивности изменения нормальных контактных напряжений σ (рис. 3): при интенсивном изменении σ на небольшом удалении от режущей кромки ($l_i < 0.5c$) [3] длина участка Δl_i вдоль длины контакта стружки с передней поверхностью режущего клина *с* не более 0.1 мм, а при дальнейшем отдалении, когда изменения σ не столь интенсивные $\Delta l_i = 0.2...0.4$ мм.

При переднем угле $\gamma \neq 0^{\circ}$ необходимо рассчитать эти составляющие, силы. В том случае, если внешняя нагрузка задаётся удельными средними контактными нагрузками q (МПа) на рассматриваемом участке, то рассчитываются суммарные контактные нагрузки вдоль осей $OZ(q_{\Sigma z}i)$ и $OY(q_{\Sigma y}i)$ (табл. 1).

Таблица 1

Составляющие контактные нагрузки, действующие вдоль осей OZ ($q_{\Sigma z}$ i) и
О <i>Y</i> (<i>q</i> ∑ <i>yi</i>) при расчёте НДС режущего клина. Сталь 40Х-T15К6, v=120 м/мин
γ =+15°, толщина среза а =0,05 мм, 5 участков, без поворота режущего

клина

№ уч - ка	От реж. кромк и l _{ni} , мм	<i>σ</i> і (МПа)	$q_{z\sigma i} = \sigma_i \cos\gamma$ (MIIa)	$q_{y\sigma i} = $ $= $ $\sigma_i \sin \gamma $ (MIIa)	т _і (МПа)	$q_{z\tau i} =$ $=$ $\tau_{i} \sin \gamma$ (MIIa)	$q_{y\tau i} = \tau_i \cos\gamma$ (MIIa)	$q_{\sum z i} =$ $= q_{z\sigma i}$ $+ q_{z\tau i}$ (MIIa)	$q_{\sum y i} =$ $= q_{y\tau i} -$ $q_{y\sigma i}$ (MIIa)
1	2	3	4	5	6	7	8	9	10
1	0-0,08	805	777,57	208,35	483,2	125,06	466,74	985,92	258,39
2	0,08- 0,13	476	459,78	123,2	483,2	125,06	466,74	584,84	343,54
3	0,13- 0,16	302	291,7	78,16	483,2	125,06	466,74	416,76	388,58
4	0,16- 0,23	236	227,96	61,08	406,6	105,24	392,17	333,2	331,09
5	0,23- 0,32	85	82,1	22	165	42,7	159,38	124,8	137,38

Для уменьшения трудоёмкости расчётов нагружения режущего клина нами было предложено повернуть 3Д модель режущего клина таким образом, чтобы передняя поверхность стала параллельна оси *OY* (оси *OXY* при косоугольном резании) (рис. 4). В этом случае задняя поверхность будет повернута относительно оси *OZ* на угол $\psi = \gamma + \alpha$, но угол заострения режущего клина β останется неизменным, а значит прочность клина, с точки геометрических параметров, будет такая же. В таблице 1 для расчёта понадобятся только колонки *1*, *2*, *3* и *6*.

Рис. 4. Положение режущего клина после его поворота на угол γ против часовой стрелки (при γ>0°) (см. рис. 3).

Расчёты НДС режущего клина традиционным способом (без поворота клина) и предложенным способом (с поворотом клина) показали одинаковые результаты по основным параметрам НДС (Табл. 2).

Таблица 2

Наибольшие деформации и напряжения без поворота режущего клина и с его поворотом. Сталь 40X-T15K6, v=120 м/мин, t=1,99 мм, b=2,82мм, λ =0°, α =8° γ =+15°, α =0,05 мм.

№-порядковый-и-	Толшина	Сокращенное-	C*	без	Соотношение
название параметрае	среза-	название	поворотоме	повороте	между%° <mark>(№ 5 и</mark>
	<mark>а^{0,} (</mark> ММ) е	параметра			<mark>№ 4)</mark> ⊷
N2+1 ↔	№ 24	N₂•3 e	Nº•4₽	№ 5+	Nº•6+
1 ·- ·наибольшие·	a≌0,05 ∉	e ^j	1099,6+	1141e	103*%° _{e'}
эквивалентные-		𝔅 экв ⁰max+ ^ℓ			
напряжения б экв° тах					
(МПа) _"					
2наибольшие-	a°=0,05⊭	σ y9max · ψ	6,,26+	45,57.	7,27•%°+
нормальные-		по•оси•ОУ			
напряжения•по•оси•ОУ•					
<mark>σ_{y°max} (</mark> ΜΠa)⊮					
3 наибольшие-	a°=0,05∉	σz⁰max↔	18,35v	16,9 7.	92,4*%°e
нормальные-		по•оси•ОΖе			
напряжения по оси ОZ					
<mark>σ_{z`max}(MΠa)</mark> ∉					
4наибольшие-	a°=0,05⊭	Emax €	0,00187+	0,00207 #	110·%°
деформация <mark>г_{мах} (</mark> мм) е					
5 [*] -•наибольшие•	a≌0,05 ∉	Tyoz max · e	9,19.	12,07v	131•%°e
касательные •		в*плоскости*			
напряжения в		YOZ*'			
плоскости YOZ тугтах					
(M∏a)⊮					
б·наибольшие-	<u>a</u> ≌0,05⊬	Txoz9max · e	21,64	25,2*	116·%°e
касательные-		в плоскости			
напряжения в		XOZ**			
плоскости XOZ • т xzmax*					
(M∏a)⊮					

При нагружении передней поверхности внешними нагрузками были рассмотрены варианты с малым (5 участков) и большим количеством участков (35 участков), на которые делится длина контакта стружки с передней поверхностью. Разница величины основных параметров НДС была незначительная как при $\gamma > 0^{\circ}$ (табл. 3), так и при $\gamma < 0^{\circ}$, а также при разной толщине среза *a* (Табл. 3).

Таблица 3

Наибольшие деформации и напряжения при разном количестве участков и толщине среза. Сталь 40X-T15K6, v=120 м/мин, t=1,99 мм, φ =45°, b=2,82мм, φ 1=45°, λ =0°, r=0,1 мм, γ =+15°, α =8°.

№порядковый•и•	Толшина	Сокращенное-	Маленькое	Большоее	Соотношение
название параметра.	среза-	название	количество	количествое	между <mark>№ 4 и №</mark>
	<mark>а</mark> ⁰ (мм) е	параметра⊮	участков+	участков е	<mark>5, (№ 4/№ 5</mark>)⊬
Nº-1+'	№ 24	N₂•3.₀	Nº.4∿	№ 5¢	Nº-6+
1 наибольшие-	<mark>a</mark> ≌=0,05⊬	e,	1099,6+	1219,9e	0,901 * «
эквивалентные		Озкв ^о тах+			<mark>(№*5/№*4</mark> *-*1,1) _{*'}
напряжения о зквулах	<mark>a</mark> ≌0,368⊬		1498,5+	1522,2v	0,984+
(M∏a)⊬					
2наибольшие-	a≌=0,05 ∉	σ y9max · φ	6,,26,	19,94 ₄	0,314,
нормальные		по оси ОҮ е			
напряжения по оси ОҮ-	a≌0,368⊬		50,35v	41,05 <i>v</i>	1,226+
<mark>σ_{yman}(M∏a)</mark> ⊮					
3наибольшие-	<u>a</u> ≌=0,05⊭	σz⁰maxψ	18,35v	19,94 <i>e</i>	0,92+
нормальные-	a-0 368	по∙оси∙ОΖ∉	42.03.	75.88	0.565
напряжения по оси OZ-	u =0,508¢		42,950	12,000	0,0000
<mark>σ_{z™ax}</mark> (M∏a)⊬					
4наибольшие-	<u>a</u> ≌=0,05⊬	Emax ₽	0,00187#	0,00249+	0,751.0
деформация <mark>ε_{тах} (мм)</mark> е					<mark>(№*5/№*4</mark> *-*1,33)⊬
	<mark>a</mark> ≌0,368⊬		0,00626+	0,00625v	1,0016
5наибольшие-	<u>a</u> ≌=0,05⊬	Tyoz9max · e	9,19e	4,74⊬	1,94+
касательные.		в плоскости			
напряжения в		YOZť			
плоскости•YOZ•туzmax*	a≌0,368⊬		54,91 <i>×</i>	56,31 <i>v</i>	0,975+
(МПа) _"					
б наибольшие-	<u>a</u> ≌=0,05⊬	Txoz9max · e	21,64+	30,19e	0,717.
касательные.		в.плоскости.			
напряжения в	a≌0 368.	XOZ · e'	50.4	53.03.	1 12
плоскости XOZ тхгтах	a -0,000P		22,74	55,058	1,124
(M∏a)⊬					

Поэтому нет большой разницы в НДС режущего клина при расчёте 3Д модели **без поворота** и **с поворотом** режущего клина (чтобы передняя поверхность была параллельна оси ОҮ) в величине $\sigma_{3\kappa B}$ max. По σ_{y} max есть небольшая разница по величине (6,26 МПа и 45,57 МПа соответственно) и по картине линий равных напряжений, т.к. оси ОҮ направлены под углом γ . Также есть небольшая разница по величине о величине σ_{z} max и картине линий равных напряжений.

Таким образом, немного больше влияние количества участков на наибольшие деформация ε_{max} при положительном переднем угле $\gamma = +15^{\circ}$ и при малой толщине среза *a* =0,05 мм: происходит увеличение ε_{max} в 1,33 раза при увеличении количества участков в 7 раз.

Анализ результатов расчёта НДС простого режущего клина при прямоугольном свободном резании стали 40Х показывает, что увеличение количества участков, на которые разбивается участок контакта стружки с передней поверхностью, не влияет на результаты расчёта в большом диапазоне толщины среза *a*.

СПИСОК ЛИТЕРАТУРЫ

- 1. Развитие науки о резании металлов /В.Ф. Бобров, Г.И. Грановский, Н.Н. Зорев и др. – Москва: Машиностроение, 1967. – 416 с.
- Контактные нагрузки на режущих поверхностях инструмента/Полетика М.Ф. – Москва: Машиностроение, 1969. – 148 с.
- Методика измерения контактных напряжений на поверхностях резца [Электронный ресурс] / В. Н. Козлов [и др.]; науч. рук. В. Н. Козлов // Молодежь и современные информационные технологии : сборник трудов XIV Международной научно-практической конференции студентов, аспирантов и молодых ученых, г. Томск, 7-11 ноября 2016 г. в 2 т. / Национальный исследовательский Томский политехнический университет (ТПУ), Институт кибернетики (ИК) ; под ред. В. С. Аврамчук [и др.]. –Томск: Изд-во ТПУ, 2016. - Т. 2. - с. 350-352.
- Чэнь Юэчжоу. Расчёт эпюр контактных напряжений при обработке стали / Чэнь Юэчжоу, Чжан Цзяюй, В. Н. Козлов; науч. рук. В. Н. Козлов // Научная инициатива иностранных студентов и аспирантов российских вузов сборник докладов Х Всероссийской научнопрактической конференции, Томск, 22-24 апреля 2020 г.: / Национальный исследовательский Томский политехнический университет (ТПУ). –Томск : Изд-во ТПУ, 2020. - с. 243-250.