Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский Томский политехнический университет»

На правах рукописи

Белова Анастасия Сергеевна

РАЗРАБОТКА МЕТОДОВ ИССЛЕДОВАНИЯ ИЗОТОПОЗАМЕЩЕННЫХ МОЛЕКУЛ В ЗАДАЧАХ КОЛЕБАТЕЛЬНО-ВРАЩАТЕЛЬНОЙ СПЕКТРОСКОПИИ

1.3.6 – Оптика

Диссертация

на соискание ученой степени

кандидата физико-математических наук

Научный руководитель:

Доктор физико-математических наук, доцент

Бехтерева Елена Сергеевна

Оглавление

B	веде	ние	3								
1	1 Методологические составляющие молекулярной спектроскопии высокого										
	раз	решения	15								
	1.1	Теоретические основы	15								
	1.2	Экспериментальные методы исследования	24								
	1.3	Современные требования спектроскопических баз данных	29								
	1.4	Модели контура спектральных линий	32								
	1.5	Некоторые сведения из теории изотопозамещения	36								
	1.6	Проблема определения абсолютных интенсивностей изотопологов	40								
2	Раз	работка метода оценки парциального давления изотопологов в смеси									
	газо	ЭВ	43								
	2.1	Определение парциального давления в смеси газов	43								
	2.2	Аналитическое представление параметров эффективного дипольного момента									
		для молекул типа асимметричного волчка. Фундаментальные полосы	45								
	2.3	Численное представление параметров эффективного дипольного момента для									
		молекул типа асимметричного волчка. Фундаментальные полосы	49								
3	Исс	следование спектров молекул типа асимметричного волчка	56								
	3.1	Анализ спектров молекул D ₂ ^M S (M=32, 33, 34)	56								
	3.2	Анализ спектров молекулы H ₂ S	77								
4	Исс	ледование спектров молекул высокой симметрии	88								
	4.1	Анализ спектров молекулы CH ₃ D	88								
	4.2	Анализ спектров молекул ^M SiD ₄ (M=29, 30)	102								
38	аклю	рчение	112								
\mathbf{C}_{1}	писо	к используемой литературы	114								

Приложение А	•	•	•	•	•	 •	•	•	•	•	•		•	•	•	•	•		•	•	•	 •	•	•	•	•	• •	•		•	136
Приложение В			•			 •		•		•	•		•	•	•	•	•		•				•	•	•	•				•	147
Приложение С		•	•					•		•				•		•	•	 •	•						•				•	•	162
Приложение D		•	•		•	 •	•	•		•		 •		•		•	•	 •	•			 •	•	•	•	•			•	•	173
Приложение Е																															175

Введение

Теоретические и лабораторные исследования различных молекул методами молекулярной спектроскопии высокого разрешения были и остаются в центре внимания многих, как отечественных, так и международных научных групп. Связано это в первую очередь, с острой необходимостью научного сообщества в высокоточной спектроскопической информации для решения различных прикладных задач атмосферной оптики, астрофизики, планетологии, газоанализа.

Следует отметить, что несмотря на то, что экспериментальные исследования количественных характеристик молекулярных спектров (положений, интенсивностей и полуширин спектральных линий) основных изотопических разновидностей молекул выполняются весьма интенсивно в целом ряде мировых центров по молекулярной спектроскопии высокого разрешения, аналогичные исследования изотопически замещенных модификаций являются единичными и их число на порядки уступает числу исследований материнских модификаций. Как правило, информация об изотопически замещенных модификациях либо отсутствует в литературе, либо частично представлена в публикациях отдельных авторов, что говорит о несистемном изучение данного аспекта. Причина такого положения заключается не в отсутствии интереса к подобным исследованиям, а в наличие определенных факторов, которые значительно усложняют процесс исследования. К таким факторам следует отнести наличие жестких требований к качеству экспериментального оборудования и постановке эксперимента (требуется выдержать стабильные температуру и давление в течение длительного времени, а наличие даже небольшой экспериментальной погрешности приводит к качественно неверной интерпретации данных), дороговизну образцов изотопологов, а также отсутствие эффективного метода определения парциальных давлений изотопологов в экспериментально исследуемых образцах. Поэтому весьма актуальной является разработка методов, позволяющих оценить процентное соотношение изотопологов в смеси газов при нестабильных условиях эксперимента, и тем самым предоставить возможность корректного определения абсолютных интенсивностей колебательно - вращательных переходов в спектрах высокого разрешения изотопологов. Знание информации такого рода, в свою очередь, позволяет решать многие прикладные задачи, сопряженные с определением макропараметров среды, количественного и качественного содержания вещества в среде. Однако следует учесть, что анализ интенсивностей может быть произведен только при наличии в литературе данных об

энергетической структуре спектра или в комплексе с анализом положений линий. Поэтому задачи определения положений и абсолютных интенсивностей спектральных линий обычно рассматриваются одновременно.

Исследование спектров изотопически замещенных модификаций также позволяет получить дополнительные данные, необходимые для решения задачи определения внутренней динамики молекул. В силу более низкой симметрии большинства изотопологов относительно симметрии материнской молекулы, в спектрах изотопически замещенной модификации присутствуют дополнительные полосы и переходы, информация о которых значительно расширяет перечень сведений о внутренних свойствах исследуемого вещества. Информация такого рода, является актуальной при определении параметров внутримолекулярного силового поля и дипольного момента. Несмотря на то, что с течением времени точность ab initio расчетов постепенно растет, в настоящее время она все же значительно уступает точности полуэмпирических расчетов, которые, основываясь на модели эффективного гамильтониана и эффективного оператора дипольного момента, способны воспроизводить положения и интенсивности колебательно - вращательных линий с точностью, сравнимой с экспериментальной. Именно полуэмпирические расчеты лежат в основе полученных в данной диссертации результатов, однако в нескольких параграфах настоящей работы упоминаются данные, полученные методом ab initio. Все вышесказанное определяет **актуальность** выбранной темы.

Степень изученности проблемы. Развитие спектроскопии шло наравне с развитием квантовой физики. Оба этих новых направления физики обуславливали появление друг друга. С одной стороны, эмпирический опыт, накопленный за время изучения спектральных линий, натолкнул ученых на мысль о процессах, происходящих в микромире, доселе неизвестных науке. С другой, появление новых гипотез и идей, объясняющих строение атомов и молекул привело к созданию цельной квантовой теории и открыло широкие возможности к осмыслению всего полученного в экспериментах материала. Знаменитый как в нашей стране, так и за рубежом советский физик Л. Д. Ландау в 1926 году построил теорию спектров двухатомных молекул [1]. Далее Ф. Хунд, предложил в 1927 г. эмпирический способ (на данный момент известный как правило Хунда) определения размещения энергетических уровней в мультиплетах и заложил в это же время основы теории молекулярных спектров [2]. Выпускники Мюнхенского университета В.Г. Гайтлер и Г.Ф.Лондон в 1927 г. выполнили первый приближенный расчет молекулы водорода [3], что легло в основу развития квантовой химии молекул. В 1928 году преподаватель – ученый Л. К. Полинг разработал основы теории химических связей в молекулах [4]. Отдельно следует выделить труды М. А. Ельяшевича [5] - [6] и Г. Герцберга [7], посвящённые спектроскопии молекул. Эти труды и по сей

5

день являются «необходимым базисом» для любого спектроскописта. Развитие в различных отраслях науки зачастую обусловлено развитием технологических возможностей. Так, главным прорывом в технологии ИК спектроскопии стало внедрение инфракрасных спектрометров с Фурье-преобразованием (FTIR). Широкое использование FTIR спектроскопии, однако, было замедлено из-за сложности вычислений, необходимых для преобразования интерферограммы в спектр. Затем, в 1964 году, открытие алгоритма быстрого преобразования Фурье (БПФ) Джеймсом Кули и Джоном Тьюки сократило время компьютерного вычисления с нескольких часов до нескольких секунд [8]. Следующее значительное изменение произошло в 1969 году, когда Digilab разработал и продал первый коммерческий FTIR спектрометр со специальным миникомпьютером. С тех пор дальнейшее развитие компьютерных технологий наряду со значительным снижением цен привело к появлению большого количества коммерческих FTIR-спектрометров на рынке и широкому применению FTIR-спектроскопии во всех областях науки и техники. Начиная с 60х годов прошлого века качество анализируемых спектров неуклонно растет. В последние годы ученым и инженерам удалось добиться того, что разрешающая способность современных FTIR спектрометров может достигать порядка 0.001 см⁻¹, что казалось невероятным еще несколько десятилетий назад. Все это сказывается и на количестве работ, посвященных анализу колебательно - вращательных спектров в ближнем и среднем ИК диапазонах. Первые работы были посвящены, как правило, двух- трех- атомным молекулам. Постепенно количество работ становилось все больше, расширялся исследуемый диапазон, появлялись новые доступные для изучения объекты исследования. Тогда начали создавать специальные спектроскопические атласы молекул [9]. Сейчас их место заменили базы данных, в которых содержится огромный объем информации о различных молекулах и различных спектральных диапазонах.

Спектроскопия высокого разрешения сероводорода и его изотопически замещенных модификаций вызывает большой интерес по ряду причин. С одной стороны, спектры сероводорода используются для измерений загрязнителей атмосферы Земли и для изучения физики и химии в атмосферах других планет (например, Венеры) и межзвездной среды [10]. С другой стороны, молекула сероводорода представляет интерес с теоретической точки зрения, поскольку она является одной из самых легких молекул типа асимметричного волчка с сильным колебательно – вращательным взаимодействием. Как следствие, многочисленные спектроскопические эффекты и особенности, присущие асимметричным волчкам, ярко выражены в спектрах сероводорода. Таким образом, эта молекула может выступать в качестве хорошего «пробного камня» для проверки различных методов, используемых в химической физике для получения поверхности потенциальной энергии (PES), поверхности дипольного момента (DMS), и для моделирования экспериментальных спектров (см., например, работы [11] - [15], [16] - [23] и ссылки в них). Поэтому за последние сорок лет в микроволновой, субмиллиметровой и инфракрасной областях были проведены обширные лабораторные спектроскопические исследования молекулы сероводорода и даже создана специальная база данных, посвященная сероводороду [24]. Всякий раз, когда целью исследования является получение как можно более полной спектроскопической информации о молекуле, изучение изотопических разновидностей этой молекулы является эффективным средством сбора ценной дополнительной информации, в частности, касающейся внутримолекулярной динамики. Чем больше массовое соотношение изотопозамещенного вида по отношению к эталонной «материнской» молекуле, тем более выраженными являются изотопные эффекты, проявляющиеся в спектре. Кроме того, чем больше разнообразие изотопического замещения, тем больше количество эффектов, которые можно детально обнаружить и изучить. Соответственно, исследование дейтерированных видов молекулы является наиболее эффективным, поскольку отношение $(m_D - m_H)/m_H$ является наибольшим для стабильных изотопологов. Тем не менее, работ по анализу колебательно вращательных спектров изотоплогов $D_2^M S$ (M = 3 2, 33, 34) не так много, а работ, включающих в себя изучение абсолютных интенсивностей практически нет. Проблема точного количественного определения интенсивностей линий различных колебательных полос многоатомных молекул является одной из важнейших в молекулярной спектроскопии высокого разрешения, поскольку такая информация играет ключевую роль в исследовании многочисленных проблем науки и техники.

Спектроскопия силана является объектом многих научных исследований по ряду причин. Так, в работе [25] отмечалась важность понимания процесса химического осаждения кремния из газовой фазы для нужд индустрии полупроводников и производства тонких пленок. Как упомянуто в работе [26], процессы производства кремния высокой чистоты также нуждаются в контроле газа силана. Хорошо известно, что изотопологи силана представляют интерес для ИК-астрономии. В частности, в работах [27] – [30] утверждается наличие силана в атмосферах Юпитера и Сатурна. Работы [31] – [32] указывают на наличие основного изотополога ²⁸SiH₄ в планетарной туманности, окружающей звезду IRC+10216. Поэтому точные данные о спектрах высокого разрешения силана (как о положении линий, так и об абсолютных интенсивностях линий) могут быть полезны для исследования звездных объектов. Вследствие этого в течение многих лет проводились многочисленные лабораторные спектроскопические исследования основных видов силана и его различных изотопологов (см., например, [33]–[51]). Что касается SiD₄, то ранее его колебательно-вращательные спектры обсуждались лишь в работах, [33], [52]–[54]. Информация об интенсивностях линий публиковалась в нескольких недавних статьях [55] и [56].

Объектами исследования являются изотопические разновидности молекул (изотопологи), представляющие интерес для атмосферной оптики и астрофизики. К таким молекулам относятся сероводород, оксид серы, моносилан, этилен, метан и многие другие, то есть те молекулы, которые содержатся в атмосфере Земли, атмосферах других планет или входят в состав астрономических объектов.

Целью работы является экспериментальное и теоретическое исследование свойств изотопологов различной симметрии методами молекулярной спектроскопии высокого разрешения.

В ходе реализации поставленной цели решались следующие задачи:

- разработка теоретических основ метода определения концентраций (парциальных давлений) изотопологов в их смеси;
- получение изотопических соотношений между параметрами основной модификации молекулы и ее изотопологов для молекул типа асимметричного волчка;
- разработка алгоритмов и создание на этой основе комплекса программ с использованием программного пакета Maple для численного определения параметров эффективных дипольных моментов изотопологов на основе результатов, достигнутых на предыдущем этапе; отладка и проверка корректности разработанных программных средств;
- исследование энергетической структуры и интенсивностей спектральных линий экспериментально зарегистрированных спектров высокого разрешения молекул D₂^MS (M = 32, 33, 34) в диапазоне 2300 2900 см⁻¹; решение обратной спектроскопической задачи для энергий и интенсивностей;
- исследование интенсивностей колебательно-вращательных переходов в слабой полосе 5v₂ молекулы H₂S, сравнение качества полученных данных с результатами вариационных расчетов и результатами из базы данных HITRAN;
- исследование спектров молекулы CH₃D в области 1.58 μm окна прозрачности метана, оформление списка переходов в указанной области в формате HITRAN;
- анализ спектров высокого разрешения молекул ^MSiD₄ в области локализации фундаментальных полос ν₂, ν₃, ν₄; решение обратной спектроскопической задачи для энергий и интенсивностей.

Защищаемые положения:

- 1 Метод определения парциальных давлений газовой смеси, основанный на использовании аналитического представления параметров эффективного дипольного момента для изотополога как функции параметров «материнской» молекулы согласно теории изотопозамещения, позволяет оценивать концентрацию изотопологов в их смеси с погрешностью до 3 %.
- 2 Учет резонансного взаимодействия в полиаде V=3/2 молекулы D₂³²S позволяет описывать эффект перетекания интенсивностей переходов в соответствующих колебательновращательных полосах и получить набор параметров эффективного дипольного момента, способный восстанавливать абсолютные значения интенсивностей колебательновращательной полосы 3ν₂ с погрешностью порядка 3 %.
- 3 Компиляция метода «двух температур» и метода комбинационных разностей позволяет выполнить интерпретацию и дальнейший анализ сложных спектров, содержащих слабые переходы порядка 30 высоковозбужденных, резонирующих состояний молекулы СН₃D в диапазоне 6100-6500 см⁻¹.

Достоверность результатов, полученных в работе, подтверждается строгостью математических моделей и согласованностью рассчитанных и экспериментальных результатов, согласием с основными принципами и следствиями теории молекулярной спектроскопии. В случаях, когда это было возможно, достоверность результатов подтверждается согласием результатов настоящей работы с данными, полученными в работах других авторов.

В диссертационной работе выполнены исследования, определяющие ее **новизну**. В частности

- Разработан уникальный метод оценки парциальных давлений изотопологов в их смеси;
- Впервые получены аналитические соотношения между параметрами эффективного дипольного момента материнской молекулы и изотополога для молекул типа асимметричного волчка;
- Произведен расчет главного параметра эффективного дипольного момента для ряда молекул типа асимметричного волчка на основе полученных соотношений, справедливых для фундаментальных, комбинационных полос и обертонов, с точностью, превышающей вариационные расчеты;

- Исследована система взаимодействующих состояний второй триады молекулы D₂³²S; получены параметры эффективного гамильтониана и эффективного дипольного момента, способные воспроизводить исходный спектр с точностью, близкой к экспериментальной; полученные результаты значительно превосходят имеющиеся в литературе данные;
- Впервые определены экспериментальные интенсивности полосы 3\u03cm2 молекулы D₂³²S; получен набор из 8 параметров эффективного дипольного момента, способный с высокой точностью воспроизводить исходный спектр;
- Впервые исследована колебательно-вращательная структура спектров изотопологов D₂³³S, D₂³⁴S диоксида серы в диапазоне 2300-2900 см⁻¹; получены параметры эффективного гамильтониана, способные воспроизводить исходный спектр с точностью, близкой к экспериментальной;
- Впервые определены экспериментальные интенсивности полос *ν*₁+*ν*₂ и *ν*₂+*ν*₃ молекулы D₂³⁴S; получен набор из 6 параметров эффективного дипольного момента, способный с высокой точностью воспроизводить исходный спектр;
- Впервые определены параметры основного колебательного состояния молекулы $D_2^{33}S;$
- Получен набор параметров эффективного дипольного момента колебательного состояния (050) молекулы H₂³²S, способный воспроизвести спектр с точностью, превосходящей имеющиеся в литературе данные;
- Значительно расширен диапазон данных о структуре колебательно-вращательного спектра молекулы CH₃D в области 1.58 μm окна прозрачности метана; впервые были определены порядка 800 колебательно-вращательных переходов;
- Впервые осуществлен анализ спектров высокого разрешения молекул ^MSiD₄ (M=29,30)
 в области локализации фундаментальных полос ν₂, ν₃, ν₄.

Теоретическая значимость. Разработанный метод оценки парциального давления изотопологов в их смеси, а также полученные соотношения между параметрами материнской молекулы и ее изотопологов вносят дополнительный вклад в развитие теории изотопозамещения, позволяют упростить, а в некоторых случаях сделать возможным, процесс изучения интенсивностей колебательно-вращательных линий многоатомных молекул, и, как следствие, процесс извлечения количественной и качественной информации из спектров молекул высокого разрешения. Полученные количественные данные также вносят свой вклад в развитие теории молекулярной спектроскопии. Количественные данные, представленные в результатах настоящей работы, могут быть использованы в различных областях науки, таких как атмосферная оптика, астрофизика, газоанализ и, таким образом, могут послужить базой для расширения представлений и фактических знаний об окружающем нас мире.

Практическая значимость. Разработанные аналитические методы, полученная качественная и количественная информация, созданные вычислительные алгоритмы и компьютерные программы могут быть использованы в академических и производственных организациях. Результаты диссертационной работы могут быть использованы при чтении курсов лекций «Теоретические основы молекулярной спектроскопии», «Физика атомов и молекул», «Квантовая механика» в Национальном исследовательском Томском политехническом университете.

Основные методы исследования. Для решения поставленной цели использовались методы колебательно-вращательной спектроскопии, квантовой механики, теории групп. Широко использовалась теория изотопозамещения, операторная теория возмущений. В основе численных расчетов лежит метод наименьших квадратов. Для анализа колебательновращательная структуры спектров использовались метод комбинационных разностей, метод двух температур, сравнение с результатами вариационных расчетов. Для создания и реализации разработанных алгоритмов были использованы языки программирования Python, FORTRAN, программный пакет MAPLE. Для экспериментальной регистрации спектров применялись методы Фурье-спектроскопии и лазерной спектроскопии по затуханию света с кольцевой многоходовой кюветой (CRDS).

Внедрение результатов. Результаты, заявленные в диссертационной работе, являются частью научных исследований, проводимых в коллаборации Томского Политехнического университета (г. Томск, Россия) и Технического университета г. Брауншвейг (г. Брауншвейг, Германия). Разработанный метод определения парциальных давлений в смеси газов и полученные изотопические соотношения для молекул типа асимметричного волчка легли в основу работ [57] –[60] и использовались для корректного анализа интенсивностей спектральных линий.

Личный вклад автора при выполнении исследований в рамках диссертационной работы состоит в следующем:

• Формирование цели работы и постановка задач совместно с научным руководителем, д. ф.-м. н., профессором Бехтеревой Е. С. и руководителем лаборатории LiPhy (г. Гренобль, Франция), PhD, Кампарг А.;

- Под руководством д. ф.-м. н., профессора Бехтеревой Е. С. создание комплекса алгоритмов для реализации метода оценки парциального давления изотопологов в их смеси;
- Проведение верификации метода оценки парциального давления изотопологов в их смеси газов для различных молекул типа асимметричного волчка, проведение расчета параметров эффективного дипольного момента этих изотопологов совместно с д. ф.-м. н., профессором Громовой О. В;
- Под руководством д. ф.-м. н., профессора Бехтеревой Е. С. получение аналитических выражений, связывающих параметры эффективного дипольного момента материнской молекулы и ее изотопологов для молекул типа асимметричного волчка;
- Проведение анализа энергетической структуры колебательно-вращательных уровней энергии состояний (110), (011), (030) и измерение интенсивностей линий в спектрах высокого разрешения молекул D₂^MS (M=32,33,34);
- Сравнение качества смоделированных на основе экспериментальных данных интенсивностей в слабой полосе 5_{ν2} молекулы H₂S с результатами вариационных расчетов и результатами из базы данных HITRAN, создание сравнительных таблиц и графиков, формирование списка смоделированных данных в формате HITRAN;
- Проведение обработки и моделирования с помощью специальной компьютерной программы положений, полуширин и интенсивностей линий молекулы CH₃D;
- Комплексное использование существующих методов и данных для анализа энергетической структуры колебательно-вращательных уровней энергии сильно взаимодействующих состояний, локализованных в области окна прозрачности метана 1.58 μm, формирование списка из проанализированных линий в формате HITRAN, создание сравнительных таблиц и графиков;
- Проведение анализа положений линий в спектрах высокого разрешения молекул ^MSiD₄ (M=29, 30) в области локализации фундаментальных полос ν₂, ν₃, ν₄;
- Совместное участие с научным руководителем, д. ф.-м. н., профессором Бехтеревой Е.
 С. в написании статей и грантов.

Работа выполнялась при финансовой поддержке:

• Стипендии Правительства для приоритетных направлений подготовки аспирантов;

- Гранта РНФ №18-72-00032 (2018-2020 гг.)
- Гранта РНФ №18-12-00058 (2018-2020 гг.)
- Гранта ВИУ-ИШФВП-63/2019 (2019 2020 гг.)
- Стипендии посольства Франции в России «Остроградский» (2020 г.);
- Гранта ВИУ-ИШФВП-189/2020 (2020 2021 гг.)
- Гранта РФФИ «Аспиранты» № 20-32-90004 (2020-2022 гг.);
- Гранта Приоритет-2030-НИП/ЭБ-010-0000-2022 (2021 2022 гг.)

Апробация работы. Материалы, вошедшие в диссертацию, докладывались и обсуждались на следующих научных конференциях:

- 26th International Colloquium on High Resolution Molecular Spectroscopy, Dijon, France (2019);
- XVII International Conference of Students and Young Scientists "Prospects of fundamental sciences developments", Tomsk, Russia (2020);
- XVIII International Conference of Students and Young Scientists "Prospects of fundamental sciences developments", Tomsk, Russia (2021);
- 27th International Colloquium on High Resolution Molecular Spectroscopy, Virtual Conference (2021).

Публикации. Основные результаты диссертации опубликованы в 13 печатных работах: 6 статей в международных журналах, индексируемых Web of Science и Scopus; 2 статьи в переводной версии журналов, индексируемых в Web of Science и Scopus; 5 публикаций в материалах международных конференций.

Объем и структура диссертации. Настоящая работа объемом 176 страниц состоит из введения, 4 глав, заключения, 5 приложений и списка использованной литературы из 214 наименований.

Во введении изложена необходимость научного исследования, обозначена цель работы и поставлены задачи для ее реализации. Также обоснована новизна полученных результатов, практическая и теоретическая значимость исследования, сформулированы научные положения, выносимые на защиту, перечислены методы, использованные при выполнении работы. Первая глава носит ознакомительный характер. В ней содержатся некоторые сведения из теории молекулярной спектроскопии, основные требования современных баз данных спектроскопической информации к публикуемым научным данным, математические модели, используемые для описания экспериментальных данных, основные идеи из теории изотопозамещения, обзор экспериментальных установок, используемых для регистрации спектров высокого разрешения в рамках данной работы. Также проведен обзор литературных данных по теме исследования.

Вторая глава состоит из трех параграфов и содержит информацию о целесообразности разработки и основных выкладках метода оценки парциального давления изотооплогов в их смеси. Также в данной главе присутствуют теоретические соотношения, которые позволяют оценить главные параметры эффективного дипольного момента изотополога на основе данных о материнской молекуле. Глава содержит сравнительные таблицы и графики.

Третья глава состоит из двух параграфов и посвящена анализу спектров различных изотопологов сероводорода. Помимо энергетической структуры в случаях, когда это было возможно, приведены значения абсолютных интенсивностей спектральных линий и полуширин.

Четвертая глава содержит комплексный анализ спектров высокого разрешения молекул типа симметричного и сферического волчка. Параграф 4.1 содержит в себе информацию, касающуюся молекулы CH₃D. Парараф 4.2 посвящен анализу спектров высокого разрешения дейтерированных изотопологов силана ^MSiD₄ (M=29, 30) в области локализации фундаментальных полос ν_2 , ν_3 , ν_4 .

В заключении сформулированы основные выводы и результаты научного исследования.

Глава 1. Методологические составляющие молекулярной спектроскопии высокого разрешения

1.1 Теоретические основы

Описание того или иного явления в физике сводится к построению теоретической модели. Модель представляет собой мыслительную конструкцию, характеристики которой напоминают физические характеристики моделируемой системы. Модели физических объектов строятся на основании экспериментальных данных и теоретических представлений о данной области физических объектов, преобладающих в научном сообществе на определенный период времени. С одной стороны, от модели требуется чтобы она содержала известную до ее построения информацию о моделируемом объекте, с другой – изучение самой модели должно вести к получению новой информации о моделируемом объекте. Так как процессы и явления реального мира чрезвычайно сложны, и представляется невозможным учесть все свойства изучаемых объектов и связи между ними, то для описания процесса или явления в физике нередко прибегают к различного рода аппроксимациям. Однако следует помнить, что использование того или иного приближения не должно искажать представление о реальных процессах, а сама модель при этом должна оставаться физически обоснованной и отвечать основным требованиям, предъявляемым к научным гипотезам.

Если говорить об описании спектров молекул, то проблема нахождения соответствующей математической модели сводится к построению правильного гамильтониана молекулы. Решение стационарного уравнения Шредингера зависит от формы гамильтониана. С физической точки зрения молекула - это система, состоящая из атомных ядер и электронов. Таким образом, для точного описания энергетических уровней исследуемой молекулы необходимо решить уравнение Шредингера с гамильтонианом, который зависит от координат и спинов всех частиц, содержащихся в системе. Построение такого гамильтониана является нетривиальной научной задачей. Более того, решение стационарного уравнения Шредингера с таким сложным гамильтонианом не представляется возможным. Использование различных приближений при построении гамильтониана упрощает задачу поиска адекватной теоретической модели для описания молекулы. Поэтому в данном параграфе внимание будет уделено выбору физически разумной модели, позволяющей описать молекулу как квантовомеханический объект, а также вкратце будут обозначены шаги, предпринятые ранее для создания этой модели.

Будем рассматривать молекулу, состоящую из N ядер с массами M_I и n электронов с массами m. Предполагаем, что молекула изолирована, и внешние электромагнитные поля отсутствуют, также пренебрегаем релятивистскими взаимодействиями, т.е. эффектами, связанными со спинами частиц. В этом случае Гамильтониан молекулы запишется как:

$$H_{en} = -\sum_{i=1}^{n} \frac{\hbar^2}{2m} \Delta_i - \sum_{I=1}^{N} \frac{\hbar^2}{2M_I} \Delta_I + \underbrace{V_{ee} + V_{en} + V_{nn}}_{V}.$$
 (1.1.1)

Потенциальная функция V описывается кулоновским взаимодействием между частицами:

- *V_{ee}* между электронами;
- V_{en} между электронами и ядрами;
- V_{nn} между ядрами;

Каждый из вкладов зависит от относительных положений рассматриваемых частиц.

Проблема сводится, таким образом, к решению уравнения Шредингера:

$$H_{en}(\mathbf{x}, \mathbf{r})\psi_{en}(\mathbf{x}, \mathbf{r}) = E_{en}\psi_{en}(\mathbf{x}, \mathbf{r}), \qquad (1.1.2)$$

где **х** представляет все электронные координаты, а **r** –все ядерные.

Как уже упоминалось, такое уравнение является слишком сложным и первая аппроксимация состоит в том, чтобы разделить между собой электронное и ядерное движение [61]:

$$H_{en} = H_e + H_n, \tag{1.1.3}$$

где

$$H_e = -\sum_{i=1}^{n} \frac{\hbar^2}{2m} \Delta_i + V_{ee} + V_{en}, \qquad (1.1.4)$$

$$H_n = -\sum_{I=1}^{N} \frac{\hbar^2}{2M_I} \Delta_I + V_{nn}.$$
 (1.1.5)

Полную функцию $\psi_{en}(\mathbf{x}, \mathbf{r})$ можно представить как сумму произведений ядерной $\psi_n^k(\mathbf{r})$ и электронной $\psi_e^k(\mathbf{x}, \mathbf{r})$ собственных функций:

$$\psi_{en}(\mathbf{x}, \mathbf{r}) = \sum_{k} \psi_n^k(\mathbf{r}) \psi_e^k(\mathbf{x}, \mathbf{r}).$$
(1.1.6)

Тогда решение уравнения (1.1.2) можно разбить на две подзадачи:

– решение электронного уравнения Шредингера в выбранном состоянии k:

$$H_e \psi_e^k(\mathbf{x}, \mathbf{r}) = E_e^k(\mathbf{r}) \psi_e^k(\mathbf{x}, \mathbf{r}), \qquad (1.1.7)$$

$$(H_n + E_e^j - E_{en})\psi_n^j + \sum_k H_n^{jk}\psi_n^k = 0, \qquad (1.1.8)$$

где явно представлена только собственная функция $\psi_n^k(\mathbf{r})$, зависящая от относительного положения ядер.

Неадиабатическое приближение. Дальнейшие рассуждения будут основываться на том факте, что электроны обладают меньшими массами *m* по сравнению с массами ядер M_I , поэтому электроны двигаются с более высокими скоростями относительно ядерных. Ядерный гамильтониан H_n в этом случае имеет смысл рассматривать как возмущение по сравнению с гамильтонианом H_e . Тогда уравнение (1.1.8) можно записать:

$$\underbrace{(H_n + E_e^j - E_{en} + H_n^{jj})}_{\text{диагональные}} \psi_n^j + \sum_{k \neq j} \underbrace{H_n^{jk}}_{\text{недиагональные}} \psi_n^k = 0.$$
(1.1.9)

В рамках теории возмущений, выражение (1.1.9) принимает вид:

$$\widetilde{H}_n^j \psi_n^j = E_{en}^j \psi_n^j, \tag{1.1.10}$$

где \widetilde{H}_n^j – эффективный ядерный гамильтониан для электронного состояния j:

$$\widetilde{H}_{n}^{j} = H_{n} + E_{e}^{j} + H_{n}^{jj} + \sum_{k \neq j} \frac{H_{n}^{jk} H_{n}^{kj}}{E_{e}^{j} - E_{e}^{k}} + \dots$$
(1.1.11)

Данные обозначения соответствуют второму порядку разложения по теории возмущений, для более подробной информации можно обратиться к [62].

Здесь следует отметить, что применение теории возмущений возможно лишь в ситуациях, для которых характерны слабые межэлектронные взаимодействия, т.е. $H_n^{jk}H_n^{kj}$ мало по сравнению с $E_e^j - E_e^k$, и такой подход был бы нереализуем в случае близколежащих энергетических состояний или вырождения.

Адиабатическое приближение. Адиабатическое приближение состоит в пренебрежении взаимодействием между различными электронными состояниями, т.е. утверждается, что $H_n^{jk}H_n^{kj}$ пренебрежимо мало относительно $E_e^j - E_e^k$, и, таким образом, вклад от недиагональных H_n^{jk} приравнивается к нулю. В этих условиях эффективный ядерный гамильтониан имеет вид:

$$\widetilde{H}_n^j \simeq H_n + E_e^j + H_n^{jj}. \tag{1.1.12}$$

Тогда H_n^{jj} зависит от масс ядер, а E_e^j не зависит. Полная волновая функция, связанная с уровнем E_{en}^j принимает вид:

$$\psi_{en}^j(\mathbf{x}, \mathbf{r}) \simeq \psi_e^j(\mathbf{x}, \mathbf{r}) \psi_n^j(\mathbf{r}). \tag{1.1.13}$$

Приближение Борна – Оппенгеймера. В рамках данного приближения предполагается, что ядра совершают низкоамплитудные движения относительно своего положения равновесия r_e . Тогда электронная функция $\psi_e^j(\mathbf{x}, \mathbf{r})$ постоянна в окрестностях положения равновесия, т.е. не зависит от **r**. В этих условиях все диагональные и недиагональные элементы H_n^{jk} приравниваются к нулю и эффективный гамильтониан уменьшается до:

$$\widetilde{H}_n^j \simeq H_n + E_e^j, \tag{1.1.14}$$

$$\psi_{en}^j(\mathbf{x}, \mathbf{r}) \simeq \psi_e^j(\mathbf{x}) \psi_n^j(\mathbf{r}). \tag{1.1.15}$$

Таким образом, приближение Борна – Оппенгеймера является вариацией адиабатического приближения, и иногда его называют «грубым адиабатическим приближением».

Перепишем эффективный гамильтониан, описывающий движение ядер в конкретном электронном состоянии, в виде:

$$\widetilde{H}_n^j = T_n + V_n^j, \tag{1.1.16}$$

где T_n – кинетическая энергия ядер в эффективном поле V_n^j . Потенциал может быть разделен на несколько слагаемых (*M* представляет массу ядер):

$$V_n^j = V_{BO}^j + V_{ad}^j + V_{nad}^j, (1.1.17)$$

$$\begin{cases} V_{BO}^{j} = V_{nn}(\mathbf{r}) + E_{e}^{j}(\mathbf{r}) & (потенциал Борна - Оппенгеймера), \\ V_{ad}^{j} = H_{nn}^{jj}(\mathbf{r}, M) & (адиабатическая поправка), \\ V_{nad}^{j} = \sum_{k \neq j} \frac{H_{n}^{jk}(\mathbf{r}, M)H_{n}^{kj}(\mathbf{r}, M)}{E_{e}^{k} - E_{e}^{j}} + \dots & (неадиабатическая поправка). \end{cases}$$
(1.1.18)

Все дальнейшие рассуждения будут выполнены в рамках приближения Борна – Оппенгеймера. Можно заметить из (1.1.18), что потенциал V_{BO}^{j} не зависит от масс ядер и, следовательно, в рамках данной аппроксимации потенциал одинаков для всех изотопологов молекулы. Так как рассматривается случай невырожденного электронного состояния (обычно основного электронного состояния), то индекс j не ставится для упрощения записи. Если полную энергию E_{en} записать в виде $E_{en} = V_{BO}(\mathbf{r}_e) + E_n$, то тогда уравнение Шредингера (1.1.10) в рамках приближения Борна – Оппенгеймера запишем как:

$$(T_n + V(\mathbf{r}))\psi_n = E_n\psi_n. \tag{1.1.19}$$

При этом

$$V(\mathbf{r}) = V_{BO}(\mathbf{r}) - V_{BO}(\mathbf{r}_e). \tag{1.1.20}$$

Пусть $\Delta \mathbf{r} = \mathbf{r} - \mathbf{r}_e$ – отклонение ядер от положения равновесия. Эти отклонения настолько малы, что потенциальную функцию $V(\mathbf{r})$ можно разложить в ряд по $\Delta \mathbf{r}$. Кроме того, будем

считать, что $V_e = V(\mathbf{r}_e) = 0$ по определению из (1.1.20). Первые производные в разложении также равны нулю, так как потенциал минимален в точке $\mathbf{r} = \mathbf{r}_e$. Тогда:

$$V = \frac{1}{2} \sum_{i,j} \left(\frac{\partial^2 V}{\partial \Delta r_i \partial \Delta r_j} \right) \Delta r_i \Delta r_j + \dots$$
(1.1.21)

Таким образом уравнение Шредингера упрощается до вида:

$$(T_n + V)\psi_n = E_n\psi_n. \tag{1.1.22}$$

Для того чтобы выразить кинетическую энергию T_n в явном виде, необходимо ввести молекулярно – фиксированную систему координат (т.е. систему координат, связанную с молекулой) и начало этой системы поместить в центр масс молекулы. Из общих физических соображений можно показать, что в молекулярно – фиксированной системе координат:

$$T_n = T_v + T_r + T_{vr}, (1.1.23)$$

где T_v , T_r и T_{vr} соответствуют колебательному, вращательному и колебательно-вращательному вкладам в общую кинетическую энергию. На этом этапе также вводятся нормальные координаты. В результате различных математических манипуляций кинетическая энергия молекулы будет выражена как функция колебательных и вращательных переменных (подробно это сделано в работах [63] – [65]).

Молекула является объектом микромира, где действуют законы квантовой механики. Поэтому от классического гамильтониана следует перейти к квантовому. В 30 – 40е годы прошлого века было сделано немало усилий в попытке записать квантовый гамильтониан полужесткого ротатора, однако формулировка, наиболее удобная в использовании, была предложена Е. Б. Вильсоном и Дж. Б. Говардом в 1936 году в работе [63]. Чуть позже, в 1940 году, преимущества этой формулировки оценили Б. Т. Дарлинг и Д. М. Деннисон в своей работе [66], в которой предложили квантовый гамильтониан, несколько отличающийся от ранее разработанного Е. Б. Вильсоном и Дж. Б. Говардом. Основное преимущество нового гамильтониана заключалось в том, что он эрмитов. Основываясь на результате, полученном Б. Т. Дарлингом и Д. М. Деннисоном, в 1968 году Дж. Уотсон в работе [67] показал, что гамильтониан можно представить в более упрощенной формулировке:

$$H = \frac{1}{2} \sum_{\alpha\beta} (J_{\alpha} - p_{\alpha}) \mu_{\alpha\beta} (J_{\beta} - p_{\beta}) + \frac{1}{2} \sum_{k} P_{k}^{2} + U + V, \qquad (1.1.24)$$

где

$$P_{k} = -i\hbar \frac{\partial}{\partial Q_{k}},$$

$$p_{\alpha} = -i\hbar \sum_{k,l} \xi^{a}_{k,l} Q_{k} \frac{\partial}{\partial Q_{l}},$$

$$U = -\frac{\hbar^{2}}{8} \mu^{0}_{\alpha\alpha},$$
(1.1.25)

 Q_k – нормальные координаты, $\mu_{\alpha\beta}$ – компоненты матрицы обратных моментов инерции, P_k – компонента оператора импульса, p_{α} – компонента оператора внутреннего углового момента, J_{α} – компоненты полного углового момента, $\xi^a_{k,l}$ – кориолисовы постоянные. Вклад $-\frac{\hbar^2}{8}\mu^0_{\alpha\alpha}$ может быть исключен из рассмотрения, так как приводит к сдвигам энергетических уровней на постоянную величину, тогда как в колебательно-вращательной спектроскопии определяются переходы между уровнями. Для более подробной информации о том, как вычисляются параметры, стоящие в уравнениях (1.1.24), (1.1.25), можно обратиться к [65],[67]. Напомню, что в данном параграфе представлен краткий обзор теоретических методов и подходов молекулярной спектроскопии, который не предполагает излишней детализации.

В приближении малых колебаний гамильтониан (1.1.24) можно разложить в ряд по порядкам малости:

$$H = H_0 + H_1 + H_2 + \dots (1.1.26)$$

На практике обычно используется гамильтониан типа *H/hc*, параметры которого однородны относительно волнового числа и могут быть выражены в обратных сантиметрах:

$$H(\mathrm{cm}^{-1}) = \frac{H(\mathrm{Д}\mathrm{ж}\mathrm{o}\mathrm{y}\mathrm{n}\mathrm{b})}{hc(\mathrm{Д}\mathrm{ж}\mathrm{o}\mathrm{y}\mathrm{n}\mathrm{b}\cdot\mathrm{cm})}.$$
(1.1.27)

Используя разложения по порядкам малости (1.1.26), и следуя обозначениям М. Р. Алиева и Дж. Уотсона в работе [68], можно записать:

$$H_0 = \sum_{\alpha} B_{\alpha} J_{\alpha}^2 + \frac{1}{2} \sum_k w_k (p_k^2 + q_k^2),$$

$$H_{1} = \sum_{\alpha\beta} \sum_{k} B_{k}^{\alpha\beta} J_{\alpha} J_{\beta} q_{k}$$

$$-2 \sum_{k,l} \left(\frac{w_{l}}{w_{k}}\right)^{1/2} q_{k} p_{l} \sum_{\alpha} B_{\alpha} \xi_{k,l}^{\alpha} J_{\alpha}$$

$$+ \sum_{k < l < m} k_{klm} q_{k} q_{l} q_{m}, \qquad (1.1.28)$$

$$H_{2} = \frac{3}{8} \sum_{\alpha\beta\gamma} \sum_{k,l} B_{\gamma}^{-1} \left(B_{k}^{\alpha\gamma} B_{l}^{\gamma\beta} + B_{l}^{\alpha\gamma} B_{k}^{\gamma\beta} \right) q_{k}q_{l}J_{\alpha}J_{\beta}$$
$$- \sum_{\alpha\beta} \sum_{k} B_{k}^{\alpha\beta} (\pi_{\alpha}q_{k} + q_{k}\pi_{\alpha})J_{\beta}$$
$$+ \sum_{\alpha} B_{\alpha}\pi_{\alpha}^{2} - \frac{1}{4} \sum_{\alpha} B_{\alpha} + \sum_{k < l < m < n} k_{klmn}q_{k}q_{l}q_{m}q_{n},$$

где

- w_k : гармонические частоты;
- q_k : безразмерные нормальные координаты

$$q_k = \left(\frac{2\pi c w_k}{\hbar}\right)^{1/2} Q_k; \qquad (1.1.29)$$

• p_k : компоненты импульса

$$p_k = -i\frac{\partial}{\partial q_k}; \tag{1.1.30}$$

• π_{α} : безразмерный колебательный угловой момент

$$\pi_{\alpha} = \sum_{kl} \xi_{kl}^{\alpha} q_k p_l \left(\frac{w_l}{w_k}\right)^{1/2}; \qquad (1.1.31)$$

- J_{α} : безразмерный полный угловой момент;
- B_{α} : постоянная, обратная моменту инерции (I_{α})

$$B_{\alpha} = \frac{h}{8\pi^2 c I_{\alpha}}; \tag{1.1.32}$$

• $B_k^{lphaeta}$: вращательные производные

$$B_k^{\alpha\beta} = B_k^{\beta\alpha} = -\frac{\hbar^3}{2(hc)^{3/2} w_k^{1/2}} \frac{a_k^{\alpha\beta}}{I_\alpha I_\beta}; \qquad (1.1.33)$$

• $a_k^{\alpha\beta}$: производные по моментам инерции

$$a_k^{\alpha\beta} = \frac{\partial I_{\alpha\beta}}{\partial Q_k}; \tag{1.1.34}$$

• k_{klm} : кубичные постоянные потенциальной функции

$$k_{klm} = \frac{1}{hc} \left(\frac{\partial^3 V}{\partial q_k \partial q_l \partial q_m} \right)_0; \tag{1.1.35}$$

• k_{klmn} : квартичные постоянные потенциальной функции

$$k_{klmn} = \frac{1}{hc} \left(\frac{\partial^4 V}{\partial q_k \partial q_l \partial q_m \partial q_n} \right)_0.$$
(1.1.36)

Гамильтониан нулевого приближения ограничивается лишь первым вкладом H₀ в разложении (1.1.26) и, как было показано в (1.1.28), имеет вид:

$$H_0 = H_v^0 + H_r^0, (1.1.37)$$

$$H_v^0 = \frac{1}{2} \sum_k w_k (p_k^2 + q_k^2), \qquad (1.1.38)$$

$$H_r^0 = \sum_{\alpha} B_{\alpha} J_{\alpha}^2. \tag{1.1.39}$$

При этом решение уравнения Шредингера с гамильтонианом H_v^0 , представляет собой решение задачи для гармонического осциллятора, тогда как гамильтониан H_r^0 соответствует

модели жесткого ротатора. Обе эти задачи были успешно решены, а результаты были систематизированы и представлены в работе Х. Нильсона [69].

Однако расчет колебательно-вращательных энергий лишь нулевого порядка недостаточен для интерпретации спектров высокого разрешения. Необходимо учитывать вклады более высоких порядков. Для решения подобной задачи колебательно-вращательный гамильтониан можно представить в виде отдельных слагаемых различного порядка малости:

$$H = H_0(a) + h(a, b), (1.1.40)$$

где $H_0(a)$ – это оператор Гамильтона, решения уравнения Шредингера с которым известны, а h(a, b) – некоторая малая добавка к нему. В качестве начального приближения удобно брать чисто колебательный оператор H_v^0 , однако в некоторых работах (например, [70]) энергия жесткого ротора H_r^0 включена в H_0 , но, как правило, лучше избегать разностей энергии вращения в знаменателях энергии [71]. Матричные элементы операторов h(a, b) на собственных функциях оператора $H_0(a)$ представляют собой не числа, а операторы, которые не коммутируют. Поэтому стандартная теория возмущений для задач колебательно-вращательной спектроскопии неприменима.

Было разработано множество различных альтернативных подходов для решения этой и подобных задач, в числе которых метод контактных преобразований [69]–[70],[72], метод эффективного нежесткого волчка [73], операторные проекционные формулировки [74]–[75] и другие. Основная идея этих методов заключается в следующем. Если решение уравнение Шредингера с исходным гамильтонианом H невозможно, то при помощи последовательных канонических преобразований находят другой эрмитов оператор \tilde{H} , который бы удовлетворял двум условиям: 1) решение уравнения Шредингера с этим новым оператором \tilde{H} можно получить в явном виде; 2) спектр решений уравнения Шредингера с оператором \tilde{H} не изменяется. Следует отметить, что используемые канонические преобразования оставляют спектр собственных значений преобразованного оператора \tilde{H} без изменений, но при этом, однако, модифицируют волновые функции.

Фактически, сначала нужно определить колебательно-вращательные резонансы, которые необходимо рассмотреть (они зависят от исследуемой молекулы), и, таким образом, определяется резонансная схема молекулы, т.е. набор полиад взаимодействующих состояний, которые должны учитываться одновременно. Затем выбирается унитарный оператор преобразования так, чтобы удалить все нерезонансные члены из исходного гамильтониана, то есть члены, которые связывают колебательные состояния, принадлежащие разным полиадам. Проекция преобразованного гамильтониана на колебательный базис состояний гармонического осциллятора дает эффективные гамильтонианы, связанные либо с изолированным колебательным состоянием, либо с полиадой взаимодействующих колебательных состояний. Таким образом получается частичная диагонализация колебательной матрицы Гамильтона, что приводит к блочно-диагональной форме с резонансным блоком, соответствующим полиаде взаимодействующих состояний. Самая простая ситуация возникает, когда полиада сводится только к одному изолированному состоянию, для которого можно рассмотреть один вращательный гамильтониан. Ситуация немного сложнее для набора взаимодействующих состояний. В этом случае следует рассмотреть весь резонансный блок, и для каждого колебательного состояния блока используется один вращательный гамильтониан, тогда как взаимодействия учитываются соответствующими недиагональными операторами.

Эффективные гамильтонианы, полученные как конечный продукт преобразований такого рода, пока не подходят для подгонки экспериментальных уровней энергии. Для достижения этой цели Дж. Уотсон [76] показал, что можно преобразовать вращательный гамильтониан каждого *i* -диагонального подблока гамильтоновой матрицы в редуцированный гамильтониан, все коэффициенты которого определяются с помощью подбора экспериментальных уровней энергии.

Помимо уровней энергии в молекулярной спектроскопии исследуются также интенсивности колебательно–вращательных линий поглощения. Данные об интенсивностях линий необходимы для извлечения максимума информации из экспериментов по дистанционному зондированию в области физики атмосферы и для интерпретации астрофизических данных. Интенсивности линий требуют расчета колебательно-вращательных матричных элементов оператора дипольного момента, так как

$$S_{i,j} = K_{i,j} \sum_{A} |\langle i | \mu_A | j \rangle|^2, \qquad (1.1.41)$$

где $S_{i,j}$ – интенсивность линии, *i* и *j* – собственные функции начального и конечного состояний, μ_A – эффективный дипольный момент, $K_{i,j}$ – коэффициент, отражающий характеристики окружающей среды и самой молекулы.

При этом поскольку волновые функции, используемые для вычисления матричных элементов любой физической величины (например, дипольного момента), являются результатом диагонализации преобразованного гамильтониана \tilde{H} , то необходимо выполнить для этой физической величины тот же набор преобразований. В случае дипольного момента получим, таким образом, эффективный оператор дипольного момента [71].

23

1.2 Экспериментальные методы исследования

Основы спектроскопии поглощения. Закон уменьшения излучения в поглощающей однородной среде длиной *L* легко получить, интегрируя от 0 до *L* уравнение:

$$dI = -\alpha I dx, \tag{1.2.1}$$

где dI - часть излучения, поглощаемая бесконечно малым слоем среды толщиной dx при интенсивности I, пропорциональна коэффициенту поглощения (в см⁻¹). Интегрирование уравнения (1.2.1) дает нам закон Бугера – Ламберта – Бера

$$I(\nu) = I_0(\nu)e^{-\alpha(\nu)L}.$$
(1.2.2)

Предполагается, что $I(x = 0) = I_0$ и не зависит от **x** и *I*. Значение $\alpha(\nu)L$ представляет собой оптическую толщину или толщину среды. Коэффициент поглощения пропорционален плотности поглотителя N (в мол./см³) и сечению поглощения $\sigma(\nu)$ (в см²/мол.):

$$\alpha(\nu) = \sigma(\nu)N. \tag{1.2.3}$$

Интенсивность спектральной линии при отсутствии внешних полей может быть рассчитана в соответствии с выражением [77]:

$$S_v^N = \frac{8\pi^3\nu}{4\pi\epsilon_0 3hc} \left[1 - exp\left(-\frac{hc\nu}{kT}\right) \right] \frac{g_A}{Z(T)} exp\left(\frac{-E_A}{kT}\right) \left| < A \left| \mu_z' \right| B > \right|^2, \tag{1.2.4}$$

где

 $u = (E_B - E_A)/hc$ – волновое число перехода;

*Е*_{*A*} и *E*_{*B*} – нижние и верхние колебательно-вращательные уровни энергии;

 g_A – статистический вес нижнего уровня;

h – постоянная Планка;

Z(T) – полная статистическая сумма;

k – постоянная Больцмана;

- T температура;
- μ_z' оператор эффективного дипольного момента.

На практике S(T) (см⁻¹/молекула⁻²) линии с центром в ν_0 можно получить из интегрального коэффициента поглощения

$$A(\nu) = \int_{-\infty}^{\infty} \alpha(\nu) d\nu = NS(T), \qquad (1.2.5)$$

где N – это число поглощающих молекул в единице объема

$$N = P/kT. (1.2.6)$$

Зная, что

$$\alpha(\nu) = NS(T)F(\nu - \nu_0), \qquad (1.2.7)$$

где

$$S(T) = \int_{-\infty}^{\infty} \sigma(\nu) d\nu \tag{1.2.8}$$

и $F(\nu - \nu_0)$ – нормированная на единицу функция профиля поглощения

$$\int_{-\infty}^{\infty} F(\nu - \nu_0) d\nu = 1, \qquad (1.2.9)$$

можно экспериментально получить силу линии. Если построить график зависимости коэффициента поглощения от волнового числа, интегральный коэффициент поглощения соответствует площади под линией поглощения, которая на практике получается с помощью математического профиля [78]. Более подробно о существующих и используемых математических моделях профиля линии в параграфе 1.4.

Общая идея методов прямого поглощения заключается в регистрации интенсивности сигнала $I(\nu)$ на выходе однопроходной или многопроходной ячейки с использованием решетчатого или фурье-спектрометра в случае широкополосного источника света или перестройки лазерного диода в заданном спектральном диапазоне. В данном параграфе рассмотрим две техники, которые применялись для регистрации спектров, используемых для анализа в настоящей диссертационной работе.

Фурье-спектроскопия. Фурье – спектроскопия (ФТС) – недисперсионный спектроскопический метод, основанный на получении спектра путем фурье-преобразования интерферограммы, записанной интерферометром Майкельсона [79]. Этот метод стал доступен для практического использования в середине 1960-х годов с появлением компьютеров и предложенного метода быстрого преобразования Фурье (БПФ) Кули-Тьюки [80].

Типичная схема эксперимента по преобразованию Фурье показана на рис. 1.2.1. Входное отверстие C освещается каким-либо источником света (глобаром, вольфрамовой лампой, ксеноновой дуговой лампой и т.п.). Расходящийся пучок делается параллельным с помощью параболического зеркала $\Phi 1$. Далее пучок разделяется на два плеча светоделителем $C\mathcal{A}$. Половина луча, отраженная светоделителем, попадает в первое плечо с неподвижным зеркалом на конце M1 и затем отражается обратно. Другая половина, прошедшая через $C\mathcal{A}$, попадает на подвижное зеркало M2 и затем тоже отражается. Эти два луча рекомбинируются с $C\mathcal{A}$. На заданной длине волны конструктивная или деструктивная интерференция возникает в зависимости от разности оптических путей (OPD) между двумя плечами, в то время как весь рекомбинированный луч, содержащий всю длину волны, представляет собой суперпозицию интерферирующих лучей на каждой длине волны. Интегральная интенсивность рекомбинированного пучка проходит через кювету с исследуемым поглощающим газом и попадает на детектор. В фурье - спектрометре получение спектра происходит в два этапа: сначала

Рисунок 1.2.1 – Схема интерферометра Майкельсона как основного компонента ИК-Фурье-спектрометр (С: источник излучения, А: входная апертура, Ф1 и Ф2: зеркала фокальные параболические, СД: светоделитель, М1: неподвижное зеркало, М2: подвижное зеркало с разницей длин пути x (до максимальной длины пути $L = x_{max}$), Д: детектор и БПФ: быстрое преобразование Фурье

регистрируется интерферограмма излучение, в которой световые частоты закодированы соответствующими частотами электрического сигнала, затем путем ее гармонического анализа находят спектр излучения [81]. Сигнал на детекторе, как функция оптической разности хода x, представляет собой интерферограмму [79]:

$$F(x) = \int_0^\infty I(\widetilde{\nu}) \cos(2\pi\widetilde{\nu}x) d\widetilde{\nu}, \qquad (1.2.10)$$

где $I(\tilde{\nu})$ — реальный спектр. Интерферограмма может быть преобразована в спектр от волновых чисел с помощью обратного преобразования Фурье:

$$I(\widetilde{\nu}) = C \int_0^\infty F(x) \cos(2\pi \widetilde{\nu} x) dx, \qquad (1.2.11)$$

где С можно рассматривать как нормировочную константу.

Из уравнения (1.2.11) следует, что интерферограмму необходимо определять при изменении оптической разности хода от 0 до ∞ . Очевидно, что на практике существует ограничение на перемещение подвижного зеркала в интерферометре, а оптическая разность хода составляет от 0 до L, где L — максимальная оптическая разность хода (MOPD).

Внутрирезонаторная лазерная спектроскопия. Внутрирезонаторная лазерная спектроскопия (CRDS) — это метод, разработанный в 1980-х годах и в настоящее время хорошо зарекомендовавший себя как высокочувствительный метод измерения поглощения. Как и большинство новых методов в науке, CRDS появился благодаря техническому прогрессу, в данном случае из-за резкого улучшения отражательной способности диэлектрических зеркал, что, в свою очередь, стало возможным благодаря развитию метода ионного распыления для формирования тонких пленок. Типичная установка представлена на рисунке 1.2.2.

Рисунок 1.2.2 – Схема эксперимента по внутрирезонаторной лазерной спектроскопии (С: источник излучения, М1 и М2: зеркала, Д: детектор)

Свет импульсного лазера фокусируется в оптическом резонаторе, образованном двумя диэлектрическими вогнутыми зеркалами (или одним плоским и одним изогнутым зеркалом). Когда инжектированный лазерный импульс распространяется туда и обратно по зеркалам, часть его повторно передается при каждом проходе за пределы резонатора. Фоточувствительный детектор, расположенный за одним из зеркал, отслеживает время затухания лазерного импульса. Время затухания и, соответственно, интенсивность импульсов зависит от потерь в резонаторе, а также от присутствия любых поглотителей внутри резонатора. В результате детектор увидит последовательность импульсов, каждый из которых менее интенсивный, чем предыдущий, см. рис. 1.2.3. Расстояние между соседними импульсами равно времени прохождения в одну и другую стороны $t_r = 2L/c$, где L - длина кюветы. Интенсивность излучение после n прохождений в кювете описывается формулой:

$$I(t) = I_0 exp\left(\frac{tc}{L}(lnR - \alpha d)\right), \qquad (1.2.12)$$

Рисунок 1.2.3 – Формирование сигнала. Зависимость интенсивности от времени

где t = n2L/c. Поскольку зеркала, используемые во внутрирезонаторной лазерной спектроскопии, имеют коэффициент отражения R, близкий к 1, то $lnR \approx -(1-R)$, и тогда можно переписать:

$$I(t) = I_0 exp\left(-\frac{tc}{L}(1-R+\alpha d)\right).$$
(1.2.13)

Время затухания 1/е этой экспоненциально затухающей интенсивности света определяется как

$$\tau = \frac{L}{c(1 - R - \alpha d)}.\tag{1.2.14}$$

В эксперименте с CRDS время затухания τ определяется как функция частоты лазера ν . Существуют различные способы извлечения времени затухания резонатора из наблюдаемого сигнала, но очень часто τ получается из взвешенного метода наименьших квадратов, аппроксимирующего переходный процесс затухания интенсивности света. Спектр поглощения получается путем построения скорости затухания резонатора $k = 1/\tau$ или потерь в резонаторе $1/c\tau$ как функции частоты:

$$\frac{1}{c\tau(\nu)} = \frac{1-R}{L} + \alpha(\nu)\frac{d}{L}.$$
 (1.2.15)

Эти потери в резонаторе представляют собой сумму двух членов, один из которых представляет собой потери из-за отражения на зеркалах и определяет базовую линию спектра CRD, то есть (1 - R)/L, а другой член определяет поглощение, то есть $\alpha(\nu)d/L$. Следовательно, поглощение образца газа в резонаторе получается:

$$\alpha(\nu)\frac{d}{L} = \frac{k - k_o}{c} = \frac{1}{c\tau} - \frac{1}{c\tau_0} = \frac{\tau_0 - \tau}{c\tau_0\tau},$$
(1.2.16)

где $k_o = 1/\tau_0 = c(1-R)/L.$

Таким образом, измеряя время затухания $\tau(\nu)$ можно определить поглощающий коэффициент $\alpha(\nu)$ исследуемого газа [82].

1.3 Современные требования спектроскопических баз данных

В начале второй половины двадцатого века появилось несколько технологий: компьютеры, инфракрасные детекторы и лабораторные установки для регистрации спектров высокого разрешения. Благодаря этим новым технологиям стало возможным обеспечить быстрые расчеты пропускной способности атмосферы и излучения для многочисленных приложений. Слияние технологий привело к созданию в 1973 году первой стандартизированной спектроскопической базы данных, известной как HITRAN. Эта первая база данных была ограничена наиболее сильными инфракрасными поглотителями (H₂O, CO₂, O₃, N₂O, CO, CH₄ и O₂) в земной атмосфере, а также была сфокусирована на расчетах основных параметров из закона Бугера — Ламберта – Бера. Фундаментальными параметрами, публиковавшимися в базе данных, были: положения и интенсивности линий, полуширины и энергия основного состояния. База спектроскопической информации HITRAN была составлена приблизительно из 100 000 переходов. Следует отметить, что база данных содержала как теоретические, так и экспериментальные параметры, хотя идеализированная цель состоит в том, чтобы иметь рассчитанный самосогласованный набор параметров.

В 1976 году аналогичная работа была начата в Лаборатории динамической метеорологии (LMD) во Франции. Целью данной работы была разработка альтернативной базы данный GEISA (Gestion et etude des informations spectroscopiques atmosphériques: Управление и изучение спектроскопической информации). Первоначально, особое внимание в этих двух базах данных уделялось несколько разным вещам. В то время как HITRAN был ориентирован на земную атмосферу, GEISA была ориентирована на планетарную атмосферу Юпитера. Архив GEISA включал те же семь атмосферных поглотителей, что и в HITRAN, с дополнительными видами, такими как NO, SO₂, NO₂, NH₃, PH₃, а также молекулы C₂H₄, GeH₄, C₃H₈, C₂H₂, HC₃N, HCOOH, C₃H₄.

На данный момент по мере развития технологий и возрастания компьютерных мощностей увеличивается число исследований, в основе которых лежат ab initio методы. Развитие данных подходов к моделированию спектров, в свою очередь, дает возможность изучать те спектральные области, которые невозможно воспроизвести в лабораторных условиях. В связи с этим развитие получили базы данных ExoMol и HITEMP, целью которых является публикация каталогов, расширенных относительно температурного и частотного диапазонов [83], [84]. Также существуют и другие молекулярные спектроскопические сборники данных, которые были созданы в последние десятилетия с различными целями. Некоторые из этих баз данных связаны со спутниковыми экспериментами в атмосфере Земли (ATMOS и MIPAS), некоторые больше относятся к каталогам межзвездной среды (JPL и CDMS), а некоторые больше не разрабатываются (ATMOS и SAO), [85] - [88]. Следует упомянуть также базы данных, которые специализируются на конкретных молекулах и их изотопологах. Например, спектроскопическая база данных W@DIS содержит значительный объем информации по сероводороду. Помимо колебательно – вращательных переходов, W@DIS содержит всю опубликованную количественную информацию об энергетических уровнях, полуширинах, сдвигах, коэффициентах температурных зависимостей. В отличие от других банков данных W@DIS включает информацию обо всех опубликованных данных по исследуемой молекуле для каждого спектрального диапазона и предоставляет сервисы для сравнения данных из разных источников [24]. База данных S&MPO (Spectroscopy and Molecular Properties of Ozone), как следует из названия, посвящена озону и содержит информацию о положениях линий, интенсивностях, энергиях, моментах перехода, спектроскопических параметрах, восстановленных в результате всестороннего анализа и моделирования экспериментальных спектров [89].

Тем не менее наиболее известными источниками спектроскопической информации являются базы HITRAN и GEISA, которые продолжают стабильно пополняться новыми данными. Публикации новых изданий во многом вызваны всевозрастающей необходимостью в экспериментах по дистанционному зондированию [90]. В частности, спутниковые эксперименты по мониторингу состояния атмосферы стали надежными и точными. Аналогичным образом, были усовершенствованы алгоритмы для извлечения составляющих профилей из наблюдаемых спектров. Эти разработки привели ко многим улучшениям в спектроскопических базах данных: увеличилось количество спектральных параметров для каждого перехода; повысилась точность параметров; стали исследоваться новые молекулы, а также дополнительные полосы и изотопологи каждой молекулы [91].

В последние годы спектроскопические базы данных содержат в себе информацию о молекулах, которые не поддаются привычному описанию. Типичными для этих видов являются хлорфторуглероды и другие микроэлементы атмосферы, обладающие очень плотным спектром и многочисленными низкочастотными модами колебаний. В связи с этим и по некоторым другим причинам, за последние четыре десятилетия базы данных значительно выросли. Первое издание HITRAN содержало около 100 000 линий для 7 газов с ограниченным набором параметров. На 2019 год издание содержало более 9 444 288 линий со многими параметрами для 49 газов (порядка 120 различных изотопологов) [92]. Со времени выхода первого номера число архивных линейных переходов в GEISA увеличилось аналогичным образом: с 178 758 (12 молекул; 36 различных изотопологов) до 5 067 351 (52 молекулы; 118 различных изотопологов) по данным 2015 года [93]. Стоит также отметить, что на данный момент выдвинуты беспрецедентные требования к качеству спектроскопических параметров. Если учесть, что 5%-ная точность значений интенсивностей линий лишь недавно рассматривалась как цель, которая должна быть достигнута для колебательно-вращательных полос, то в настоящее время требуемая точность составляет порядка 1%. Что касается положений линий, то, в большинстве случаев, погрешность сопоставима с разрешающей способностью современных спектрометров и составляет 0,0001 см⁻¹. Эти условия накладывают высокие требования к технологии лабораторных экспериментов, а также теоретическим и аналитическим методам, при помощи которых извлекаются конечные параметры.

Хорошо известно, что точность описания формы линии является ключом к верному моделированию исследований, посвященных излучению и дистанционному зондированию. Действительно, форма линии становится главной проблемой для будущего развития спектроскопических баз данных. Исторически, форма линии была либо функцией Лоренца (учитывает влияние столкновений), либо функцией Доплера (отражает распределение по скоростям), либо профилем Фойгта, который является сверткой предыдущих двух. Была проделана большая работа по обеспечению точных лоренцевских ширин, сдвигов и температурных зависимостей соответствующих линий поглощения для большинства газообразных компонентов атмосферы Земли (и некоторых других планет). Это ясно видно из предыдущих изданий HITRAN и GEISA (2004 год и ранее). Однако увеличение возможностей контрольно-измерительных приборов привело к появлению ряда новых требований к базе данных в отношении формы линий. До недавнего времени обычно делалось предположение, что поглощение можно рассчитать путем сложения вкладов отдельных компонентов в профиле Фойгта. Так, в выпусках HITRAN до 2016 года формы линий, за очень немногими исключениями, были представлены с помощью профиля Фойгта. Однако, во многих работах было показано [94], [95], что контур Фойгта недостаточно точно описывает реальные контуры спектральных линий. Наиболее значимые отличия проявляются в центре и на крыльях линий поглощения. Это, в свою очередь, приводит к ошибкам в определении интенсивностей и коэффициентов уширения. При этом ошибки могут достигать нескольких процентов даже для изолированных линий [96]. Так, например, для некоторых легких молекул, в частности для молекулярного водорода, который важен для исследований плотных атмосфер газовых гигантов, не-фойгтовские эффекты гораздо более выражены [97], [98]. Таким образом, возникло понимание необходимости использовать другие модели контура линий, которые позволяют учитывать более «тонкие» эффекты [99].

Сейчас база данных HITRAN содержит информацию о параметрах таких профилей,

31

как традиционный контур Фойгта; кортур Фойгта, зависящий от времени (SDV); контур Галатри; контур Артмана-Тран. Что касается последнего, то следует отметить его особое положение в мире колебательно-вращательной спектроскопии. В 2014 году целевая группа IUPAC (международный союз теоретической и прикладной химии) рекомендовала использовать этот профиль применительно к описанию спектров высокого разрешения [100] и назвать его профилем Hartmann-Tran (Артмана – Тран далее) в честь создателей. Нго А.В., Лисак Д., Тран Х. и другие в своей работе [101] продемонстрировали, что профиль Артмана–Тран хорошо восстанавливает форму линий наиболее важных атмосферных молекул. В связи с этим профиль Артмана–Тран был принят, как рекомендуемый по умолчанию помимо профиля Фойгта в HITRAN. При этом следует отметить, что даже если параметры некоторой более совершенной модели (предпочтительно НТ) теперь публикуются в HITRAN для все большего числа переходов, то параметры профиля Фойгта по-прежнему приводятся для каждого перехода. Поэтому для пользователей, не заинтересованных в использовании сложных форм линий, текущая версия HITRAN остается совместимой с предыдущими.

1.4 Модели контура спектральных линий

Для того чтобы понимать в чем состоят преимущества контура Артмана–Тран, небходимо знать причины уширения спектральных линий и проанализировать существующие модели, описывающие профиль линии. Итак, существует несколько причин уширения спектральных линий [78]:

- Естественное уширение;
- Доплеровское уширение;
- Лоренцевское уширение;

Более подробная иформация о контурах линий и причинах уширения представлена в таблице 1.4.1.

При низких давлениях доминирует эффект Доплера, однако с увеличением давления столкновительные эффекты становятся все более важными. Также доплеровский контур стремится к нулю при движении от центра линии, тогда как лоренцовский контур характеризуется бо́льшими значениями даже при удалении от центра на несколько полуширин. В качестве первого приближения для получения результирующей формы линии обычно используется контур Фойгта, который является сверткой неоднородного доплеровского про-

Контур	Физическое происхождение	Математическое описание
Естественный	Естественное уширение ли- нии связано с временем жиз- ни возбужденного состояния и может быть описано прин- ципом неопределенности Гей- зенберга $\Delta E \Delta t \simeq \hbar$	$\Delta \nu_n = \frac{\Delta E}{h} \simeq \frac{1}{2\pi \Delta t}$
Гаусса	Доплеровское уширение, свя- занно с тепловым движени- ем и, как следствие, с распре- делением молекул по скоро- стям. Играет определяющую роль в уширении спектраль- ных линий, зарегистрирован- ных при малом давлении (до 100 Торр при комнатной тем- пературе)	$F_D(\nu - \nu_0) = \frac{1}{\Gamma_D} \sqrt{\frac{ln2}{\pi}} exp \left[-ln2 \left(\frac{\nu - \nu_0}{\Gamma_D} \right)^2 \right]$ $\Gamma_D = \left(2ln2 \frac{kT}{mc^2} \right)^{1/2} \nu_0$
Лоренца	Лоренцевское уширение воз- никает за счет индивидуаль- ных столкновений молекул и определяет эксперименталь- ный контур при давлении P > 300 - 400 Topp.	$F_L(\nu - \nu_0) = \frac{1}{\pi} \frac{\Gamma}{(\nu - \nu_0 - \Delta)^2 + \Gamma^2}$ $\Gamma = \sum_i \gamma_i^0 P_i$
Фойгта	Фойгтовский контур пред- ставляет собой свертку до- плеровсского и лоренцевско- го контуров и достаточно хо- рошо описывает эксперимен- тальный контур в промежу- точной области давлений.	$F_V(\nu, T, P) = F_D(\nu, T, P) \otimes F_L(\nu, T, P)$

Таблица 1.4.1 – Описание основных моделей контура линий [78]

 P_i – парциальное давление i–го газа; γ_i^0 – коэффициент уширения поглощающего газа

филя с однородным лоренцевым профилем. Контур Фойгта достаточно хорошо описывает экспериментальный контур линии в промежуточной области давлений.

Как уже упоминалось, контур Фойгта во многих случаях не дает удовлетворительного описания профиля лини. Как утверждают авторы в работе [100], наблюдаемые линии обычно выше и у́же, чем предсказывает данный контур. Причина погрешностей связана с наличием, так называемых, «тонких» эффектов, которые не учитываются профилем Фойгта. К таким эффектам относятся: столкновительное сужение линий (описан Дике [97]), интерференция линий, эффект ветра [99].

В частности, из-за эффекта Дике происходит уменьшение доплеровского уширения за счет ограничения свободного движения поглощающих молекул. Этот эффект существенен при давлениях менее 300 мбар (~ 200 Topp), тогда как при бо́льших давлениях им можно пренебречь. Наглядно этот эффект проявляется в том, что полуширина линии не растет монотонно с ростом давления (начиная с доплеровской полуширины при малом давлении), а в начале с ростом давления уменьшается, проходит через минимум, а затем возрастает. Контуры Галатри и Раутина-Собельмана учитывают данный эффект.

Эффект ветра также приводит к сужению спектральных линий, однако причина кроется в зависимости констант столкновительной релаксации от скорости поглощающей активной молекулы. Из этого следует, что лоренцевская ширина и сдвиг линии также зависят от скорости поглощающей активной молекулы.

Наблюдаемое смешивание линий вызвано вращательно-неупругими столкновениями, которые создают интерференционные эффекты между перекрывающимися линиями в процессе поглощения [102].

Включение этих эффектов в модели, описывающие профиль линии, привело к разработке множества возможных альтернативных моделей, которые могут характеризоваться увеличением числа параметров. Зависящий от скорости контур Фойгта (SDV) учитывает эффект ветра, а зависящие от скорости контуры Галатри и Раутина учитывают как эффект Дике, так и эффект ветра. В таблице 1.4.2 приведена зависимость моделей профиля линий от параметров, учитывающих те или иные эффекты [100]. В таблице 1.4.2 используются следующие обозначения: Γ_D – полуширина доплеровского контура на полувысоте; Γ – полуширина лоренцевского контура на полувысоте; Δ – сдвиг линий, индуцированный давлением; ν_{VC} – параметр, учитывающий изменение скорости молекулы в модели жестких столкновений (скорость молекулы после каждого нового столкновения подчиняется распределению Максвелла и не зависит от скорости до столкновения); ν'_{VC} – параметр, учитывающий изменение скорость молекулы в модели мягких столкновений (скорость молекулы в модели столкновения)

Контур	\mathbf{N}^{a}	Параметры
Доплера	1	Γ_D
Лоренца	2	Γ, Δ
Фойгта	3	Γ_D, Γ, Δ
Галатри	4	$\Gamma_D, \Gamma, \Delta, \nu_{VC}'$
Раутина	4	$\Gamma_D, \Gamma, \Delta, \nu_{VC}$
ЗС ^в Фойгта	5	$\Gamma_D, \Gamma_0, \Delta_0, \Gamma_2, \Delta_2$
$3 C^b$ Галатри	6	$\Gamma_D, \Gamma_0, \Delta_0, \Gamma_2, \Delta_2, \nu_{VC}'$
ЗС ^b Раутина	6	$\Gamma_D, \Gamma_0, \Delta_0, \Gamma_2, \Delta_2, \nu_{VC}$
Артмана-Тран	7	$\Gamma_D, \Gamma_0, \Delta_0, \Gamma_2, \Delta_2, \nu_{VC}, \eta$

Таблица 1.4.2 – Зависимость контура спектральных линий от параметров

^аN – число параметров, которые учитывает модель контура.

^bЗС – зависящий от скорости.

сильно коррелирует со скоростью перед столкновением); η – параметр, отвечающий за изменение вращательных состояний при соударениях; Γ₀ и Δ₀ – полуширина линии на полувысоте и сдвиг линии, индуцированные давлением и усредненные по скоростям; Γ₂ и Δ₂ – вклады, ответственные за квадратичную зависимость от скоростей молекул:

$$\Gamma(\nu_a) = \Gamma_0 + \Gamma_2 \left[(v_a/v_{a0})^2 - 3/2 \right],$$

$$\Delta(\nu_a) = \Delta_0 + \Delta_2 \left[(v_a/v_{a0})^2 - 3/2 \right],$$
(1.4.1)

где v_a – скорость активной молекулы, а v_{a0} – скорость, которая является наиболее вероятной.

Что касается контура Артмана – Тран, то, как видно из таблицы 1.4.2, данный контур является функцией семи параметров: Γ_D , Γ_0 , Δ_0 , Γ_2 , Δ_2 , ν_{VC} , η и, как следствие, выполняет ряд требований [103], а именно: 1) является физически обоснованным и способным представлять наблюдаемые формы линий многих различных молекул с точностью до нескольких десятых процентов; 2) включает в себя четко определенные и физически значимые параметры с известными зависимостями от давления (и температуры) газа; 3) компьютерные вычисления совместимы с обработкой тысяч оптических переходов в различных слоях атмосферы; 4) контур совместим с моделированием эффектов смешивания линий. Одним из достоинств данного контура также является возможность привести его к ряду более простых, стандартных профилей в случае, когда не все параметры могут быть определены. Это чрезвычайно удобное свойство, так как существующие базы данных в основном заполнены параметрами для контура Фойгта. Поэтому возможность уменьшить профиль Артмана – Тран до профиля Фойгта, занулив соответствующие параметры (см. работу [100] для более подробной информации), является весьма ценным качеством.

1.5 Некоторые сведения из теории изотопозамещения

Как уже было отмечено ранее, основными тенденциями в колебательно-вращательной спектроскопии является усовершенствование алгоритмов для извлечения информации из спектров, улучшение экспериментальных установок, позволяющих регистрировать спектры с уникальной точностью, увеличение мощности современных суперкомпьютеров, что позволяет добиться качественных результатов при ab initio исследованиях, а также разработка новых теоретических подходов. Все это приводит к увеличению числа публикаций, нацеленных на расширение частотного и температурного диапазонов исследований. Также в спектроскопических базах данных с каждым новым выпуском увеличивается число молекул: появляются данные о сложных молекулах, обладающих плотным спектром и низкочастотными модами колебаний, о молекулах, являющихся различными изотопическими модификациями. В настоящей работе основное внимание будет приковано именно к последним, поэтому становится понятен интерес автора к различным подходам и теориям, посвященным исследованию изотопологов.

Одной из наиболее значимых работ в этой области является теория изотопозамещения, развитая в 80-х годах прошлого века авторами А. Д. Быков, Ю. С. Макушкин, О. Н. Улеников [104],[105]. На данный момент эта теория является фундаментальной в области исследования изотопологов, поэтому именно она легла в основу предлагаемых в данной работе методов получения абсолютных интенсивностей линий поглощения при наличии нескольких изотопических модификаций в газовой смеси. В связи с этим, представляется разумным привести основные идеи и выкладки теории в отдельном параграфе, тем более, что они будут использоваться при получении результатов диссертационной работы.

Одним из преимуществ использования теории изотопозамещения является возможность связать изотопическую модификацию молекулы с ее основной, так называемой, «материнской модификацией. Таким образом, свойства изотополога могут быть предсказаны исходя лишь из экспериментальной информации о его основной модификации, которая, как правило, хорошо изучена.
Гамильтонианы основной и замещенной модификации могут быть записаны как:

$$H(x) = \sum_{N\alpha} \frac{P_{N\alpha}^2}{2m_N} + V(x_{N\alpha}),$$
 (1.5.1)

$$H'(x) = \sum_{N\alpha} \frac{P_{N\alpha}^2}{2m'_N} + V(x_{N\alpha}).$$
 (1.5.2)

В работе [104] было показано, что связь между гамильтонианами имеет следующий вид:

$$H'(x) = H(x) - \sum_{N\alpha} \frac{m'_N - m_N}{2m'_N m_N} P_{N\alpha}^2,$$
(1.5.3)

где x – декартовы координаты ядер в пространственно-фиксированной системе координат; $P_{N\alpha}$ – компоненты оператора импульса; m_N – масса N-го ядра. Как уже упоминалось, в приближении Борна – Оппенгеймера потенциальная функция V(x) не зависит от масс ядер и, следовательно, не меняется при изотопном замещении ядер. Здесь и в дальнейшем параметры со «штрихом» подразумевают принадлежность к изотопологу, тогда как параметры без «штриха» относятся к основной модификации. Второе слагаемое в уравнении (1.5.3) демонстрирует изотопический эффект, который проявляется в спектрах.

Следующим этапом следует перейти от декартовых координат $x_{N\alpha}$ к координатам в молекулярно-фиксированной системе координат:

$$x_{N\alpha} = \chi_{N\alpha}(R,\varphi,Q) \equiv R_{\alpha} + \mathcal{K}_{\alpha\beta} \left(r_{N\beta}^{0} + m_{N}^{-1/2} l_{N\beta\lambda} Q \right),$$

$$x_{N\alpha} = f_{N\alpha}(R',\varphi',Q') \equiv R'_{\alpha} + \mathcal{K}'_{\alpha\beta} \left(r_{N\beta}^{\prime 0} + m_{N}^{\prime-1/2} l'_{N\beta\lambda} Q' \right), \qquad (1.5.4)$$

где R_{α} – компоненты вектора начала молекулярной системы координат относительно пространственной; $\mathcal{K}_{\alpha\beta}$ – матрица направляющих косинусов между осями старой и новой системы; $r_{N\beta}^0$ – координаты равновесного положения ядер в молекулярной системе координат; $l_{N\beta\lambda}$ – константы форм колебаний, Q –нормальные координаты, имеющие размерность. Если при выполнении преобразования $f_{N\alpha}(R', \varphi', q')$ учесть якобиан D', то можно преобразовать оператор H'(x) в оператор типа Уотсона $H^w(q')$. Однако такое преобразование является не единственным. В работе [104] было показано, что переход от оператора H'(x) к оператору уотсоновского вида осуществляется несколькими способами через некий «промежуточный» оператор. Введение «промежуточного» оператора позволяет связать параметры материнской молекулы и рассматриваемого изотополога. При этом связь параметров может быть выражена в удобных для использования соотношениях.

Равновесное положение ядер. В частности, равновесное положение ядер в молекулярно – фиксированной системе координат в случае изотопического замещения изменится в соответствии с выражением:

$$r_{N\beta}^{\prime 0} = \sum_{\alpha} K_{\alpha\beta}^{0} \left(r_{N\alpha}^{0} - \sum_{K} \frac{m_{K}}{M'} r_{K\alpha}^{0} \right), \qquad (1.5.5)$$

где $K^0_{\alpha\beta}$ – первый вклад в разложении матрицы поворота молекулярной системы координат при переходе от основной модификации молекулы к замещенной; N и K – атомы молекулы; α , β имеют значения x, y или z; M' – суммарная масса ядер изотополога.

Матрица поворота. Матрица поворота $K_{\alpha\beta}$, которая задает поворот системы координат изотополога относительно системы координат основной модификации, является функцией нормальных координат и может быть представлена в виде:

$$K_{\alpha\beta}(Q') = K_{\alpha\beta}(Q) = K^0_{\alpha\beta} + \sum_{\lambda} K'^{\lambda}_{\alpha\beta}Q'_{\lambda} + \sum_{\lambda < \mu} K'^{\lambda\mu}_{\alpha\beta}Q'_{\lambda}Q'_{\mu} + \dots =$$
$$= K^0_{\alpha\beta} + \sum_{\lambda} K^{\lambda}_{\alpha\beta}Q_{\lambda} + \sum_{\lambda < \mu} K^{\lambda\mu}_{\alpha\beta}Q_{\lambda}Q_{\mu} + \dots$$

1) Вклад $K^0_{\alpha\beta}$ определяется при помощи следующей процедуры:

$$\sum_{\alpha} K^{0}_{\alpha\beta} K^{0}_{\alpha\gamma} = \sum_{\alpha} K^{0}_{\beta\alpha} K^{0}_{\gamma\alpha} = \delta_{\beta\gamma}, \qquad (1.5.6)$$

$$\sum_{\delta} \mathcal{J}^{0}_{a\delta} K^{0}_{\delta b} = I^{\prime 0}_{bb} K^{0}_{ab}, \qquad (1.5.7)$$

где $I_{bb}^{\prime 0}$ – равновесные моменты инерции изотополога; для нахождения $\mathcal{J}_{a\delta}^0$ нужно воспользоваться следующей формулой:

$$\mathcal{J}_{a\delta}^{0} = \sum_{i\beta\xi} \epsilon_{ai\xi} \epsilon_{\delta\beta\xi} j_{i\beta}^{0}, \qquad (1.5.8)$$

$$j_{i\beta}^{0} = j_{\beta i}^{0} = \sum_{N} m'_{N} r_{Ni}^{0} r_{N\beta}^{0} - \frac{1}{M'} (\sum_{N} m'_{N} r_{Ni}^{0}) (\sum_{K} m'_{K} r_{K\beta}^{0}).$$
(1.5.9)

Уравнение (1.5.7) можно рассматривать как систему линейных уравнений для определения $K^0_{\alpha\beta}$. Как известно, система имеет нетривиальное решение, когда выполняется условие:

$$det\left(\mathcal{J}^0 - I'^0 \cdot \mathbb{I}\right) = 0, \qquad (1.5.10)$$

где \mathbb{I} – единичная матрица размером 3 \times 3.

2) Вклад $K_{\alpha\beta}^{\lambda}$ определяется как:

$$K^{\lambda}_{\theta\theta'} = \sum_{\alpha\beta\gamma,\kappa} \sum_{\alpha'\beta'\delta} \epsilon_{\alpha\beta\gamma} \epsilon_{\alpha'\theta'\beta'} j^{\lambda}_{\delta\kappa} K^{0}_{\delta\beta} K^{0}_{\kappa\gamma} K^{0}_{\theta\beta'} (I'^{0})^{-1}_{\alpha'\alpha}, \qquad (1.5.11)$$

$$j_{\delta\kappa}^{\lambda} = \sum_{N} m_{N}' m_{N}^{-1/2} r_{N\delta}^{0} l_{N\kappa\lambda} - \frac{1}{M'} \sum_{K} m_{K}' r_{K\delta}^{0} \sum_{N} m_{N}' m_{N}^{-1/2} l_{N\kappa\lambda}.$$
 (1.5.12)

3) Вклад $K^{\lambda\mu}_{\alpha\beta}$ может быть получен из:

$$K_{\theta c}^{\lambda \mu} = \sum_{(\lambda \mu)} \epsilon_{\alpha \beta \gamma} \epsilon_{\alpha' c \beta'} j_{\delta \kappa}^{\lambda} K_{\delta \beta}^{0} K_{\kappa \gamma}^{\mu} K_{\theta \beta'}^{0} (I'^{0})_{\alpha \alpha'}^{-1} + \sum_{ab} \sum_{(\lambda \mu)} \epsilon_{cab} K_{\theta b}^{0} K_{\delta b}^{\lambda} K_{\delta c}^{\mu} (I'^{0})_{aa}^{-1} (1/2 \mathcal{J}_{\alpha \alpha}^{0} - I_{cc}^{\prime 0}) - \left(1 - \frac{\delta_{\lambda \mu}}{2}\right) K_{\delta c}^{\lambda} K_{\delta c}^{\mu} K_{\theta c}^{0},$$

$$(1.5.13)$$

где индексы *a*, *b*, *c* обозначают циклическую перестановку индексов *x*, *y*, *z*. Здесь и далее обозначение $\sum_{(\lambda\mu)}$ соответствует суммированию по всем перестановкам различных индексов из набора $\{\lambda, \mu\}$.

Гармонические частоты. Если представить потенциальную функцию (1.1.21) как ряд по нормальным координатам, то появляются параметры, которые будут отличаться для изотополога и основной модификации:

$$V = \frac{2\pi c}{2} \sum_{i} w_i^2 Q_i^2 + \sum_{ijk} K_{ijk} Q_i Q_j Q_k + \sum_{ijkl} K_{ijkl} Q_i Q_j Q_k Q_l + \dots$$
(1.5.14)

К таким параметрам относятся гармонические частоты w_i и параметры потенциальной функции K_{ijk} , K_{ijkl} и другие. Несмотря на то, что в приближении Борна – Оппенгеймера потенциальная функция для основной и замещенной модификации одинакова, при переходе к нормальным координатам, которые являются массовозависимыми по определению (1.5.4), параметры потенциальной функции изменяются. Используя теорию изотопозамещения, несложно найти соотношения между этими параметрами. В частности, гармонические частоты изотополога определяются из следующей процедуры.

Вводятся некоторые параметры перехода a^{μ}_{λ} при помощи соотношения:

$$Q_{\lambda} = a_{\lambda}^{\mu}Q_{\mu}' + a_{\lambda}^{\mu\nu}Q_{\mu}'Q_{\nu}' + \dots$$
 (1.5.15)

где

$$\sum_{\mu} a^{\mu}_{\lambda} a^{\mu}_{\nu} \equiv A_{\lambda\nu} = \sum_{N\alpha} \frac{m_N}{m'_N} l_{N\alpha\lambda} l_{N\alpha\nu}, \qquad (1.5.16)$$

$$\sum_{\nu} A_{\nu\lambda} W_{\nu} a^{\mu}_{\nu} = a^{\mu}_{\lambda} W'_{\mu}.$$
 (1.5.17)

Таким образом, для получения соотношений на гармонические частоты изотополога, необходимо решить вековое уравнение

$$det (AW - W') = 0, (1.5.18)$$

где W и W' – диагональные матрицы, а $W_{\lambda\nu} = w_{\nu}^2 \delta_{\lambda\nu}, W'_{\lambda\nu} = w_{\nu}'^2 \delta_{\lambda\nu}.$

Константы форм колебаний. Параметры $l_{N\gamma\lambda}$ связаны с параметрами кориолиса

$$\xi^{\alpha}_{\lambda\mu} = -\xi^{\alpha}_{\mu\lambda} = \sum_{\beta\gamma} \epsilon_{\alpha\beta\gamma} \sum_{N} l_{N\beta\lambda} l_{N\gamma\mu}$$
(1.5.19)

и некоторыми другими параметрами [65], имеющими большое значение в колебательно – вращательной спектроскопии, поэтому оценка констант форм колебаний изотополога также необходима.

$$l'_{N\gamma\lambda} = \sum_{\alpha\mu} K^0_{\alpha\gamma} \sqrt{\frac{m_N}{m'_N}} l_{N\alpha\mu} \beta^{\mu}_{\lambda}, \qquad (1.5.20)$$

при этом $\{\beta\}$ – матрица, обратная матрице $\{a\}$ с элементами a^{μ}_{λ} .

Параметры потенциальной функции. Для выражения параметров ангармоничности K_{ijk} используется соотношение:

$$K'_{\lambda'\mu'\nu'} = \sum_{\lambda \le \mu \le \nu} \sum_{(\lambda'\mu'\nu')} K_{\lambda\mu\nu} a^{\lambda'}_{\lambda} a^{\mu'}_{\mu} a^{\nu'}_{\nu} +$$

$$+ (2\pi c)^2 \sum_i w_i^2 \sum_{(\lambda',\mu'\le \nu')} a^{\lambda'}_i a^{\mu'\nu'}_i.$$

$$(1.5.21)$$

Подобное выражение можно записать для параметров ангармоничности потенциальной функции $k'_{\lambda\mu\nu}$, если потенциальная функция записана в безразмерных нормальных координатах.

$$k_{\lambda'\mu'\nu'}' = \sum_{\lambda \le \mu \le \nu} \sum_{(\lambda'\mu'\nu')} \left(\frac{w_{\lambda}w_{\mu}w_{\nu}}{w_{\lambda}'w_{\mu}'w_{\nu}'}\right)^{1/2} k_{\lambda\mu\nu} a_{\lambda}^{\lambda'} a_{\mu}^{\mu'} a_{\nu}^{\nu'} + \left(\frac{\hbar}{2\pi c}\right)^{1/2} \sum_{i} \sum_{(\lambda',\mu' \le \nu')} \frac{w_{i}^{2}}{\sqrt{w_{\lambda}'w_{\mu}'w_{\nu}'}} a_{i}^{\lambda'} a_{i}^{\mu'\nu'},$$
(1.5.22)

где

$$a^{\lambda\nu}_{\mu} = -\sum_{N} \sum_{\alpha\beta\gamma} m_{N}^{1/2} l_{N\alpha\mu} r^{0}_{N\gamma} \sum_{\lambda'\nu'} K^{\lambda'}_{\gamma\beta} K^{\nu'}_{\alpha\beta} a^{\lambda}_{\lambda'} a^{\nu}_{\nu'} \left(1 - \frac{\delta_{\lambda\mu}}{2}\right) + \sum_{N} \frac{m_{N}}{m'_{N}} \sum_{(\lambda\nu)} \sum_{\lambda'\nu'\alpha\beta\gamma} K^{0}_{\gamma\beta} K^{\nu'}_{\alpha\beta} l_{N\alpha\mu} l_{N\gamma\lambda'} a^{\nu}_{\nu'} \beta^{\lambda'}_{\lambda}.$$
(1.5.23)

Итак, в данном параграфе был представлен обзор теории изотопозамещения и были приведены те соотношения, которые легли в основу получения основных результатов диссертационной работы.

1.6 Проблема определения абсолютных интенсивностей изотопологов

Прецизионное определение фундаментальных характеристик конкретной многоатомной молекулы (под фундаментальными характеристиками молекулы здесь подразумеваются структурные параметры, параметры внутримолекулярного потенциального поля, постоянный дипольный момент молекулы и его производные по смещениям ядер из равновесной

конфигурации) на основе экспериментальных данных о колебательно-вращательных спектрах высокого разрешения требует тщательных экспериментальных исследований спектров не только основной модификации изучаемой молекулы, но и различных ее изотопологов. Следует отметить, что возможность определения таких характеристик, как структурные параметры и параметры внутримолекулярной потенциальной функции молекулы обусловлена, в первую очередь, наличием высокоточной экспериментальной информации о такой характеристике спектральных линий, как центр линии. Возможность определения параметров дипольного момента обусловлена наличием экспериментальной информации об интенсивностях отдельных колебательно-вращательных линий. Если современные лазерные и Фурьеспектрометры последнего поколения (например, Bruker HR120) позволяют успешно решать задачу о высокоточном (на уровне 0.0001 см⁻¹ и выше) определении положений линий, то проблема экспериментального определения интенсивностей линий даже на уровне нескольких процентов точности является в настоящее время не только актуальной, но, в огромном числе случаев, и нереализуемой. В частности, если для так называемых «материнских» модификаций молекул (таких, например, как H₂O, H₂S, O₃, SO₂, CH₄, SiH₄, NH₃) отдельные экспериментальные исследования интенсивностей линий выполнялись, то интенсивности различных изотопологов в эксперименте исследовались лишь в отдельных редких случаях. Причина такого состояния с экспериментальным исследованием интенсивностей отдельных линий заключается не только в том, что для выполнения таких исследований необходимо в течение длительного времени контролировать и поддерживать неизменными температуру и давление исследуемого образца. При определении интенсивностей линий изотопологов возникает еще одна существенная проблема, с которой столкнулись научные группы в своих исследованиях. Суть проблемы заключается в следующем. Предположим, что речь идет о регистрации интенсивностей линий изотополога D₂S молекулы H₂S. Даже если взять 100% чистый образец D₂S, при помещении его в экспериментальную кювету происходит интенсивный обмен атомами дейтерия от D₂S и водорода от H₂O, так как молекула воды всегда остается на стенках и окнах кюветы (попытки избавиться полностью от H₂O в разы увеличивают как расходы, так и время выполнения эксперимента). Как следствие, практически всегда в кювете будет не 100% исследуемое вещество D₂S, а некоторая смесь исследуемого вещества (концентрация, следовательно, и парциальное давление, которого неизвестно и неизвестно как оно может быть измерено) и других веществ (как минимум, HDS и H_2S). В таких условиях решение задачи о корректном определении интенсивностей линий молекулы становится невозможным. Данное обстоятельство является основной причиной того, что вплоть до настоящего времени выполнено ничтожно мало исследований интенсивностей линий изотопологов даже самых простых молекул, таких как упомянутые выше H₂O, H₂S, O₃, SO₂, CH₄, SiH₄, NH₃ и другие. Как уже было замечено, ученые сталкивались с упомянутой проблемой в своих исследованиях, поэтому в литературе встречается описание методов и подходов, целью которых является определение концентрации веществ в смеси газов или, в некоторых случаях, поиск путей, позволяющих обойти данный этап в исследовании.

Глава 2. Разработка метода оценки парциального давления изотопологов в смеси газов

2.1 Определение парциального давления в смеси газов

В качестве наглядной иллюстрации существующей проблемы определения абсолютных интенсивностей линий в спектре рассмотрим следующий случай. Инфракрасный спектр высокого разрешения молекул HDS/D₂S был получен при помощи Фурье-преобразования (рис. 2.1.1) с инструментальным разрешением 0,0016 см⁻¹, при температуре 296 K, общее давление образца 450 Па, и длина оптического пути 405,24 см. В представленном на рис. 2.1.1 диапазоне локализуются линии, принадлежащие полосе ν_2 .

Рисунок 2.1.1 – Небольшая часть спектра высокого разрешения молекул HDS/D₂S.

Образец HDS был получен путем быстрого обмена дейтерия с водородом из-за взаимодействия части молекул D_2S и остаточного испарения молекул H_2S с поверхности ячейки, CsI и KBr спектроскопических компонентов и из водяного пара, проникающего в ячейку, чего невозможно полностью избежать в течение длительного времени измерения. На рис. 2.1.1 линии $D_2^{32}S$, $HD^{32}S$, $HD^{33}S$ и $HD^{34}S$ отмечены соответственно черными звездочками, открытыми треугольниками, черными кругами и открытыми кругами (также могут присутствовать некоторые другие компоненты в исследуемом образце). В принципе, знание макропараметров эксперимента и параметров эффективного дипольного момента отдельных изотопологов дает возможность оценить как интенсивность линий изотопологов, так и концентрацию (парциальное давление) любого компонента в образце. Однако в обсуждаемом случае эта оценка Как уже упоминалось в Главе 1, интенсивность спектральной линии при отсутствии внешних полей может быть рассчитана в соответствии с выражением [77]:

$$S_v^N = \frac{8\pi^3\nu}{4\pi\epsilon_0 3hc} \left[1 - exp\left(-\frac{hc\nu}{kT}\right) \right] \frac{g_A}{Z(T)} exp\left(\frac{-E_A}{kT}\right) \left| < A \left| \mu_z' \right| B > \right|^2, \tag{2.1.1}$$

где

 $u = (E_B - E_A)/hc$ – волновое число перехода;

*Е*_{*A*} и *Е*_{*B*} – нижние и верхние колебательно–вращательные уровни энергии;

g_A – статистический вес нижнего уровня;

h – постоянная Планка;

Z(T) – полная статистическая сумма;

k – постоянная Больцмана;

T – температура;

 μ_z' – оператор эффективного дипольного момента.

С одной стороны S_v^N появляется в следующем уравнении:

$$\tau(\nu') = S_v^P \cdot F(\nu' - \nu) \cdot PL \equiv S_v^N \cdot \frac{F(\nu' - \nu)}{kT} \cdot PL, \qquad (2.1.2)$$

где

 $\tau(\nu')$ – экспонента в законе Бугера–Ламберта–Бера [110];

L – длина пути;

Р – давление газа;

 $F(\nu' - \nu)$ – функция профиля линии.

Величина $\tau(\nu')$, измеряемая в молекулярной спектроскопии высокого разрешения, есть:

$$\tau(\nu')^{exp} = \frac{1}{lge} lg \frac{I_0(\nu'))}{I(\nu')}.$$
(2.1.3)

Из уравнений (2.1.2) и (2.1.3) можно получить:

$$S_{v}^{N} \cdot P = \tau(\nu')^{exp} \frac{kT}{F(\nu' - \nu) \cdot L},$$
(2.1.4)

где правая часть постоянна для любой отдельно взятой линии в условиях конкретного эксперимента.

Если общее давление образца известно, то можно получить значение S_v^N , которое переобозначим как $prob S_v^N$. Следует отметить, что $prob S_v^N$ – это не настоящая интенсивность

линии исследуемого изотополога в смеси газов, а значение, полученное из экспериментальных данных в предположении, что содержание изотополога в образце составляет 100%. В этом случае давление в уравнении (2.1.4) будем обозначать как $P_{(sample)}$, что соответствует общему давлению образца. С другой стороны, такое же числовое значение правой части уравнения (2.1.4) можно получить с помощью действительного значения интенсивности линии S_v^N (обозначим его как $calc S_v^N$) и давления $P_{(part)}$, которое есть ничто иное, как парциальное давление изотополога. Значение $calc S_v^N$ при этом рассчитывается на основе выражения (2.1.1). Математически эти рассуждения можно записать как:

$${}^{prob}S_v^N \cdot P_{(sample)} = \tau(\nu')^{exp} \frac{kT}{F(\nu' - \nu) \cdot L},$$
(2.1.5)

$$^{calc}S_v^N \cdot P_{(part)} = \tau(\nu')^{exp} \frac{kT}{F(\nu'-\nu) \cdot L}.$$
(2.1.6)

Из последних двух выражений легко получить:

$$P_{(part)} = \frac{{}^{prob}S_v^N}{calc S_v^N} \cdot P_{(sample)}.$$
(2.1.7)

При помощи выражения (2.1.7) можно определить парциальное давление (концентрацию) изотополога в смеси газа. Для реализации вышеизложенного метода необходимо знать параметры эффективного дипольного момента исследуемого изотополога, чтобы иметь возможность рассчитать $calc S_v^N$ на основе выражения (2.1.1). Однако упомянутые параметры известны, как правило, лишь для основной модификации молекулы, тогда как для большинства изотопологов эта информация в литературе отсутствует. В связи с этим, необходимо разработать метод, позволяющий оценить теоретически параметры эффективного дипольного момента исследуемого изотополога.

2.2 Аналитическое представление параметров эффективного дипольного момента для молекул типа асимметричного волчка. Фундаментальные полосы

Разрабатываемый в рамках данной диссертационной работы метод определения параметров эффективного дипольного момента различных изотопологов молекулы основан на теории изотопозамещения, упомянутой в Главе 1. Известно, что оператор дипольного момента молекулы не зависит от масс ядер молекулы. Как следствие, его P_Z - компонента в молекулярно - фиксированной системе координат может быть записана как

$$P_{Z} = \sum_{\alpha} k_{Z\alpha} \mu_{\alpha} = \sum_{\alpha} k_{Z\alpha} \{ \mu_{\alpha}^{e} + \sum_{\lambda} \mu_{\alpha}^{\lambda} Q_{\lambda} + \sum_{\lambda \leq \nu} \mu_{\alpha}^{\lambda\nu} Q_{\lambda} Q_{\nu} \dots \}$$
$$= \sum_{\beta} \tilde{k}_{Z\beta} \tilde{\mu}_{\beta} = \sum_{\beta} \tilde{k}_{Z\beta} \{ \tilde{\mu}_{\beta}^{e} + \sum_{\lambda} \tilde{\mu}_{\beta}^{\lambda} \tilde{Q}_{\lambda} + \sum_{\lambda \leq \nu} \tilde{\mu}_{\beta}^{\lambda\nu} \tilde{Q}_{\lambda} \tilde{Q}_{\nu} \dots \}, \qquad (2.2.1)$$

где $k_{Z\alpha}$ ($\tilde{k}_{Z\beta}$) - элементы матрицы направляющих косинусов; μ_{α}^{e} и $\tilde{\mu}_{\beta}^{e}$ - это равновесные параметры дипольного момента «материнской» и изотопозамещенной молекулы в молекулярно фиксированной системе координат; Q_{λ} и \tilde{Q}_{λ} - размерные нормальные колебательные координаты «материнской» и изотопозамещенной молекулы; и μ_{α}^{λ} , $\tilde{\mu}_{\beta}^{\lambda}$, $\mu_{\alpha}^{\lambda\nu}$, $\tilde{\mu}_{\beta}^{\lambda\nu}$ - параметры, описывающие зависимость компонент дипольного момента μ_{α} и $\tilde{\mu}_{\beta}$ по нормальным колебательным координатам. Первые вклады (μ_{α}^{e} и $\tilde{\mu}_{\beta}^{e}$) в уравнении (2.2.1) отвечают за чисто вращательные переходы; вторые вклады (пропорциональные колебательным координатам первого порядка) ответственны за появление в поглощении переходов фундаментальных полос (в общем случае полос, соответствующих изменению только одного колебательного квантового числа на единицу) и т. д.

Параметры эффективного дипольного момента μ'_z , от которых зависит матричный элемент $\langle A | \mu'_z | B \rangle$ в уравнении (2.1.1), связаны с оператором P_Z через соотношение [70]:

$$\mu'_{z} = G^{+} P_{Z} G =$$

$$G^{+} \left[\sum_{\alpha} k_{z\alpha} \left(\mu^{e}_{\alpha} + \sum_{\lambda} \mu^{\prime \lambda}_{\alpha} q_{\lambda} + \sum_{\lambda,\nu \ge \lambda} \mu^{\prime \lambda\nu}_{\alpha} q_{\lambda} q_{\nu} + \dots \right) \right] G. \qquad (2.2.2)$$

Оператор G - унитарный колебательно-вращательный оператор и может быть получен для любой молекулы на основе метода контактных преобразований или проекторной формулировки операторной теории возмущений. Значения μ'^{λ}_{α} , $\mu'^{\lambda\nu}_{\alpha}$,..., аналогичны параметрам μ^{λ}_{α} , $\mu^{\lambda\nu}_{\alpha}$,... из уравнения (2.2.1) (они являются коэффициентами массово независисимых нормальных колебательных координат $q_{\lambda}...q_{\nu}$ в разложении дипольного момента P_Z). Если учесть форму операторов G/G^+ (см. [111]), то можно показать, что уравнение (2.2.2) может быть преобразовано к следующиму виду

$$\mu'_{z} = \sum_{vv'} |v\rangle^{(vv')} \mu_{z} \langle v'|, \qquad (2.2.3)$$

где значения ${}^{(vv')}\mu_z$ - чисто вращательные операторы, которые могуть быть записаны как

$${}^{(vv')}\mu_z = \sum_j {}^{(vv')}\mu_j{}^{(vv')}A_j.$$
(2.2.4)

Здесь ${}^{(vv')}\mu_j$ и ${}^{(vv')}A_j$ - параметры эффективного дипольного момента конкретной колебательной полосы, $\langle v'| \leftarrow |v\rangle$, и симметризованные операторы вращения (для молекул типа асимметричного волчка). Параметры ${}^{(vv')}\mu_j$ используются для расчета силы линий по формуле (2.1.1). Численные значения параметров эффективного дипольного момента ^(vv')µ_j обычно известны для большинства «материнской» молекул. В то же время, соответствующие параметры для изотопических модификаций обычно в литературе отсутствуют.

В уравнении (2.2.1) $k_{Z\alpha}$ и $\tilde{k}_{Z\beta}$ являются элементами матриц, описывающих вращение «материнской» и изотопозамещенной молекул в пространстве. В общем случае, эти два набора элементов различны, но, как показано в теории изотопозамещения, они могут быть связаны соотношением

$$\tilde{k}_{Z\beta} = \sum_{\alpha} k_{Z\alpha} K_{\alpha\beta}, \qquad (2.2.5)$$

где $K_{\alpha\beta}$ - элементы матрицы, преобразующей систему координат, связанную с «материнской» молекулой, в систему координат, связанную с изотопической модификацией, для любой мгновенной конфигурации ядер. Следует отметить, что любые значения $K_{\alpha\beta}$ являются функциями нормальных координат

$$K_{\alpha\beta}(Q) = K^e_{\alpha\beta} + \sum_{\lambda} K^{\lambda}_{\alpha\beta}Q_{\lambda} + \dots, \qquad (2.2.6)$$

так как уравнение (2.2.5) справедливо не только для равновесной, но и для любой мгновенной конфигурации ядер. В уравнении (2.2.6) значения $K^e_{\alpha\beta}$ являются элементами равновесной матрицы вращения; определить коэффициенты $K^{\lambda}_{\alpha\beta}$ можно по формулам из теории изотопозамещения (см. параграф 1.4). Подстановка формулы (2.2.6) в (2.2.5) и (2.2.1) приводит к следующему результату:

$$P_{Z} = \sum_{\alpha} k_{Z\alpha} \{ \mu_{\alpha}^{e} + \sum_{\lambda} \mu_{\alpha}^{\lambda} Q_{\lambda} + ... \} = \sum_{\alpha} \sum_{\beta} k_{Z\alpha} \{ K_{\alpha\beta}^{e} + \sum_{\lambda} K_{\alpha\beta}^{\lambda} Q_{\lambda} + ... \} \{ \tilde{\mu}_{\beta}^{e} + \sum_{\nu} \tilde{\mu}_{\beta}^{\nu} \tilde{Q}_{\nu} + ... \},$$
(2.2.7)

из которого можно получить

$$\mu^e_{\alpha} = \sum_{\alpha} K^e_{\alpha\beta} \tilde{\mu}^e_{\beta}, \qquad (2.2.8)$$

или (принимая во внимание, что для матрицы вращения выполняется соотношение $\sum_{\alpha} K^e_{\alpha\beta} K^e_{\alpha\gamma} = \delta_{\beta\gamma}$)

$$\tilde{\mu}^{e}_{\gamma} = \sum_{\alpha} K^{e}_{\alpha\gamma} \mu^{e}_{\alpha} \tag{2.2.9}$$

И

$$\sum_{\lambda} \mu_{\alpha}^{\lambda} Q_{\lambda} = \sum_{\beta} K_{\alpha\beta}^{e} \sum_{\nu} \tilde{\mu}_{\beta}^{\nu} \tilde{Q}_{\nu} + \sum_{\lambda\beta} K_{\alpha\beta}^{\lambda} \tilde{\mu}_{\beta}^{e} Q_{\lambda}.$$
(2.2.10)

Последнее уравнение может быть переписано в более простой и удобной форме:

$$\sum_{\nu} \tilde{\mu}^{\nu}_{\gamma} \tilde{Q}_{\nu} = \sum_{\lambda} \sum_{\alpha} K^{e}_{\alpha\gamma} \{ \mu^{\lambda}_{\alpha} - \sum_{\beta} K^{\lambda}_{\alpha\beta} \tilde{\mu}^{e}_{\beta} \} Q_{\lambda}.$$
(2.2.11)

В данном параграфе рассматривается случай, когда колебательное квантовое число изменяется на единицу (что соответствует фундаментальным полосам). Уравнение (2.2.11) справедливо именно для такого случая.

Общая формула (параграф 1.4)

$$Q_{\lambda} = \sum_{\nu} \alpha_{\lambda}^{\nu} \tilde{Q}_{\nu} + \sum_{\mu\nu} \alpha_{\lambda}^{\mu\nu} \tilde{Q}_{\mu} \tilde{Q}_{\nu} + \dots$$
(2.2.12)

связывает нормальные координаты Q_{λ} и \tilde{Q}_{ν} . Если подставить (2.2.12) в (2.2.11), то несложно получить следующее выражение

$$\tilde{\mu}^{\nu}_{\gamma} = \sum_{\lambda} \sum_{\alpha} K^{e}_{\alpha\gamma} \{ \mu^{\lambda}_{\alpha} - \sum_{\beta} K^{\lambda}_{\alpha\beta} \tilde{\mu}^{e}_{\beta} \} \alpha^{\nu}_{\lambda}.$$
(2.2.13)

В работе [77] показано, что главные параметры эффективного дипольного момента $(gr \ v_{\lambda}=1)\mu_{\alpha 1}$ фундаментальных полос (в общем случае полос, соответствующих изменению колебательного квантового числа на единицу) определяются матричным элементом:

$${}^{\lambda}\mu_{\alpha 1} = \langle v_{\lambda} | \mu_{\alpha}^{\lambda} Q_{\lambda} | v_{\lambda} + 1 \rangle.$$
(2.2.14)

Здесь и далее для удобства будем обозначать ${}^{(gr \ v_{\lambda}=1)}\mu_{\alpha 1}$ как ${}^{\lambda}\mu_{\alpha 1}$. Следует принять во внимание связь между размерными Q_{λ} и безразмерными q_{λ} координатами [112]:

$$Q_{\lambda} = \left(\frac{\hbar}{2\pi c\omega_{\lambda}}\right)^{1/2} q_{\lambda}.$$
(2.2.15)

В этом случае уравнение (2.2.14) примет следующий вид:

$${}^{\lambda}\mu_{\alpha 1} = \mu_{\alpha}^{\lambda} \left(\frac{\hbar}{2\pi c\omega_{\lambda}}\right)^{1/2} \langle v_{\lambda}|q_{\lambda}|v_{\lambda}+1\rangle$$
$$= \mu_{\alpha}^{\lambda} \left(\frac{\hbar}{2\pi c\omega_{\lambda}}\right)^{1/2} \left(\frac{v_{\lambda}+1}{2}\right)^{1/2}.$$
(2.2.16)

Если провести подобную процедуру для изотопически замещенной молекулы, то можно получить аналогичное выражение:

$$\tilde{\xi} \tilde{\mu}_{\gamma 1} = \langle v_{\xi} | \tilde{\mu}_{\gamma}^{2} \tilde{Q}_{\xi} | v_{\xi} + 1 \rangle$$

$$= \tilde{\mu}_{\gamma}^{2} \left(\frac{\hbar}{2\pi c \tilde{\omega}_{\xi}} \right)^{1/2} \left(\frac{v_{\xi} + 1}{2} \right)^{1/2}.$$

$$(2.2.17)$$

Принимая во внимание уравнения (2.2.16), (2.2.17), (2.2.9), можно преобразовать уравнение (2.2.13) к удобному для использования виду:

$${}^{\xi}\tilde{\mu}_{\gamma 1} = \sum_{\lambda} \sum_{\alpha} K^{e}_{\alpha\gamma} \times \left\{{}^{\lambda}\mu_{\alpha 1} \left(\frac{\omega_{\lambda}}{\tilde{\omega}_{\xi}}\right)^{1/2} - \left(\frac{\hbar}{4\pi c \tilde{\omega}_{\xi}}\right)^{1/2} \sum_{\beta\delta} K^{\lambda}_{\alpha\beta} K^{e}_{\delta\beta} \cdot {}^{gr}\mu_{\delta 1}\right\} \alpha^{\xi}_{\lambda}.$$
(2.2.18)

Соотношение (2.2.18) справедливо для любого изотополога молекулы типа асимметричного волчка. Значения ${}^{\xi}\tilde{\mu}_{\gamma 1}$ в левой части уравнения - главные параметры эффективного дипольного момента рассматриваемого изотополога; ${}^{\lambda}\mu_{\alpha 1}$ - главные параметры эффективного дипольного момента «материнской» молекулы; ${}^{gr}\mu_{\delta 1}$ - главные параметры эффективного дипольного момента основного колебательного состояния «материнской» молекулы. Значения ω_{λ} и $\tilde{\omega}_{\xi}$ - гармонические частоты «материнской» и изотопозамещенной молекулы. Параметры α_{λ}^{ξ} , $K_{\alpha\gamma}^{e}$ и $K_{\alpha\beta}^{\lambda}$ могут быть рассчитаны в соответствии с теорией изотопозамещения см. подробнее глава 1.5.

Общее соотношение (2.2.18) можно переписать в следующем простом виде, линейно зависящем от параметров эффективного дипольного момента (например, экспериментальных значений ${}^{gr}\mu_{\delta 1}$ и ${}^{\nu_{\lambda}}\mu_{\alpha 1}$ параметров) «материнской» изотопической модификации:

$${}^{\nu_{\xi}}\tilde{\mu}_{\gamma 1} = \sum_{\delta} b_{\delta}^{\xi\gamma \ gr} \mu_{\delta 1} + \sum_{\lambda} \sum_{\alpha} c_{\lambda\alpha}^{\xi\gamma \ \nu_{\lambda}} \mu_{\alpha 1}.$$
(2.2.19)

Формула (2.2.19) может быть непосредственно использована для определения параметров эффективного дипольного момента $\nu_{\epsilon} \tilde{\mu}_{\gamma 1}$ изотопологов молекул типа асимметричного волчка для фундаментальных полос.

2.3 Численное представление параметров эффективного дипольного момента для молекул типа асимметричного волчка. Фундаментальные полосы

Молекулы типа XY₂. К молекулам такого типа относятся молекулы H₂O, H₂S, H₂Se, SO₂ и O₃ с симметрией, изоморфной точечной группе симметрии C_{2v}. Как и для любой молекулы такого типа, их три колебательные моды обладают следующей симметрией: $q_{\lambda} \in A_1$ для $\lambda = 1, 2$ и $q_3 \in B_1$; и только одна компонента эффективного дипольного момента основного состояния, расположенная вдоль оси симметрии «материнской» молекулы, отлична от нуля. Предпочтительной моделью гамильтониана для таких молекул является гамильтониан в A-редукции и представлении I^r [61]. В этом случае единственная ненулевая компонента эффективного дипольного момента основного состояния «материнской» молекулы равна ${}^{gr}\mu_{x1}$. В свою очередь, в соответствии с симметрией «материнской» молекулы, только три значения $^{\nu_{\lambda}}\mu_{\alpha 1}$ ($^{\nu_{1}}\mu_{x1}$, $^{\nu_{2}}\mu_{x1}$ и $^{\nu_{3}}\mu_{z1}$) отличны от нуля. Как следствие, только шесть коэффициентов (c_{1x}^{1x} , c_{2x}^{1x} , c_{2x}^{2x} , c_{2x}^{2x} , b_{x}^{3z} и c_{3z}^{3z}) отличны от нуля при симметричном замещении, и 24 коэффициента ($b_{x}^{\xi\gamma}$, $c_{1x}^{\xi\gamma}$, $c_{2x}^{\xi\gamma}$, $a_{3z}^{\xi\gamma}$, $\gamma = x, y, \xi = 1, 2, 3$) отличны от нуля при асимметричном замещении.

Полученные по общей формуле (2.2.19) значения ненулевых коэффициентов $b_{\delta}^{\xi\gamma}$ и $c_{\lambda\alpha}^{\xi\gamma}$ для важнейших изотопозамещенных модификация представлены в таблице A.1 (изотопологи H₂O), в таблице A.2 (изотопологи H₂S), в таблице A.3 (изотопологи H₂Se), в таблице A.4 (изотопологи SO₂) и в таблице A.5 (изотопологи O₃). Необходимые для расчета квадратичные параметры внутримолекулярного силового поля H₂O, H₂S, H₂Se, SO₂ и O₃ взяты из работ [119], [120]–[123].

Молекулы типа XYZ₂. Молекулы H₂CO и H₂CS принадлежат к молекулам типа асимметричного волчка с симметрией, изоморфной точечной группе симметрии C_{2v}. Их шесть колебательных мод разделены на три группы: $q_{\lambda} \in A_1$ для $\lambda = 1$, 2 и 3, $q_4 \in B_1$ и $q_{\lambda} B_2$ для $\lambda = 5$ и 6. Как и для молекул XY₂ (симметрия C_{2v}), эффективный дипольный момент основного состояния расположен вдоль оси x (что соответсвует оси симметрии «материнской» молекулы для гамильтониана, представленного A-редукциии и I^r представлении). Ненулевые коэффициенты $b_{\delta}^{\xi\gamma}$ и $c_{\lambda\alpha}^{\xi\gamma}$ для изотопозамещенных модификаций этих молекул (см. уравнение (2.2.19)) представлены в таблицах A.6 и A.7. Необходимые для расчетов квадратичные параметры внутримолекулярного силового поля H₂CO и H₂CS взяты из работ [124]–[125].

Молекулы типа $X_2 Y_4$. Группа симметрии этой молекулы изоморфна точечной группе симметрии D_{2h} , ее 12 колебательных координат обладают следующей симметрией: $q_{\lambda} \in A_g$ при $\lambda = 1, 2$ и 3; $q_4 \in A_u$; $q_{\lambda} \in B_{1g}$ для $\lambda = 5$ и 6; $q_7 \in B_{1u}$; $q_8 \in B_{2g}$; $q_{\lambda} \in B_{2u}$ для $\lambda = 9$ и 10; и $q_{\lambda} \in B_{3u}$ при $\lambda = 11$ и 12. Молекула не имеет постоянного дипольного момента, поэтому все коэффициенты $b_{\delta}^{\xi\gamma}$ в уравнении (2.2.19) равны нулю. В поглощении можно увидеть только пять из двенадцати основных полос. Как следствие, только пять коэффициентов $^{\nu_{\lambda}}\mu_{\alpha 1}$ могут быть ненулевыми в уравнении (2.2.19) и для восьми важнейших изотопологов этилена можно получить отличные от нуля коэффициенты $c_{\lambda\alpha}^{\xi\gamma}$, которые приведены в таблице (А.8). Таким образом, знание только пяти параметров эффективного дипольного момента ($^{\nu_7}\mu_{z1}$, $^{\nu_9}\mu_{x1}$, $^{\nu_{10}}\mu_{x1}$, $^{\nu_{12}}\mu_{z1}$) позволяет определить соответствующие параметры любого изотополога этилена. Необходимые для расчета квадратичные параметры внутримолекулярного силового поля C₂H₄ взяты из работы [126].

Обсуждение результатов. Данные таблиц А.1-А.8 (Приложение А), используемые в уравнении (2.2.19), позволяют определить параметры эффективного дипольного момента любой соответствующей молекулы с высокой точностью около 0, 2–0, 3%, если известны экспериментальные значения параметров «материнской» молекулы (в свою очередь, это дает возможность получить с высокой точностью значение ^(calc) S_{ν}^{N} в уравнении (2.1.7) и, как следствие, определить точное значение парциального давления $P_{(part)}$ рассматриваемого изотополога). Важно отметить, что пользователю не нужно выполнять сложные предварительные расчеты для оценки значений параметров эффективного дипольного момента того или иного изотополога. Достаточно использовать только простое уравнение (2.1.7) при известных параметрах $b_{\delta}^{\xi\gamma}$ и $c_{\lambda\alpha}^{\xi\gamma}$ из таблиц А.1-А.8. В качестве иллюстрации в таблице 2.3.1 сравниваются результаты расчетов с использованием уравнения (2.2.19) и данные таблиц А.1-А.8 с результатами, полученными при анализе экспериментальных спектров изотопологов, для которых имеется соответствующая информация в литературе [77], [127]–[156]. Видна более чем удовлетворительная корреляция между теоретически предсказанными и экспериментальными данными, за исключением четырех ситуаций:

- Экспериментальные значения параметра ²μ̃_{x1} для ¹⁸O₃, ¹⁶O¹⁷O¹⁶O и ¹⁸O¹⁶O¹⁸O молекулы озона в десять раз больше, чем соответствующие расчетные значения. Очевидно, что эти «экспериментальные» значения являются типографскими ошибками, поскольку соответствующие «экспериментальные» значения для «материнской» молекулы ¹⁶O₃ (сравните соответствующие значения в «O₃» таблицы 2.3.1) аж в десять раз меньше, чем упомянутые «экспериментальные» значения ¹⁸O₃, ¹⁶O¹⁷O¹⁶O и ¹⁸O¹⁶O¹⁸O изотополога, чего быть не может.
- Экспериментальное значение (-0,18540 Дебай) параметра ³µ_{x1} молекулы ¹⁶O¹⁶O¹⁸O (см. раздел ¹⁶O¹⁶O¹⁸O в таблице 2.3.1) из работы [142] тоже выглядит ошибкой, а экспериментальные значения ³µ_{x1} и ³µ_{z1} параметров надо поменять местами. Это утверждение подтверждается тем, что для «материнской» молекулы ¹⁶O₃ значение параметра ³µ_{z1} равно (- 0,1928 Дебай), а значение параметра ³µ_{x1} равно нулю. Учитывая, что при любом изотопном замещении в молекуле озона значения эффективных дипольных моментов могут измениться незначительно, можно сделать вывод, что «экспериментальные» значения (-0,18540 Дебай) и (0,00000 Дебай) в столбце 2 для молекулы ¹⁶O¹⁶O¹⁸O должны быть поменяны местами.

		Н2О и изс	илоцопот(О3 и и	(30TOHOJIOFU			
			,		,		,		,	
		5	-	21	-	7	-	2	-	7
	pac4.	ЭКСП.	расч.	ЭКСП.	расч.	ЭКСП.	pacy.	ЭКСП.	расч.	ЭКСП.
	н 	$I_2 \ ^{16}O^a)$		D ₂ O		$^{16}\mathrm{O}_3^{b)}$		$^{17}O_{3}$		$^{18}O_{3}$
$\frac{1}{2} ilde{\mu}_{x1}$		-0.01532 [77]	-0.01750	-0.01697 [129]		-0.0152 [134]	-0.01497	-0.01520 [135]	-0.01476	-0.01476 [136]
$rac{2}{\hat{\mu}x_1}{\hat{\mu}_{x1}}$		0.12690 [128] -0.06869 [77]	0.10826 - 0.06254	$\begin{array}{c} 0.10890 \ [130] \\ 0.06138 \ [129] \end{array}$		-0.0478 [134] -0.1928 [134]	-0.04708 -0.18990	-0.18540 [135]	-0.04641 -0.18721	-0.48060 [137] -0.18280 [136]
		$D_{2}^{17}O$	D	'2 ¹⁸ O	16) ¹⁷ O ¹⁶ O	17C) ¹⁶ O ¹⁷ O	¹⁸ C) ¹⁶ O ¹⁸ O
$rac{1}{ ilde{\mu}_{x1}}$	-0.01697 0.10810	0.11010 [130]	-0.01649 0.10795	0.10920 [130]	-0.01402 -0.04768	$\begin{array}{c} -0.01645 \left[138 \right] \\ -0.45790 \left[139 \right] \end{array}$	-0.01621 -0.04716	-0.01424 [140]	-0.01720 -0.04653	-0.01371 [136] -0.48760 [137]
$^3 ilde{\mu}_{z1}$	-0.06199		-0.06149		-0.19097	-0.18640 [138]	-0.19176	$-0.18720 \ [140]$	-0.19082	-0.18450 [136]
		$\mathrm{H_2}~^{17}\mathrm{O}$	H	2 ¹⁸ O	16	$)^{18}O^{16}O$				
$^{1} ilde{\mu}x_{1}$	-0.01499	-0.01520 [131]	-0.01470	-0.01478 [132]	-0.01296					
$2 \tilde{\mu}_{x1}$ $3 \tilde{\pi}_{z1}$	0.12678 -0.06817	0.06786 [131]	0.12667 -0.06785	0 06850 [132]	-0.04755 -0.18930	-0.04880 [141]				
2 2 2		HD ¹⁶ O		D ¹⁸ O	16C) ¹⁶ O ¹⁷ O	16C) ¹⁶ O ¹⁸ O	1 ⁶ C) ¹⁸ 0 ¹⁸ 0
$^{1} ilde{\mu}_{x1}$	0.00374	0.00353 [129]	0.00467		-0.01523		-0.01428	-0.01022 [142]	-0.01274	
$^{1} ilde{\mu}_{z1}$	0.04170	-0.04100 [129]	0.04081		0.02787		0.05620	0.00107 [142]	0.03717	
$^2 ilde{\mu}_{x1}$	0.09602	$0.10053 \left[133 ight]$	0.09496	$0.10014 \ [133]$	-0.04745	-0.04393 $[139]$	-0.04707	-0.04950 [141]	-0.04688	-0.04700 [137]
$^2 ilde{\mu}_{z1}$	-0.08053	$0.07781 \ [133]$	-0.08161	0.07914 [133]	0.00296		0.00565		0.00584	
$^3 ilde{\mu}_{x1}$	-0.02906	-0.02830 [129]	-0.02887		-0.00443		-0.00871	-0.18540 [142]	-0.00705	

/ ~

Таблица 2.3.1 – Сравнение между рассчитанными по формуле (2.2.18) и имеющимися в литературе параметрами эффективного диполь-

52

$^{3} ilde{\mu}_{z1}$	-0.04406 0.04320 [129]	-0.04332		-0.19022	-0.18328		-0.18442	
	SO ₂ и изс	отопологи		H ₂ S	и изотопологі	Ĩ		
	$\mathrm{S}^{16}\mathrm{O}_2^{c)}$	34	$^{4}\mathrm{S}^{16}\mathrm{O}_{2}$	$\mathrm{H}_2\mathrm{S}^{d)}$		D_2S]	$1_2 {}^{33}S$
${}^1 ilde{\mu}_{x1}$ ${}^2 ilde{\mu}_{x1}$	0.08977 [144] - 0.13573 [145]	$0.08786 \\ -0.13560$	$0.08796 \ [146]$ - $0.13480 \ [147]$	0.00295 [145 0.01021 [150] 0.00228] 0.00868	$0.00224 \ [152] 0.00852 \ [151]$	$0.00296 \\ 0.01021$	$0.01016 \ [150]$
$^{3}\tilde{\mu}_{z1}$	-0.22667 [144]	-0.22493	-0.22508 [146]	-0.00021 [149] 0.00081	$0.00157 \ [152]$	-0.00018	
	$\rm H_2CO$ и изотопологи							
	$\mathrm{H}_{2}\mathrm{CO}^{e)}$	I	IDCO					
${}^1 ilde{\mu}_{x1}$		-0.05856						
${}^1\tilde{\mu}_{z1}$	-0.09650 $[154]$	-0.03469						
$^{2}\mu_{x1}$	0 12078 [154]	0.02369	0.02500 [156] 0.12450 [156]					
$-\mu_{z1}$	0.15078 [154]	0.12041	0.12450 [150]					
μ_{x1} $^{3}\tilde{\mu}_{x1}$	0.05515 [155]	0.05531						
$4 \tilde{\mu}_{u1}$	0.04142 [155]	0.04893						
${}^5 ilde{\mu}_{x1}$	$0.09705 \ [154]$	0.06570						
$^5 ilde{\mu}_{z1}$		-0.07073						
${}^6 ilde{\mu}_{x1}$	$0.05456\ [155]$	0.02700						
$^6 ilde{\mu}_{z1}$		-0.03417						
$^{a)}\ gr\mu_{x1} = 1.85498$ Дебай [127]								
$^{b)}\ gr\mu_{x1} = 0.53240$ Дебай [134]								
$^{c)}\ gr\mu_{x1} = 1.63308$ Дебай $[143]$								
^{d)} $gr \mu_{x1}$ =-0.97833 Дебай [148]								

 $^{e)}\ gr\mu_{z1}=2.33191$ Дебай [153]

Как также видно из таблицы 2.3.1, знаки некоторых экспериментальных и расчетных значений противоположны, но абсолютные значения очень близки друг к другу. Это легко объяснить отмеченным выше фактом зависимости сил линий поглощения от квадрата параметров дипольного момента. Последнее означает, что значения параметров ${}^{gr}\mu_{\delta 1}$ и ${}^{\nu_{\lambda}}\mu_{\alpha 1}$ «материнской» молекулы определены из экспериментальных данных с точностью до знака.

Как обсуждалось выше, полученная информация может быть непосредственно использована в такой важной задаче, как точное определение содержания изотопологов в газовой смеси. Последнее открывает возможность для количественного анализа таких изотопических видов, определение численности и/или контроль которых затруднены по упомянутым выше причинам.

Еще один момент, на который хотелось бы здесь обратить внимание, связан с заявленной точностью 0, 2 - 0, 3% определения параметра эффективного дипольного момента. Разумеется, в чистом виде обсуждаемый метод применим только для линий со значением квантового числа J = 0, поскольку наличие центробежных поправок в операторе эффективного дипольного момента, безусловно, приводит к поправке величины главного параметра эффективного дипольного момента, определяемого из анализа экспериментальных данных. Однако необходимо учитывать, что (даже для самых легких молекул, таких как H₂O, H₂S и др.) значения наибольшего из таких центробежных параметров на 2–3 порядка меньше по сравнению с основными параметрами эффективного дипольного момента. Это означает, что для линий с квантовым числом J не более 4–6 (последнее зависит от конкретной молекулы) погрешность, вызванная такими эффектами, составляет не более 2 – 3%. Более того, это влияние 2 – 3% легко может быть уменьшено до 0, 2 – 0, 3% после предварительной подгонки формы линий, полученных из анализа экспериментальных данных в предположении о 100% содержании рассматриваемого изотополога.

Вывод. На основе разрабатываемой теории изотопозамещения в многоатомных молекулах развит общий метод, позволивший решить проблему корректного определения концентрации (парциальных давлений) отдельных изотопологов в их смеси в условиях отсутствия информации о количествах исходных реагентов в условиях эксперимента. Это, в свою очередь, позволяет успешно решать задачу корректного определения абсолютных интенсивностей различных изотопологов молекул и, как следствие, получать информацию о фундаментальных параметрах молекул. Общие результаты, полученные в разработанном методе, справедливы для различного типа многоатомных молекул. Следует отметить, что для того, чтобы получить результат в рамках развиваемого метода, пользователю достаточно сделать несложные вычисления по известной формуле. При этом исходной информацией для расчета

54

являются лишь экспериментальные значения параметров эффективного дипольного момента для «материнской» модификации и набор простых коэффициентов, которые могут быть рассчитаны на основе теории изотопозамещения. Такие коэффициенты были определены и представлены в виде таблиц для произвольных изотопологов молекул типа асимметричного и симметричного волчка. Разработанный метод уже успешно применялся при исследовании абсолютных интенсивностей многочисленных изотопологов различных многоатомных молекул: H₂S, SO₂ и других [57] – [60]. По результатам данного параграфа опубликованы работы [113], [114], [115], также результаты были представлены на международных конференциях и опубликованы в сборниках материалов конференции [116] - [118].

Глава 3. Исследование спектров молекул типа асимметричного волчка

3.1 Анализ спектров молекул $D_2^M S$ (M=32, 33, 34)

Эксперимент. Три спектра D_2S (Merck / Sigma-Aldrich, заявленная чистота 97 %) были зарегистрированы в лаборатории Технического университета Брауншвейга с помощью инфракрасного спектрометра Fourier Bruker IFS125HR (прототип Zürich ZP2001) [79]. Спектры были зарегистрированы в диапазоне 600 - 4200 см⁻¹, из которого впоследствии была выбрана область 2400 - 2900 см⁻¹ для настоящего анализа. Подробная экспериментальная информация представлена в таблице 3.1.1.

Таблица 3.1.1 – Экспериментальные данные инфракрасного спектра молекулы D₂S в диапазоне 2400–2900 см⁻¹

Спектр	Разрешение /см ⁻¹	No. сканов	Диапазон /см ⁻¹	Детектор	Свето- делитель	Опт. длина пути/м	Апертура /мм	Т /°С	Давление /Па	Калибр. газ газ
I	0.003	1150	1750 - 4200	InSb	KBr	12	1.30	24 ± 0.5	600	CO_2
II	0.003	960	1750 - 4200	InSb	CaF_2	163	1.15	24 ± 0.5	400	CO_2
III	0.002	960	600 - 3000	MCT-D316	KBr	4	1.15	23 ± 0.8	450	CO_2

Две оптические многолучевые ячейки, изготовленные из нержавеющей стали, с длиной основания 2,4 и 1 м, использовались при давлениях 600, 400 и 450 Па. Большая ячейка [157] имеет максимальную длину пути 200 м и использовалась в данной работе на длине пути 163 м. Меньшая ячейка использовалась в данной работе на длинах пути примерно 4 и 12 м. Для регистрации спектров были взяты источник излучения глобар, окна CsI и KBr, светоделители KBr и CaF₂, а также ртутно-кадмиевые теллуридные детекторы (Bruker MCT D316 и InSb). Номинальное разрешение, определяемое как $1/d_{MOPD}$ (d_{MOPD} = максимальная разность оптического пути), составляло от 0,002 до 0,003 см⁻¹, что приводит к ширине инструментальных линий от 0,00136 до 0,0020 см⁻¹ в сочетании с самоаподизацией Boxcar, [79].

При проведении эксперимента произошел быстрый обмен дейтерия с водородом части молекул D₂S. Это происходило из-за остаточных паров H₂O с поверхности ячейки, из окон CsI и KBr и из-за проникновения водяных паров в ячейки, чего невозможно полностью избежать в течение длительного времени измерения от 22 до 33 часов для зарегистрированных спектров I, II и III. Таким образом, в ячейках образовалась значительная часть HDS и даже H₂S. Чтобы определить (среднее) парциальное давление D₂S за время измерения, была использована методика, подробно описанная в Главе 2. Имеенно эта методика позволила оценить парциальное давление компонентов газа (HDS, D₂S, H₂S, HDO, D₂O, H₂O, CO₂) на основе параметров эффективного дипольного момента «материнских» молекул с помощью теории изотопозамещения (см. таблицу 3.1.2) и таким образом корректно решить задачу определения абсолютных интенсивностей изотопологов сероводорода, содержащихся в образце [158].

Таблица 3.1.2 – Оценка концентрации молекул в смеси газов в экспериментальных образцах I и II (в процентах)

Спектр	$\rm H_2O$	D_2O	HDO	$\rm CO_2$	H_2S	$\mathbf{D}_2^{32}\mathbf{S}$	$\mathrm{HD^{32}S}$
Ι	$0.004{\pm}0.003$	$0.080 {\pm} 0.005$	$0.017 {\pm} 0.003$	0.007	$3.8{\pm}0.4$	$61.8{\pm}1.0$	32.1 ± 1.1
II	$0.005 {\pm} 0.001$	$0.714 {\pm} 0.034$	$0.112 {\pm} 0.019$	0.010	$2.7{\pm}0.4$	$64.4{\pm}0.9$	$29.5{\pm}0.8$

Температуру контролировали с помощью термометра Ahlborn Almemo 2590, работающего с сопротивлением РТ100 в течение всего эксперимента. Для контроля давления использовался каскад из трех температурно-компенсирующих заводских калибровочных манометров CMF Pfeiffer CMR в керамической технологии с диапазонами давления до 10, 100 и 1000 гПа, которые не зависят от вида газа и устойчивы к агрессивным газообразным средам. Допплеровское уширение для D₂S при 298 К составляло от 0,0049 до 0,0060 см⁻¹ на границах области наблюдаемой зоны (2400 и 2900 см⁻¹). Для спектров производилась калибровка с использованием OCS и CO₂.

Теоретические основы. Как уже обсуждалось в Главе 2, молекула D₂S является молекулой типа ассиметричного волчка и изоморфна точечной группе симметрии C_{2v}. Значение параметра асимметрии $\kappa = (2B - A - C)/(A -) \simeq 0.357$. Как и для любой молекулы XY₂, ее три колебательные моды обладают следующей симметрией: $q_{\lambda} \in A_1$ для $\lambda = 1$, 2, и $q_3 \in B_1$. Следовательно, в поглощении допускаются два типа полос: полосы параллельного (или A_1) типа, которые соответствуют колебательным переходам (v_{A_1}) \leftarrow (v_{gr} .) и полосы перпендикулярного (или B_1) типа, которые соответствуют колебательным переходам (v_{B_1}) \leftarrow (v_{gr} .). Правила отбора для переходов в параллельных полосах

$$\Delta J = 0, \pm 1; \ \Delta K_a = \pm (2n+1); \ \Delta K_c = \pm (2m+1)$$
(3.1.1)

и правила отбора для переходов в перпендикулярных полосах

$$\Delta J = 0, \pm 1; \ \Delta K_a = \pm 2n; \ \Delta K_c = \pm (2m+1).$$
(3.1.2)

(n, m = 0, 1, 2... в уравнениях (3.1.1) - (3.1.2)). Колебательно-вращательные полосы $\nu_1 + \nu_2$ и $3\nu_2$ являются полосами A_1 типа, и, следовательно, правила отбора для них описываются формулой (3.1.1). Полоса $\nu_2 + \nu_3$ является полосой B_1 типа, и правила выбора для нее описываются уравнением (3.1.2).

Эффективный гамильтониан молекулы типа XY_2 (симметрия C_{2v}) неоднократно обсуждался в спектроскопической литературе (см., например, [159]).

В общем виде эффективный гамильтониан можно записать как

$$H^{vib.-rot.} = \sum_{v,\tilde{v}} |v\rangle \langle \tilde{v} | H^{v\tilde{v}}, \qquad (3.1.3)$$

где суммирование берется по всем взаимодействующим колебательным состояниям. Для задачи, обсуждаемой в данном параграфе, суммирование в формуле (3.1.3) берется от 1 до 3 для v и \tilde{v} , которые представляют собой три колебательных состояния: $|1\rangle = (110, A_1)$, $|2\rangle = (030, A_1)$ и $|3\rangle = (011, B_1)$. Любой диагональный блок H^{vv} в формуле (3.1.3) описывает невозмущенную вращательную структуру колебательного состояния $|v\rangle$ и имеет вид приведенного эффективного гамильтониана в A- редукции и I^r представлении, [159],[160]:

$$\begin{split} H^{vv} &= E^{v} + [A^{v} - \frac{1}{2}(B^{v} + C^{v})]J_{z}^{2} + \frac{1}{2}(B^{v} + C^{v})J^{2} + \frac{1}{2}(B^{v} - C^{v})J_{xy}^{2} \\ &- \Delta_{K}^{v}J_{z}^{4} - \Delta_{JK}^{v}J_{z}^{2}J^{2} - \Delta_{J}^{v}J^{4} - \delta_{K}^{v}[J_{z}^{2}, J_{xy}^{2}] - 2\delta_{J}^{v}J^{2}J_{xy}^{2} \\ &+ H_{K}^{v}J_{z}^{6} + H_{KJ}^{v}J_{z}^{4}J^{2} + H_{JK}^{v}J_{z}^{2}J^{4} + H_{J}^{v}J^{6} + [J_{xy}^{2}, h_{K}^{v}J_{z}^{4} + h_{JK}^{v}J^{2}J_{z}^{2} + h_{J}^{v}J^{4}] \\ &+ L_{K}^{v}J_{z}^{8} + L_{KKJ}^{v}J_{z}^{6}J^{2} + L_{JK}^{v}J_{z}^{4}J^{4} + L_{KJJ}^{v}J_{z}^{2}J^{6} + L_{J}^{v}J^{8} \\ &+ [J_{xy}^{2}, l_{K}^{v}J_{z}^{6} + l_{KJ}^{v}J^{2}J_{z}^{4} + l_{JK}^{v}J^{4}J_{z}^{2} + l_{J}^{v}J^{6}]_{+} + P_{K}^{v}J_{z}^{10} \\ &+ [J_{xy}^{2}, p_{K}^{v}J_{z}^{8}]_{+} + ..., \end{split}$$

где $J_{xy}^2 = J_x^2 - J_y^2$; [..., ...]₊ – обозначают антикоммутаторы; A^v , B^v , и C^v – вращательные постоянные, связанные с колебательным состоянием $|v\rangle$, и другие параметры – это коэффициенты центробежного искажения разных порядков малости.

Недиагональные блоки $H^{v\tilde{v}}$ $(v \neq \tilde{v})$ описывают Ферми – и Кориолис – резонансные эффекты между колебательными состояниями:

(а) Оператор, описывающий Ферми-взаимодействие, связывает колебательные состо-

яния одной симметрии и имеет следующую форму:

$$H^{v\tilde{v}} = {}^{v\tilde{v}}F_{0} + {}^{v\tilde{v}}F_{K}J_{z}^{2} + {}^{v\tilde{v}}F_{J}J^{2} + {}^{v\tilde{v}}F_{KK}J_{z}^{4} + {}^{v\tilde{v}}F_{JK}J_{z}^{2}J^{2} + {}^{v\tilde{v}}F_{JJJ}J^{4}$$

$$+ {}^{v\tilde{v}}F_{KKK}J_{z}^{6} + {}^{v\tilde{v}}F_{KKJ}J_{z}^{4}J^{2} + {}^{v\tilde{v}}F_{KJJ}J_{z}^{2}J^{4} + {}^{v\tilde{v}}F_{JJJ}J^{6} + \dots$$

$$+ {}^{v\tilde{v}}F_{xy}(J_{x}^{2} - J_{y}^{2}) + [({}^{v\tilde{v}}F_{Kxy}J_{z}^{2} + \frac{1}{2}{}^{v\tilde{v}}F_{Jxy}J^{2}), (J_{x}^{2} - J_{y}^{2})]_{+}$$

$$+ [({}^{v\tilde{v}}F_{KKxy}J_{z}^{4} + {}^{v\tilde{v}}F_{JKxy}J_{z}^{2}J^{2} + \frac{1}{2}{}^{v\tilde{v}}F_{JJxy}J^{4}), (J_{x}^{2} - J_{y}^{2})]_{+}$$

$$+ [({}^{v\tilde{v}}F_{KKxy}J_{z}^{6} + {}^{v\tilde{v}}F_{KKJxy}J_{z}^{4}J^{2} + {}^{v\tilde{v}}F_{KJJxy}J_{z}^{2}J^{4}$$

$$+ \frac{1}{2}{}^{v\tilde{v}}F_{JJJxy}J^{6}), (J_{x}^{2} - J_{y}^{2})]_{+} \dots$$

$$(3.1.5)$$

Первый параметр ^{$v\tilde{v}F_0$} в уравнении (3.1.5) является чисто колебательным параметром взаимодействия; все остальные параметры описывают поправки колебания-вращения к основному параметру взаимодействия Ферми.

(b) Оператор взаимодействия Кориолиса C-типа $H^{v\tilde{v}}$, $(v \neq \tilde{v})$ связывает такие пары колебательных состояний, как состояние $|v\rangle$ симметрии γ^v и состояние $|\tilde{v}\rangle$ симметрии $\gamma^{\tilde{v}}$, для которых справедливо условие $\gamma^v \otimes \gamma^{\tilde{v}} = B_1$:

$$H^{v\tilde{v}} = iJ_y^{v\tilde{v}}H^{(1)} + {}^{v\tilde{v}}H^{(1)}iJ_y + [J_x, J_z]_+ {}^{v,\tilde{v}}H^{(2)} + {}^{v\tilde{v}}H^{(2)}[J_x, J_z]_+ + \dots,$$
(3.1.6)

где

$${}^{v\tilde{v}}H^{(i)} = \frac{1}{2} {}^{v\tilde{v}}C^{i} + {}^{v\tilde{v}}C^{i}_{K}J^{2}_{z} + \frac{1}{2} {}^{v\tilde{v}}C^{i}_{J}J^{2} + {}^{v\tilde{v}}C^{i}_{KK}J^{4}_{z} + {}^{v\tilde{v}}C^{i}_{JK}J^{2}_{z}J^{2} + \frac{1}{2} {}^{v\tilde{v}}C^{i}_{JJ}J^{4} + {}^{v\tilde{v}}C^{i}_{KKK}J^{2}_{z} + {}^{v\tilde{v}}C^{i}_{KKJ}J^{4}_{z}J^{2} + {}^{v\tilde{v}}C^{i}_{KJJ}J^{2}_{z}J^{4} + \frac{1}{2} {}^{v\tilde{v}}C^{i}_{JJJ}J^{6} + \dots$$
(3.1.7)

Изотополог $\mathbf{D}_2^{32}\mathbf{S}$. Два обзорных ИК-Фурье спектра I (черный) и II (оранжевый) представлены в верхней части рисунка 3.1.1. Видны сильные полосы $\nu_1 + \nu_2$ и $\nu_2 + \nu_3$ молекулы $\mathbf{D}_2^{32}\mathbf{S}$ в области 2600–2900 см⁻¹ с ярко выраженными P-, Q- и R- ветвями. Полоса $3\nu_2$ значительно слабее, но она также видна около 2550 см⁻¹, по крайней мере, в спектре II. Чтобы проиллюстрировать качество экспериментальных данных, в верхней части рисунка 3.1.2 и 3.1.3 показаны небольшие фрагменты спектра I в области локализации полос $\nu_1 + \nu_2$ / $\nu_2 + \nu_3$ (рис. 3.1.2) и спектра II в области полосы $3\nu_2$ (рис. 3.1.3).

Анализ спектра был выполнен на основе метода комбинационных разностей основного состояния. Вращательные уровни энергии основного состояния, которые необходимы для анализа, были взяты из работы [161]. В результате анализа были определены 4227 перехода в спектрах I и II (что примерно на 63 % больше, чем в последнем исследовании [162]). Значения квантовых чисел составили $J^{\text{max}} = 28 / 28/20$ и $K_a^{\text{max}} = 18/19/11$ для полос $\nu_1 + \nu_2$, $\nu_2 + \nu_3$ и $3\nu_2$ молекулы D_2^{32} S (для сравнения с результатами из [162] см. статистическую информацию

Рисунок 3.1.1 – Экспериментальные спектры I (черный) и II (оранжевый) молекул D₂^MS (М = 32, 33, 34) в области 2300–2900 см⁻¹. В верхней части рисунка представлен экспериментальный спектр, в нижней части смоделированный спектр.

в таблице 3.1.3). Следует отметить, что изотопологи D₂³³S и D₂³⁴S исследовались впервые. Полный список найденных переходов представлен в качестве дополнительного материала к статье, опубликованной по результатом данного исследования [163], и в приложении В к настоящей диссертационной работе.

Найденные переходы использовались для определения значений верхних уровней энергии для состояний (110), (011) и (030) молекулы $D_2^{32}S$. В результате были определены 1054 значений энергии. Затем полученные верхние уровни колебательной энергии использовались в процедуре варьирования для расчета параметров модели эффективного гамильтониана (уравнения (3.1.3)–(3.1.7)). Результаты подгонки показаны в столбцах 2-4 таблицы В.1 и в таблице В.2 (см. приложение В). Некоторые параметры, представленные в таблице В.1 (параметры δ_K , L_{JJK} , l_K , l_{KJ} , l_{JK} , P_{KJ}), варьировались особым образом, а именно как равные друг другу для состояний (110) и (011). Причина такого допущения заключается в том, что раздельное изменение параметров такого типа приводит к нестабильным результатам, но с

60

Рисунок 3.1.2 – Небольшая часть экспериментальных спектров I и II (верхняя часть) и смоделированных спектров (нижняя часть) в области Р-ветви полос $\nu_1 + \nu_2$ и $\nu_2 + \nu_3$ молекулы D₂S. Линии, принадлежащие полосе $\nu_1 + \nu_2$ для D₂³²S, D₂³⁴S и D₂³³S, отмечены темными треугольниками, кругами и квадратами; линии, принадлежащие полосе $\nu_2 + \nu_3$ для D₂³²S и D₂³⁴S, отмечены открытыми треугольниками и кружками.

общей точки зрения их значения должны быть близки друг к другу.

Полученный набор из 97 параметров воспроизводит 1054 начальных значений колебательновращательных энергий с $d_{\rm rms} = 1.97 \times 10^{-4}$ см⁻¹ (см. статистическую таблицу 3.1.3 для более подробной информации). В нижних частях рис. 3.1.1–3.1.3 показаны смоделированные спектры, которые были построены на основе параметров из таблиц В.1 и В.2 (см. приложение В). Для расчета относительных интенсивностей линий использовался один основной параметр эффективного дипольного момента для одной полосы и профиль Фойгта.

Помимо анализа положений линий был проведен анализ абсолютных интенсивностей линий полосы 3 ν_2 . В результате анализа интенсивности 376 переходов (300 линий) были получены с использованием специальной компьютерной программы, основанной на процедуре подгонки форм экспериментальных линий к определенной математической модели. В дан-

Рисунок 3.1.3 – Небольшая часть экспериментального спектра высокого разрешения II (верхняя часть) и смоделированного спектра (нижняя часть) в области Р-ветви полосы $3\nu_2$ молекулы D₂S. Линии, принадлежащие полосе $3\nu_2$ молекулы D₂S, отмечены в нижней части рисунка. Линии, отмеченные открытыми и темными кружками, относятся к

молекулам H₂S и HDS. Открытые и темные треугольники обозначают линии HDO и D₂O

ном случае была использована упрощенная модель Артмана-Тран, а именно зависящий от скорости профиль Раутиана (qSDRP). В некоторых случаях целесообразно было использовать зависящий от скорости профиль Фойгта (qSDVP). Варьируемые параметры модели Γ_0 , Δ_2 и $\nu_{\rm VC}$ представлены в колонках 8, 9 и 10 таблицы В.3. Значения в скобках соответствуют статистическим доверительным интервалам 1 σ для каждого параметра. Если значение в соответствующем столбце Δ_2 или $\nu_{\rm VC}$ отсутствует, то это означает, что параметр принимался равным нулю и его использование было нецелесообразным, так как значение $d_{\rm rms}$ было больше, чем сам параметр. Если же отсутствуют оба параметра (Δ_2 и $\nu_{\rm VC}$), то это значит, что использование профиля qSDRP не имеет никакого преимущества перед использованием профиля qSDVP (в этом случае R = 1.00 в колонке 11 таблицы В.3). Значение R рассчитывалось как $R = d_{\rm rms}$ (qSDVP)/ $d_{\rm rms}$ (qSDRP), где $d_{\rm rms}$ (qSDVP) и $d_{\rm rms}$ (qSDRP) - статистические

Полоса	Центр/см $^{-1}$	J^{\max}	K_a^{\max}	$N_t^{a)}$	$N_e^{b)}$	$m_{1}^{c)}$	$m_2^{c)}$	$m_3^{c)}$
1	2	3	4	5	6	7	8	9
			$D_{a}^{32}S$					
$\nu_1 + \nu_2^{(d)}$	2742.6659	28	18	1687	399	95.2	1.3	3.5
$ \nu_1 + \nu_2^{e)} $	2742.6657	21	10	1156	300	60.7	16.6	22.7
$3\nu_2^{d)}$	2549.0740	20	11	699	216	91.7	5.6	2.7
$3\nu_{2}^{e)}$	2549.0734	19	8	402	137	38.7	25.5	35.8
$ u_2 + u_3^{(d)} $	2754.4516	28	19	1841	439	96.1	3.0	0.9
$\nu_2 + \nu_3^{e)}$	2754.4519	21	11	1032	296	60.5	15.5	24.0
$d_{ m rms}^{d)}$	$1.97\times10^{-4} \mathrm{cm}^{-1}$							
$d^{e)}_{ m rms}$	$10.8\times10^{-4} \mathrm{cm}^{-1}$							
			$\mathbf{D}_2^{34}\mathbf{S}$					
$\nu_1 + \nu_2^{d)}$	2738.3315	18	12	567	190	95.3	4.7	0.0
$\nu_2+\nu_3^{d)}$	2749.7439	23	12	648	220	91.8	5.9	2.3
$d_{ m rms}^{d)}$	$2.39\times10^{-4} \mathrm{cm}^{-1}$							
			$\mathrm{D}_2^{33}\mathrm{S}$					
$\nu_1 + \nu_2^{d)}$	2740.4339	14	1	22	12	100.0	0.0	0.0
$\nu_2+\nu_3^{d)}$	2752.0270	14	1	34	18	77.8	22.2	0.0
$d_{ m rms}^{d)}$	$2.29\times10^{-4} \mathrm{cm}^{-1}$							

Таблица 3.1.3 – Статистическая информация для полос второй триады молеку
л $\mathbf{D}_2^M\mathbf{S}~(M=32,33,34)$

^{а)} N_t - количество переходов.

^{b)} N_e - количество верхних уровней.

^{c)} Здесь $m_i = n_i/N \times 100 \%$ (i = 1, 2, 3); n_1, n_2 , и n_3 – количество уровней энергии, для которых разница $\delta = E^{\exp} - E^{calc}$ удовлетворяет условию $\delta \le 4 \times 10^{-4}$ см⁻¹, 4×10^{-4} см⁻¹ $< \delta \le 7 \times 10^{-4}$ см⁻¹, и $\delta > 7 \times 10^{-4}$ см⁻¹.

^{d)} В данной работе.

e) Из работы [162].

отклонения соответствующего фиттинга. Экспериментальная погрешность определения абсолютных интенсивностей линий рассчитывалась как

$$\Delta_{\nu}^{S} = \left\{ \Delta(L)^{2} + \Delta(T)^{2} + \Delta(TP)^{2} + \Delta(PP)^{2} + \Delta(\operatorname{stat})^{2} \right\}^{1/2}, \qquad (3.1.8)$$

где $\Delta(L), \Delta(T), \Delta(TP)$ и $\Delta(PP)$ - погрешности в определении оптической длины пути, темпе-

ратуры, общего давления, парциального давления $D_2^{32}S$ в образце соответственно, а $\Delta(\text{stat})$ - статистическое d_{rms} отклонение фиттинга конкретной формы линии (представлено в колонке 5 таблицы В.3).

Чтобы проиллюстрировать качество проведенного анализа, на рисунке 3.1.4 представлены примеры подгонки формы линий как с использованием профиля qSDRP, так и профиля Фойгта.

Рисунок 3.1.4 – Экспериментальная форма линий (8 d 8) - (9 d 9), (6 d 6) - (7 d 7), (3 2 2) -(4 1 3) и (4 0 4) - (3 1 3) спектра II полосы 3 ν_2 молекулы D₂³²S. Фиттинг экспериментальных форм линий был сделан с использованием профиля qSDRP (красная пунктирная линия) и профиля Фойгта (синяя пунктирная линия). Нижння часть рисунка демонстрирует разницу между экспериментальным и теоретически рассчитанным значением.

Для расчета параметров дипольного момента были использованы экспериментальные интенсивности 376 переходов (колонка 4 таблицы В.3). Набор из 10 параметров эффективного дипольного момента представлен в таблице 3.1.4. Данный набор параметров способен воспроизводить интенсивности 300 линий с $d_{\rm rms} = 3.1\%$. Значение $d_{\rm rms}$ определяется по следующей формуле:

$$d_{\rm rms} = \left\{ \frac{1}{n} \sum_{i} \left(100 \times \frac{(\exp)S_{\nu_i}^N - (\operatorname{calc})S_{\nu_i}^N}{(\exp)S_{\nu_i}^N} \right)^2 \right\}^{1/2},$$
(3.1.9)

Оператор	Параметр	Значение
1	2	3
k_{Zx}	$^{030}\mu_{x1} \times 10^3$	-0.61229(88)
$\left\{k_{Zx}, J^2\right\}$	$^{030}\mu_{x2} \times 10^{6}$	0.2395(61)
$\left\{k_{Zx}, J_z^2\right\}$	$^{030}\mu_{x3} \times 10^{7}$	0.89(26)
$\left\{ik_{Zy}, J_z\right\}$	$^{030}\mu_{x4} \times 10^4$	0.12925(78)
$\{k_{Zz}, iJ_y\}$	$^{030}\mu_{x5} \times 10^5$	-0.2042(46)
$\frac{1}{2} \left[\left\{ k_{Zx}, J_{xy}^2 \right\} + \left\{ ik_{Zy}, i\{J_x, J_y\} \right\} \right]$	$^{030}\mu_{x8} \times 10^6$	0.1493(93)
k_{Zx}	$^{110}\mu_{x1} \times 10^2$	0.508
k_{Zz}	$^{011}\mu_{z1}\times 10^2$	0.658

Таблица 3.1.4 – Параметры эффективного дипольного момента полосы 3 u_2 молекулы $D_2{}^{32}S$ (в Дебаях) $^{a,b)}$

^{a)} $\{A, B\} = AB + BA$, и $J_{xy}^2 = J_x^2 - J_y^2$.

^{b)} Значения в скобках – статистические доверительные интервалы 1*a*.

Несмотря на то, что полоса $3\nu_2$ в процессе определения параметров эффективных дипольных моментов принималась как изолированная с достаточно хорошей точностью, следует отметить, что примерно 3 – 4 % колебательно – вращательных переходов полосы $3\nu_2$ подвержены воздействию состояний (110) и (011). В результате такого взаимодействия, некоторые переходы полосы $3\nu_2$ перенимали интенсивности переходов, принадлежащих полосам $\nu_1 + \nu_2$ и $\nu_2 + \nu_3$. Для того чтобы эффект "перетекания" интенсивностей был принят во внимание, в процедуре варьирования также были задействованы главные параметры эффективного дипольного момента ($^{110}\mu_{x1} = 0.508 \times 10^{-2}$ Дебай и $^{011}\mu_{z1} = 0.658 \times 10^{-2}$ Дебай) состояний (110) и (011). Значения этих двух параметров были оценены из анализа двадцати экспериментальных переходов (десять переходов полосы $\nu_1 + \nu_2$ и десять переходов полосы $\nu_2 + \nu_3$). В таблице 3.1.5 представлены переходов полосы $3\nu_2$, которые демонстрируют эффект перетекания интенсивностей от переходов, принадлежащим полосам $\nu_1 + \nu_2$ и $\nu_2 + \nu_3$.

В таблице 3.1.5 колонки 3 и 4 содержат экспериментальные значения положений и

В	ерхнее	$e^{a)}$		Н	ижнее	a)	$ u^{b)}_{\mathrm{exp}}$	$S_{ u}^{c)}$	$S_ u/ ilde{S}^{d)}_ u$
J	K_a	K_c		J'	K'_a	K'_c	${ m cm}^{-1}$	${ m cm^{-1}/{ m mon\cdot cm^{-2}}}$	
	1				2		3	4	5
12	d	12	-	13	$\mathbf{d'}$	13	2477.29661	1.466 E-24	1.12
13	d	13	-	14	d^{\prime}	14	2471.09653	1.131E-24	1.12
13	d	13	-	12	$\mathbf{d'}$	12	2607.73568	1.533E-24	1.15
14	d	14	-	15	$\mathbf{d'}$	15	2464.77216	$8.520 ext{E-} 25$	1.14
15	d	15	-	16	$\mathbf{d'}$	16	2458.32490	5.967 E-25	1.16
15	d	15	-	14	$\mathbf{d'}$	14	2614.34298	8.476 E-25	1.22
16	d	16	-	17	$\mathbf{d'}$	17	2451.75562	4.183 E-25	1.19
17	d	17	-	18	$\mathbf{d'}$	18	2445.06582	$2.936\mathrm{E}\text{-}25$	1.22

Таблица 3.1.5 – Эффект перетекания интенсивностей к полосе $3\nu_2$ от полос $\nu_1 + \nu_2$ и $\nu_2 + \nu_3$ молекулы D_2S .

^{а)} Здесь "d" и "d'" обозначают значения пары квантовых чисел K_a (d = 0, d' = 1 и d = 1, d' = 0).

^{b)} Экспериментальные волновые числа.

^{c)} Экспериментальные интенсивности линий (T = 297.15 K).

^{d)} Отношения интенсивностей линий, рассчитанных "с" и "без" учета резонансного взаимодействия между $3\nu_2$ и $\nu_1 + \nu_2/\nu_2 + \nu_3$ полосами.

интенсивностей линий. Значение в колонке 5 - отношение интенсивностей, рассчитанных "с" и "без" учета резонансного взаимодействия между $3\nu_2$ и $\nu_1 + \nu_2/\nu_2 + \nu_3$ полосами. То есть значения S_{ν} в колонке 5 таблицы 3.1.5 были рассчитанны с учетом всех параметров из таблицы 3.1.4, тогда как значения \tilde{S}_{ν} были получены без влияния взимодействия (нижние два параметра в таблице 3.1.4 принимались равными нулю). Таким образом, показано, что пренебрежение взаимодействием между полосами приводит к ошибкам в расчете интенсивностей вплоть до 22 %. Одкако такие значительные отклонения характерны лишь для некоторых линий, тогда как для большей части линий ошибки составляют порядка 1-1.5 %. Тем не менее для получения наиболее корректного результата предлагается учитывать взаимодействие между полосами, но ограничиться при этом лишь главными вкладами эффективного дипольного момента полос $\nu_1 + \nu_2/\nu_2 + \nu_3$.

Для иллюстрации качества фиттинга в колонке 7 таблицы В.3 представлены значения отклонений в процентах:

$$\delta_{\nu}^{S} = 100\% \times \left(\frac{{}^{(\exp)}S_{\nu_{i}}^{N} - {}^{(\operatorname{calc})}S_{\nu_{i}}^{N}}{{}^{(\exp)}S_{\nu_{i}}^{N}}\right), \qquad (3.1.10)$$

где ^(calc) $S_{\nu_i}^N$ – значение интенсивности, рассчитанное на основе параметров из таблицы 3.1.4, ^(exp) $S_{\nu_i}^N$ – значение экспериментальной интенсивности.

Интегральная интенсивность полосы S_{ν} , рассчитанная как сумма интенсивностей отдельных линий, полученных с использованием параметров из таблицы 3.1.4 для T=297.15 К, составляет 4.364×10^{-22} см⁻¹/мол·см⁻².

Результаты, посвященные определению абсолютных интенсивностей полосы 3 ν_2 молекулы D₂³²S, представлены в работе [164].

Изотополог D_2^{34} S. Содержание изотополога D_2^{34} S в образце было значительно меньше, чем содержание D_2^{32} S. Как следствие, переходы, принадлежащие D_2^{34} S, более слабые по сравнению с соответствующими переходами изотополога D_2^{32} S. По этой причине мы смогли проанализировать 1215 переходов (по сравнению с 4227 переходами, полученными из экспериментального спектра для молекулы D_2^{32} S) со значениями квантовых чисел $J^{max} = 18/23$ и $K_a^{max} = 12/12$ для полос $\nu_1 + \nu_2$ и $\nu_2 + \nu_3$ соответственно. Переходы для полосы $3\nu_2$ не были определены. Что касается изотополога D_2^{34} S, анализ спектра проводился также методом комбинационных разностей, а параметры основного состояния были взяты из [161]. Полный список найденных переходов опубликован в дополнительном материале статьи [163].

В общей сложности были получены 410 верхних уровней состояний (110) и (011) из найденных 1215 переходов, а затем найденные значения энергий верхних уровней использовались в процедуре подгонки спектроскопических параметров гамильтониана (уравнения (3.1.3)–(3.1.7)). Начальные значения параметров D₂³⁴S принимались равными значениям соответствующих параметров молекулы D₂³²S. В этом случае наличие 190 и 220 колебательно– вращательных энергий колебательных состояний (110) и (011) дало возможность получить правильные значения центров полос, а также значения вращательных и центробежных параметров искажения из процедуры варьирования. Однако из–за отсутствия колебательных энергий состояния (030) получить соответствующие параметры из подгонки было невозможно. Тем не менее, оценка значений этих параметров важна для правильного определения параметров двух других колебательных состояний. Чтобы решить эту проблему, был использован следующий метод.

Хорошо известно [61], [69], что значения невозмущенных колебательных энергий $E_{(v_1v_2v_3)}$ (в нашем случае это $E_{(110)}$, $E_{(011)}$ и $E_{(030)}$) и параметров вращения $B^{\beta}_{(v_1v_2v_3)}$ ($\beta = x, y, z$) колебательного состояния ($v_1v_2v_3$) определяются в первом приближении как

$$E_{(v_1v_2v_3)} = \sum_{\lambda} \omega_{\lambda} v_{\lambda} + \sum_{\lambda} x_{\lambda\lambda} v_{\lambda} (v_{\lambda} + 1) + \sum_{\lambda,\mu>\lambda} x_{\lambda\mu} \left[v_{\lambda} v_{\mu} + \frac{1}{2} (v_{\lambda} + v_{\mu}) \right]$$
(3.1.11)

И

$$B_{(v_1v_2v_3)}^{\beta} = B_{\rm gr}^{\beta} - \sum_{\lambda} \alpha_{\lambda}^{\beta} \left(v_{\lambda} + \frac{1}{2} \right).$$
(3.1.12)

Очевидно, что соответствующие невозмущенные колебательные энергии и параметры вращения изотопозамещенных частиц можно записать в виде

$$\tilde{E}_{(v_1v_2v_3)} = \sum_{\lambda} \tilde{\omega}_{\lambda} v_{\lambda} + \sum_{\lambda} \tilde{x}_{\lambda\lambda} v_{\lambda} \left(v_{\lambda} + 1 \right) + \sum_{\lambda,\mu > \lambda} \tilde{x}_{\lambda\mu} \left[v_{\lambda} v_{\mu} + \frac{1}{2} \left(v_{\lambda} + v_{\mu} \right) \right]$$
(3.1.13)

И

$$\tilde{B}^{\beta}_{(v_1 v_2 v_3)} = \tilde{B}^{\beta}_{\rm gr} - \sum_{\lambda} \tilde{\alpha}^{\beta}_{\lambda} \left(v_{\lambda} + \frac{1}{2} \right).$$
(3.1.14)

Значения $\omega_{\lambda}/\tilde{\omega}_{\lambda}, B^{\beta}_{(v_1v_2v_3)}/\tilde{B}^{\beta}_{(v_1v_2v_3)}, x_{\lambda\mu}/\tilde{x}_{\lambda\mu},$ и $\alpha^{\beta}_{\lambda}/\tilde{\alpha}^{\beta}_{\lambda}$ в уравнениях (3.1.11)–(3.1.14) – это гармонические частоты, вращательные параметры, ангармонические и колебательно–вращательные коэффициенты основной и изотопозамещенной молекулы; v_{λ} – колебательные квантовые числа.

Теперь воспользуемся результатом теории изотопозамещения [104], согласно которой, при изотопном замещении тяжелых ядер (подстановка $D_2^{34}S \leftarrow D_2^{32}S$ как раз такой случай), негармонические коэффициенты и колебательные коэффициенты практически не меняются $(\tilde{x}_{\lambda\mu} \simeq x_{\lambda\mu} \text{ и } \tilde{\alpha}^{\beta}_{\lambda} \simeq \alpha^{\beta}_{\lambda})$. Принимая это во внимание, можно получить следующие соотношения из уравнений (3.1.11)–(3.1.14):

$$\Delta E_{(v_1 v_2 v_3)} = \tilde{E}_{(v_1 v_2 v_3)} - E_{(v_1 v_2 v_3)} \simeq \sum_{\lambda} \left(\tilde{\omega}_{\lambda} - \omega_{\lambda} \right) v_{\lambda}$$
(3.1.15)

И

$$\Delta B^{\beta}_{(v_1 v_2 v_3)} \simeq \tilde{B}^{\beta}_{\text{gr}} - B^{\beta}_{\text{gr}} = \text{const.}$$
(3.1.16)

Для конкретного $\beta = x, y$, или z. В качестве подтверждения правильности уравнения (3.1.16) в таблице 3.1.6 представлены наборы значений $\Delta B^{\beta}_{(v_1v_2v_3)}$ для трех колебательных состояний: основного колебательного состояния (000) и состояний (110) и (011), которые являются объектами исследования данного параграфа. Видно, что все три набора значений очень близки друг к другу. Что касается уравнения (3.1.15), то несложно оценить гармонические частоты, используя теорию изотопозамещения (что и было сделано в Главе 2 настоящей работы).

Подставляя значения гармонических частот из Главы 2 в уравнение (3.1.15), можно определить величину сдвигов невозмущенных колебательных энергий состояний второй

Параметр	С	остояние	
	(000)	(110)	(011)
ΔA	-0.03604	-0.0352	-0.0360
ΔB	0.000076	-0.0003	0.0
ΔC	-0.007234	-0.0077	-0.0066

Таблица 3.1.6 – Сдвиги значений вращательного параметра для некоторых колебательных состояний при изотопном замещении D₂³⁴S←D₂³²S (в см⁻¹)

триады: $\Delta E_{(110)} = -4.26 \text{ см}^{-1}$, $\Delta E_{(011)} = -4.79 \text{ см}^{-1}$, и $\Delta E_{(030)} = -4.35 \text{ см}^{-1}$. В то же время значения соответствующих экспериментальных сдвигов для состояний (110) и (011), полученные из анализа экспериментальных данных, составляют $-4,33 \text{ см}^{-1}$ и -4,71 см см⁻¹. Экспериментальные значения близки к значениям, предсказанным теоретически. Можно ожидать, что значение смещения $-4,35 \text{ см}^{-1}$, которое получено теоретически для состояния (030), также является правильным. Эти три значения сдвига, а также данные из таблицы 3.1.6 были использованы для численной оценки начальных значений колебательных энергий и параметров вращения состояний второй триады $D_2^{34}S$.

Набор из 43 параметров $D_2^{34}S$, полученный из процедуры варьирования, представлен в столбцах 2-4 таблицы В.4 и в таблице В.5 (см. приложение В) вместе со статистическими доверительными интервалами 1σ , которые указаны в скобках. Необходимо отметить, что из-за некоторого изменения значений центров полос, параметров вращательного и центробежного искажений картина резонансных взаимодействий в $D_2^{34}S$ немного изменилась по сравнению с $D_2^{32}S$, поэтому набор параметров взаимодействия также изменяется по сравнению с $D_2^{32}S$. Соответствующее значение отклонения $d_{\rm rms}$ — составляет 2, 39 × 10⁻⁴ см⁻¹. На рис. 3.1.5, б показаны экспериментальные минус рассчитанные значения энергии, а также статистика отклонения значений энергии для изотополога $D_2^{34}S$.

Как упоминалось выше, нам не удалось обнаружить в экспериментальных спектрах линии, принадлежащие полосе $3\nu_2 \ D_2^{34}$ S. В то же время наличие теоретически оцененных значений невозмущенных параметров колебательной энергии, вращательного, центробежного искажения и параметров взаимодействия (см. таблицы В.4 и В.5) позволят воспроизвести колебательные энергетические уровни полосы (030), по крайней мере, для самых низких значений квантовых чисел. Следуя логике рассуждения в уравнениях (3.1.11)–(3.1.16) можно ожидать, что

1) неопределенность параметров вращения А, В и С колебательного состояния (030)

Рисунок 3.1.5 – Разница между экспериментальными и рассчитанными значениями энергии (в см⁻¹) для колебательных состояний второй триады D₂³²S (рис. 4 a), D₂³⁴S (рис. 4 b) и D₂³³S (рис. 4 c)

не больше, чем 0,001-0,002 см⁻¹;

 неопределенность значения невозмущенной колебательной энергии не превышает 0,10-0,15 см⁻¹.

Как следствие, для самых низких колебательно–вращательных уровней энергий (J ≤ 3) можно ожидать абсолютную точность прогнозирования положения линии порядка 0,10– 0,15 см⁻¹ или относительную точность прогнозирования положений линий не хуже 0,005–0,010 см⁻¹.

На основе данных о положениях линий в спектрах колебательно – вращательных полос $\nu_1 + \nu_2$ и $\nu_2 + \nu_3$ был проведен анализ абсолютных интенсивностей порядка 800 переходов. Кроме того, полученные в результате решения обратной спектроскопической задачи волновые функции позволили осуществить анализ интенсивностей и рассчитать основные параметры эффективного дипольного момента.

Естественное содержание изотополога D₂³⁴S в образце значительно меньше, чем содержание D₂³²S. Как следствие, переходы, принадлежащие D₂³⁴S, более слабые по сравнению с соответствующими переходами изотополога D₂³²S. Разница в интенсивностях для обоих молекул отображена на рис. 3.1.6.

На рисунках 3.1.6.а и 3.1.6.с показан переход с уровня основного колебательного со-

Рисунок 3.1.6 – Сравнение интенсивности одного и того же перехода [3 1 3 \leftarrow 2 1 2] для полосы $\nu_2 + \nu_3$ молекул D_2^{32} S и D_2^{34} S. Рисунки а) и b) соответствуют спектру II, а рисунки с) и d) - спектру I

стояния с квантовыми числами J'=2, $K'_a=1$, $K'_c=2$ на вращательный уровень возбужденного колебательно состояния (011) с квантовыми числами J=3, $K_a=1$, $K_c=3$ для молекулы $D_2^{32}S$. На рисунках 3.1.6.b и 3.1.6.d показан аналогичный переход для молекулы $D_2^{34}S$. Как видно из рисунка 3.1.6, для анализа интенсивностей переходов и корректного описания формы линий необходимо использовать спектры, зарегистрированные при разных экспериментальных условиях. Так, некоторые линии могут быть слишком насыщенными или перекрыты линиями, относящимися к другим присутствующим в газовой смеси молекулам, (рис. 3.1.6.a). В этом случае целесообразно использовать спектр I, менее интенсивный (рис. 3.1.6.с). Хотя на рисунках 3.1.6.а и 3.1.6.с показан переход для молекулы $D_2^{32}S$, аналогичная проблема характерна и для некоторых переходов молекулы $D_2^{34}S$. Для ситуации из рис. 3.1.6.d, когда линия слишком мала и ее интенсивность соответствует уровню шума, разумно использовать для анализа более интенсивный спектр II, (рис. 3.1.6.b).

В качестве иллюстрации на рис. 3.1.7 представлены два примера анализа формы хорошо изолированных сильных линий. Черная сплошная линия соответствует экспериментально измеренному значению формы линии, тогда как черная пунктирная линия обозначает теоретически смоделированный на основе модели Артмана-Тран контур. В нижней части рисунка представлена разница между экспериментальным и рассчитанным значением профиля линии.

Полученные экспериментальные интенсивности линий использовались для определе-

Рисунок 3.1.7 – Форма экспериментальных линий колебательно – вращательных переходов молекулы D₂³⁴S. Рисунок а) соответствует переходу [7 1 6 ← 8 2 7] полосы ν₁ + ν₂ в спектре II. Рисунок b) соответствует переходу [6 3 3 ← 7 3 4] полосы ν₂ + ν₃ в спектре II. Ось ординат соответствует интенсивности линии, выраженной в см⁻¹·атм⁻¹, *τ*-оптическая

толща, *L*-длина пути, *P*_p- парциальное давление

ния параметров эффективных дипольных моментов полос $\nu_1 + \nu_2$ и $\nu_2 + \nu_3$. Для расчета использовалась общая математическая модель, которая подробно обсуждалась в Главе 2. В качестве исходных данных использовались экспериментальные интенсивности 30 сильных хорошо изолированных линий. В результате из решения обратной задачи были рассчитаны 6 параметров эффективного дипольного момента с $d_{rms} = 9.7$ % (результаты представлены в таблице 3.1.7).

Небольшая часть экспериментально определенных переходов с положениями и интенсивностями линий представлена в таблице В.6. Значения *J*, *K*_a, *K*_c соответствуют квантовым числам верхнего колебательно-вращательного состояния, тогда как значения *J'*, *K*'_a, *K*'_c соответствуют квантовым числам нижнего состояния. По результатам исследования удалось сформировать список переходов в области 2300 – 2900 см⁻¹ с положениями линий и их интенсивностями. Результаты данного параграфа опубликованы в работе [165].

Изотополог $D_2^{33}S$. Содержание $D_2^{33}S$ в образце было примерно в 130 раз меньше,
Оператор	Параметр	Значение
1	2	3
k_{Zx}	$^{110}\mu_{x1}$	0.005300(69)
$\left\{ik_{Zy},J_{z} ight\}$	$^{110}\mu_{x4} \times 10^{3}$	0.060(14)
$\{k_{Zz}\}$	$^{011}\mu_{z1}$	0.00746(22)
$\left\{k_{Zz},J^2\right\}$	$^{011}\mu_{z2}\times 10^3$	0.0189(24)
$\left\{k_{Zz}, J_z^2\right\}$	$^{011}\mu_{z3}\times 10^3$	-0.1469(39)
$\frac{1}{2}\left[\{k_{Zx},iJ_y\}+\left\{ik_{Zy},J_x\right\}\right]$	$^{011}\mu_{z6} \times 10^{3}$	0.182(39)

Таблица 3.1.7 – Параметры эффективного дипольного момента полос $\nu_1 + \nu_2$ и $\nu_2 + \nu_3$ молекулы $D_2^{34}S$ (в Дебаях)^{*a*)*b*)}

^{a)} $\{A, B\} = AB + BA.$

^{b)} Значения в скобках - статистические доверительные интервалы 1*о*.

чем содержание $D_2^{32}S$, и примерно в шесть раз меньше, чем содержание $D_2^{34}S$. По этой причине анализ переходов молекулы $D_2^{33}S$ является непростой задачей. Ситуация усугубляется тем фактом, что параметры основного колебательного состояния в литературе отсутствуют, и метод комбинационных разностей основного состояния в этом случае не может быть использован. Чтобы определить переходы молекулы $D_2^{33}S$, был использован тот факт, что линии поглощения молекулы $D_2^{33}S$ должны располагаться очень близко к середине расстояния между соответствующими найденными переходами изотопологов $D_2^{32}S$ и $D_2^{34}S$. Таким образом, мы смогли определить 56 переходов для полос $\nu_1 + \nu_2$ и $\nu_2 + \nu_3$. Важно, что переходы были найдены как в P-, так и в R- ветках. Это дало нам возможность построить 18 различных комбинационных разностей основного состояния и, как следствие, определить параметры A, C, Δ_J и H_J основного колебательного состояния, которые показаны в столбце 3 таблицы В.7 (см. приложение В) вместе со статистическими доверительными интервалами 1 σ (последние указаны в скобках). Параметры, представленные без доверительных интервалов, были фиксированы на значениях, которые являются средними значениями соответствующих параметров основных колебательных состояний молекул $D_2^{32}S$ и $D_2^{34}S$.

В качестве последнего шага анализа были получены 30 верхних колебательных энергий состояний (110) и (011) (они показаны в таблице 3.1.8), а также были определены параметры гамильтониана из уравнений (3.1.3)–(3.1.7). Опять же, что касается основного ко-

J	Ka	K _c	(110)	Δ	δ	$(110)^{b}$	$\tilde{\delta}^{b)}$	(011)	Δ	δ	$(011)^{b)}$	$\tilde{\delta}^{b)}$
	1		2	3	4	5	6	7	8	9	10	11
3	1	3						2788.58676	1.5	-1.2	2788.6592	-0.0724
4	1	4						2810.36464		-4.3	2810.4385	-0.0738
5	0	5						2836.94792	2.3	-1.1	2837.0237	-0.0758
5	1	5						2836.94832		-4.3	2837.0230	-0.0747
6	0	6	2856.37390	2.7	3.5	2856.4456	-0.0717					
6	1	6	2856.37367	2.7	5.1	2856.4457	-0.0720					
7	0	7						2904.49539	0.8	2.6	2904.5741	-0.0787
7	1	7						2904.49539	0.8	2.5	2904.5741	-0.0787
8	0	8	2933.22301	0.3	0.8	2933.2989	-0.0759	2945.45095		-4.2	2945.5328	-0.0818
8	1	8	2933.22301	0.3	0.8	2933.2989	-0.0759	2945.45095		-4.2	2945.5328	-0.0818
9	0	9	2978.79857		0.3	2978.8763	-0.0777	2991.19191	0.7	-2.9	2991.2764	-0.0845
9	1	9	2978.79857		0.3	2978.8763	-0.0777	2991.19191	0.7	-2.9	2991.2764	-0.0845
10	1	10						3041.71424	2.3	2.2	3041.8014	-0.0872
10	0	10						3041.71424	2.3	2.2	3041.8014	-0.0872
11	0	11	3084.23457		0.3	3084.3167	-0.0821	3097.01276	0.4	-0.9	3097.1037	-0.0909
11	1	11	3084.23457		0.3	3084.3167	-0.0821	3097.01276	0.4	-0.9	3097.1037	-0.0909
12	0	12	3144.08770	0.4	1.1	3144.1723	-0.0846					
12	1	12	3144.08770	0.4	1.1	3144.1723	-0.0846					
13	0	13						3221.92336	9.0	0.2	3222.0222	-0.0988
13	1	13						3221.92336	9.0	0.2	3222.0222	-0.0988
14	1	14	3278.04224	0.2	-0.2	3278.1323	-0.0900	3291.52495	0.6	0.2	3291.6283	-0.1031
14	0	14	3278.04224	0.2	-0.2	3278.1323	-0.0900	3291.52495	0.6	0.2	3291.6283	-0.1031

Таблица 3.1.8 – Колебательно-вращательные значения энергий состояний (110) и (011) молекулы D₂³³S (в см⁻¹)^{a)}

a) Здесь Δ – экспериментальная неопределенность значения энергии в 10⁻⁴ см⁻¹; δ – разница, E^{exp} – E^{calc} также выражена в 10⁻⁴ см⁻¹. Когда Δ – отсутствует, это соответствует ситуации, при которой только одни переход был найден и данный переход не использовался в процедуре варьирования параметров.

^{b)} Значения в колонках 5 и 10 – колебательно-вращательные энергии, теоретически рассчитанные на основе спектроскопических параметров для D₂³³S; δ̃ (в см⁻¹) – разница между экспериментально и теоретически предсказанными значениями энергии.

лебательного состояния, начальные значения параметров вращательного и центробежного искажения были приняты в качестве средних значений соответствующих параметров молекул $D_2^{32}S$ и $D_2^{34}S$ из таблиц В.1 и В.4. Значения параметров резонансного взаимодействия были фиксированы на значениях соответствующих параметров $D_2^{32}S$ из таблицы В.2. Шесть различных параметров, полученных из подгонки (они показаны в таблице В.8, Приложение В) воспроизводят 30 значений верхней энергии с $d_{\rm rms} = 2,29 \times 10^{-4}$ см⁻¹. На рис. 3.1.5с показаны экспериментальные минус рассчитанные значения энергии для изотополога $D_2^{33}S$.

Интересно сравнить значения положений линий и колебательных энергий состояний (110) и (011) молекулы D₂³³S с соответствующими значениями, рассчитанными теоретически.

J	K_{a}	K_c	J' 1	K'_a	K'_{c}	$M = 32^{b)}$	$M = 34^{c)}$		M = 33	
								c ред. $^{d)}$	эксп. ^{е)}	$\tilde{\delta}$ f)
		1		2		3	4	5	6	7
						ν_2 -	$+ \nu_3$			
3	1	3	2	1	2	2771.2887	2766.5349	2768.9118	2768.8390	-0.073
4	1	4	3	1	3	2776.0364	2771.2602	2773.6482	2773.5747	-0.074
4	1	4	5	1	5	2727.0611	2722.4280	2724.7445	2724.6734	-0.071
5	0	5	4	0	4	2780.6324	2775.8360	2778.2342	2778.1607	-0.073
5	d	5	6	d	6	2721.8681	2717.2469	2719.5575	2719.4862	-0.071
7	d	7	6	d	6	2789.5237	2784.6930	2787.1084	2787.0334	-0.075
7	d	7	8	d	8	2711.2512	2706.6529	2708.9521	2708.8812	-0.071
8	d	8	7	d	7	2793.8470	2788.9985	2791.4228	2791.3486	-0.074
9	d	9	10	d	10	2700.3265	2695.7499	2698.0382	2697.9669	-0.071
10	d	10	9	d	9	2802.2435	2797.3589	2799.8012	2799.7253	-0.076
10	d	10	11	d	11	2694.7499	2690.1836	2692.4668	2692.3961	-0.071
13	d	13	12	d	12	2809.2650	2814.2057	2811.7354	2811.6602	-0.075
13	d	13	14	d	14	2673.0298	2677.5662	2675.2980	2675.2269	-0.071
14	d	14	13	d	13	2813.0646	2818.0226	2815.5436	2815.4667	-0.077
14	d	14	15	d	15	2671.6880	2667.1614	2669.4247	2669.3544	-0.070
						$ u_1$ -	$+ \nu_2$			
6	d	6	7	d	7	2704.4378	2700.2315	2702.3347	2702.2694	-0.065
6	d	6	5	d	5	2772.9559	2768.5470	2770.7515	2770.6833	-0.068
8	d	8	9	d	9	2693.3794	2689.2182	2691.2988	2691.2340	-0.065
8	d	8	7	d	7	2781.3983	2776.9761	2779.1872	2779.1188	-0.068
9	d	9	10	d	10	2687.7065	2683.5683	2685.6374	2685.5752	-0.062
9	d	9	8	d	8	2785.4661	2781.0390	2783.2526	2783.1843	-0.068
11	d	11	10	d	10	2793.2949	2788.8606	2791.0778	2791.0096	-0.068
12	d	12	11	d	11	2797.0559	2792.6197	2794.8378	2794.7696	-0.068
14	d	14	13	d	13	2804.2733	2799.8329	2802.0531	2801.9839	-0.069

Таблица 3.1.9 – Сравнение теоретически предсказанных и экспериментальных значений положений линий полос $\nu_1 + \nu_2$ и $\nu_2 + \nu_3$ молекулы $D_2^{33}S^{a)}$

^{a)} В Таблице 3.1.9 все значения даны в см⁻¹.

^{b)} Экспериментальное положение линий $D_2^{32}S$.

^{c)} Экспериментальное положение линий D₂³⁴S.

^{d)} Среднее значение положения линии, рассчитаноое из значений для молекул D₂³²S и D₂³⁴S.

^{e)} Экспериментальное положение линий D₂³³S.

 $f) \ \tilde{\delta} = \nu_{\text{эксп.}} - \nu_{\text{сред.}}$

В таблице 3.1.9 представлено сравнение теоретически предсказанных (столбец 5) и экспериментальных (столбец 6) значений положений линий полос $\nu_2 + \nu_3$ и $\nu_1 + \nu_2$ молекулы D_2^{33} S. В столбцах 5 и 10 таблицы 3.1.8 представлены предсказанные значения тех же колебательных энергий, значения которых были получены из анализа экспериментальных данных. Различия δ между значениями из столбцов 2 и 5 и 7 и 10 таблицы 3.1.8 показаны в столбцах 6 и 11. Из таблиц 3.1.8 и 3.1.9 видно, что, несмотря на наличие состояний с достаточно высокими значениями квантового числа J, значения δ не так уж и плохи. На рис. 3.1.8 приведены графики зависимости экспериментальных значений невозмущенных колебательных энергий (рис. 3.1.8, а), параметров вращения B (рис. 3.1.8, b) и C (рис. 3.1.8, c) колебательных состояний (110) и (011)в зависимости от массы ядра. Можно видеть хорошую линейную зависимость всех значений по массе ядра.

Рисунок 3.1.8 – Зависимость экспериментальных значений невозмущенных колебательных энергий (рис. 3.1.8, а), вращательных параметров В (рис. 3.1.8, b) и С (рис. 3.1.8, с) параметров колебательных состояний (110) и (011) в зависимости от массы ядра "S" молекул D₂^MS

Вывод. Был проведен расширенный анализ колебательно–вращательной структуры второй триады молекулы $D_2^{32}S$ путем определения 4227 переходов, принадлежащих трем ее полосам (число найденных переходов на 60 % выше по сравнению с аналогичной информацией, доступной в литературе). Найденные переходы использовались для определения верхних энергий и спектроскопических параметров эффективного гамильтониана. Полученные из подгонки 97 параметров воспроизводят исходные экспериментальные данные с $d_{\rm rms} = 1,97 \times 10^{-4}$ см⁻¹. Впервые 1215 переходов были определены для изотополога $D_2^{34}S$. Также были впервые определены параметры основного состояния и 56 переходов, принадлежащих полосам $\nu_1 + \nu_2$ и $\nu_2 + \nu_3$ молекулы $D_2^{33}S$. По результатам данного параграфа опубликованы 3 статьи [163] - [165].

Спектр	Разрешение /см ⁻¹	N o. сканов	Диапазон /см ⁻¹	Детектор	Свето- делитель	Опт. длина пути/м	Апертура /мм	Т /°С	Давление /Па	Калибр. газ газ
Ι	0.005	1620	3400 - 10400	InSb	CaF_2	24	1.15	23.8 ± 0.5	500	ocs
II	0.005	1160	3400 - 10400	InSb	CaF_2	182.4	1.15	23.2 ± 0.5	500	ocs
III	0.010	4000	3000 - 10000	InSb	CaF_2	163.2	1.5	20.1 ± 0.5	2000	ocs
IV	0.005	1220	3400 - 10400	InSb	CaF_2	4	1.15	23.6 ± 0.5	400	OCS

Таблица 3.2.1 – Экспериментальные данные инфракрасного спектра молекулы H₂S в диапазоне 3400 - 10400 см⁻¹.

3.2 Анализ спектров молекулы H₂S

Эксперимент. Четыре спектра сероводорода H_2S (от Merck / Sigma-Aldrich, заявленная чистота 99,5%) были записаны с помощью инфракрасного Фурье спектрометра Bruker IFS 125HR (прототип Zürich ZP2001) в лаборатории Технического университета города Брауншвейг. Зарегистрированная спектральная область составляла 3400–10400 см⁻¹, из которой в настоящем анализе был выделен диапазон 5600-6700 см⁻¹. В эксперименте удалось достигнуть высокого отношения сигнал/шум (которое было подтверждено большим числом сканирований в стабильном эксперименте), и таким образом получить пригодные для использования данные не только для изотопологов $H_2^{32}S$, $H_2^{34}S$, но и для менее распространенного изотополога $H_2^{33}S$.

Две оптические многолучевые ячейки Уайта, изготовленные из нержавеющей стали, использовались при давлении образца от 400 до 2000 Па. Меньшая ячейка с базовой длиной 1 м использовалась для достижения длины пути 4 и 24 м (спектр IV и I). Большая ячейка с длиной 2,4 м и максимальной длиной пути 200 м использовалась на 163,2 и 182,4 м (68 и 76 путей). Для регистрации спектров использовался источник излучения Atungsten I, окна CsI и KBr, светоделитель CaF₂, полупроводниковый детектор. В таблице 3.2.1 представлены экспериментальные детали. Номинальное разрешение составило 0,005 и 0,010 см⁻¹, что привело к инструментальной ширине линий в 0,0034 и 0,0068 см⁻¹ в комбинации с самоаподизацией Вохсаг.

Спектры пропускания были рассчитаны путем деления одноканальных спектров с высокой разрешающей способностью на фоновый спектр с более низким разрешением 0,1 см⁻¹, который был усреднен по 200 сканированиям. Для определения положения линии, поглощение должно быть не выше 0,7, чтобы избежать эффектов насыщения.

Температура контролировалась с помощью термометра Ahlborn Almemo 2590 с ис-

пользованием сопротивления РТ100 и поддерживалась во время записи спектров в диапазоне 20,1 ± 0,5° C (спектр III измерен зимой), а также 23,8 ± 0,5° C , 23,2 ± 0,5° C и 23,6 ± 0,5° C (спектры I , II и IV измеряли летом).

Рисунок 3.2.1 – Экспериментальный спектр I и III H₂S в области 5680–6670 см⁻¹

Для записи спектров использовалась калибровка с помощью OCS и H₂O.

Для анализа силы линии S использовался закон Бугера – Ламберта – Бера .

$$S = \frac{k_B T}{PL} A_{\text{Line}},\tag{3.2.1}$$

где

$$A_{\text{Line}} = \frac{1}{\lg(e)} \int \lg \frac{I_0(\nu)}{I(\nu)} d\nu.$$
(3.2.2)

Сила линии, таким образом, может быть получена из площади единичных линий поглощения A_{Line} , температуры T, давления P чистых газов (в нашем случае H₂S), и оптической длины пути L. Интенсивности линий были рассчитаны путем прямого интегрирования измеренного эффективного поглощения линии, которое может быть согласовано с профилем Фойгта или, в этой работе, с профилем Артмана-Тран.

Анализ интенсивностей. Детально спектр полосы 5 ν_2 молекулы H₂S показан в верхней части рисунка 3.2.2.

Чтобы дать представление об относительных интенсивностях линий H_2S в рассматриваемой области, на рис. 3.2.1 приведен обзор спектра H_2S в области 5680–6670 см⁻¹, где

Рисунок 3.2.2 – Экспериментальный спектр III H₂S в области 5650–5900 см⁻¹. В нижней части представлен смоделированный спектр

расположены шесть полос второй гексады H₂S. В спектре I полоса 5 ν_2 вообще не видна. Однако в значительно более сильном спектре III все три ветви полосы 5 ν_2 четко выражены.

Кривая на рис. 3.2.3 иллюстрирует небольшую часть спектра высокого разрешения, где присутствуют линии, принадлежащие к полосе 5 ν_2 .

Как видно из рис. 3.2.1, полоса 5 ν_2 не смешивается с другими полосами второй гексады и по этой причине может рассматриваться в хорошем приближении как изолированная полоса.

Экспериментальные интенсивности линий полосы $5\nu_2$ были определены по подгонке их форм к профилю Артмана-Трана (в данном случае Γ_0 , параметры Δ_2 , ν_{VC} профиля Артманна-Трана и значения линий менялись, положения линий ν_0 фиксировались на свои значения из [166]; параметр Доплера Γ_D рассчитывался стандартным способом). Инструментальная функция формы линии $S_I(\nu)$ была учтена в соответствии с прямоугольной функцией аподизации [79], [167]:

$$S_{I}(\nu) \simeq \left[\Omega_{\max} \frac{2\pi}{\nu_{0} \Omega_{\max}} \Pi\left(\frac{2\pi\nu}{\nu_{0} \Omega_{\max}}\right)\right] \otimes 2d_{\text{MOPD}} sinc(2\nu d_{\text{MOPD}}), \qquad (3.2.3)$$

Рисунок 3.2.3 – Небольшая часть экспериментального спектра высокого разрешения III (верхняя часть) и смоделированного спектра (нижняя часть) в области Q-ветви полосы 5 ν_2 молекулы H₂³²S. Линии, принадлежащие полосе 5 ν_2 , отмечены темными кружками

также из [79] известно, что

$$^{(\exp)}\tau(\widetilde{\nu}) = \tau(\widetilde{\nu}) \otimes S_I(\widetilde{\nu}). \tag{3.2.4}$$

В уравнениях (3.2.3)–(3.2.4) знак \otimes обозначает свертку; Ω_{max} - телесный угол; П внешняя прямоугольная функция аподизации с шириной ($\nu_0 \Omega_{\text{max}}$)/(2 π); и

$$sinc(\alpha) = \sin(\pi\alpha)/(\pi\alpha).$$
 (3.2.5)

Значение $\tau(\tilde{\nu})$ в уравнении (3.2.4):

$$\tau(\widetilde{\nu}) = S_{\nu}^{P} \cdot F(\widetilde{\nu} - \nu) \cdot PL \equiv S_{\nu}^{N} \cdot \frac{F(\widetilde{\nu} - \nu)}{k_{B}T}) \cdot PL, \qquad (3.2.6)$$

- фактор экспоненты в хорошо известном законе Бугера – Ламберта – Бера. С другой стороны, значение $\tau(\tilde{\nu})$, измеренное с помощью ИК-спектроскопии, получается как

$$^{(\exp)}\tau(\widetilde{\nu}) = \frac{1}{\lg e} \lg \left(\frac{I_0(\widetilde{\nu})}{I(\widetilde{\nu})} \right).$$
(3.2.7)

Был проведен специальный анализ влияния использования инструментальной функции формы линии (формула (3.2.3)) на значения силы линии S_{ν}^{N} и полуширины γ , полученные из подгонки экспериментальных данных. Были проанализированы десять экспериментальных не очень слабых одиночных линий из разных частей спектральной области 5660– 5900 см⁻¹. Было обнаружено, что для диапазона 5 ν_2 результаты анализа «с» и «без» использования инструментальной функции формы линии отличаются друг от друга не более чем на 0,5 % для интенсивности линии и не более 2 % для полуширин (см. таблицу 3.2.2).

В результате анализа были получены интенсивности $S_{\nu}^{N}(T = 293.25K)^{(1)}$ из 176 переходов полосы $5\nu_{2}$ молекулы $H_{2}^{32}S$ в соответствии с приведенным выше обсуждением. Значения получены с использованием профиля Артмана-Тран и показаны в столбце 4 таблицы С.1 (Приложение С, стр. 168) вместе с их экспериментальными неопределенностями (последние приведены в скобках).

В столбцах 6 и 9 таблицы С.1 представлены значения силы линий S_{ν}^{N} (HIT), пересчитанные до температуры 296 К, и коэффициенты Эйнштейна A_{21} , которые были получены из соответствующих значений столбца 4.

Пересчет из $S_{\nu}^{N}(T)$ (линии, экспериментально зарегистрированные при температуре $T = 293.25 \ K$) в $S_{\nu}^{N}(\text{HIT})$ осуществлялся через формулу:

$$S_{\nu}^{N}(T) = \frac{1}{I_{a}} \frac{Q_{tot}(T_{0})}{Q_{tot}(T)} \frac{e^{-c_{2}E_{1}/T}}{e^{-c_{2}E_{1}/T_{0}}} \frac{1 - e^{-c_{2}\nu_{0}/T}}{1 - e^{-c_{2}\nu_{0}/T_{0}}} S_{\nu}^{N}(HIT), \qquad (3.2.8)$$

где

 I_a – природное содержание изотополога (для молекулы $H_2^{32}S$ значение было взято как 0.949884 % из [168]);

 $Q_{tot}(T_0)$ – парциальная функция поглощающего газа при температуре T_0 = 296 K;

 $Q_{tot}(T)$ – парциальная функция поглощающего газа при температуре T=293.25 K;

 c_2 – вторая постоянная излучения, равная hc/k_B (где с - скорость света, а h - постоянная Планка);

 u_0 – волновое число перехода, $u_0 = E_2 - E_1$ (индексы 2 и 1 обозначают верхние и нижние состояния соответственно);

*E*₁ – нижний уровень энергии;

 $S_{\nu}^{N}(HIT)$ – интенсивность линий в формате HITRAN (то есть определенная при температуре $T_{0}=296~{
m K}$ и с учетом природного содержания изотополога).

Расчет коэффициентов Эйнштейна производился по хорошо известной формуле [168]:

$$A_{21} = \frac{8\pi c\nu_0^2 Q_{tot}(T_0) S_{\nu}^N(HIT)}{e^{-c_2 E_1/T_0} (1 - e^{-c_2 \nu_o/T_0}) I_a g_2},$$
(3.2.9)

⁽¹⁾В этом случае парциальное давление P_{part} H₂³²S было учтено в формуле (3.2.6) вместо давления P; присутствие 0,03% OCS и 0,045% H₂O в ячейке также было принято во внимание.

где g_2 – статистический вес верхнего уровня.

Статистический вес верхнего уровня g_2 определялся из следующих соображений. В общем случае статистический вес g (также называемый фактором вырождения) определяется на основе квантовой структуры уровня: $g = g_{\epsilon}g_{rot}$. Коэффициент g_{ϵ} представляет собой общее вырождение, обусловленное всеми не вращательными факторами, то есть произведением электронного статистического веса g_e и колебательного статистического веса g_v , а коэффициент g_{rot} включает все факторы вырождения, связанные с состоянием вращения.

Статистический вес g уровня (в нашем случае g_2 верхнего уровня) равен g_{rot} для переходов в HITRAN [168] и рассчитывется как:

$$g_2 = g_{rot} = (2J+1)g_s g_i, (3.2.10)$$

где g_i – статистический вес, значение которого не зависит от энергетического уровня ($g_i=1$ для молекулы $H_2^{32}S$ согласно Таблице 1 статьи [168]). В свою очередь, g_s – статистический вес, значение которого зависит от энергетического уровня. Для молекулы $H_2^{32}S$ статистический вес g_s может принимать значение 1 либо 3. Согласно параграфу 6.3.31 статьи [168], статистические веса g_s уровней вращения симметрии A и B равны 1 и 3 соответственно. Симметрия уровня вращения равна A, если $K_a + K_c + \nu_3$ четная, и B, если $K_a + K_c + \nu_3$ нечетная в основном электронном состоянии.

Чтобы проиллюстрировать качество анализа, на рис. 3.2.4 приведены примеры подгонки формы линии, в результате которой были определены интенсивности линий.

<u>Верхн.</u>		HP	Нижн.		u, эксп.	S_{ν}^{Na}	S_{ν}^{Nb}	O_{TH} . $c)$	γ^{a}	$\gamma^{b)}$	ratio d)	
J	K_{a}	K_c	J'	K'_a	K'_c	$_{\mathrm{cM}}$ – 1	$_{\rm cm}^{-1}/_{\rm mon.cm}^{-2}$	$_{\rm cm}^{-1}/_{\rm Mo.n.cm}^{-2}$	%	см ⁻¹	$_{\rm CM}$ $^{-1}$	%
	1			2		3	4	5	6	7	8	9
8	d	8	9	d	9	5701.0822	$6.971 \mathrm{E}{-26}$	6.976 E - 26	-0.0682	$5.2594 \mathrm{E}{-03}$	5.2748 ± 0.03	-0.2919
7	d	7	8	d	8	5713.3369	9.315 ± 26	9.286 E - 26	0.3133	3.9733 E-03	3.9186 E-03	1.3959
6	d	6	7	d	7	5725.0255	1.193 ± 25	1.189 E - 25	0.3465	3.9113 ± 0.03	3.8410 ± -03	1.8302
5	d	5	6	d	6	5736.1376	1.488 ± 25	1.493 ± 25	-0.3290	$4.0301 \mathrm{E}{-03}$	4.0828 ± 0.03	-1.2907
3	0	3	4	1	4	5756.5499	1.220 ± 25	1.219 ± 25	0.0453	4.1086 E-03	4.0885 E-03	0.4916
3	2	1	3	3	0	5802.6449	8.856 E - 26	$8.901 \mathrm{E} - 26$	-0.5027	4.5612 E-03	4.6458 ± -03	-1.8209
6	d	6	5	d	5	5857.6514	1.989 ± 25	1.990 E - 25	-0.0577	4.1949 ± 0.03	4.2070 E-03	-0.2876
5	3	2	4	2	3	5876.5849	9.143 ± 26	9.175 E - 26	-0.3490	$4.1871 \mathrm{E}{-03}$	4.2538 ± -03	-1.5680
8	d	7	7	d	6	5909.7799	8.680 ± 26	8.674 E - 26	0.0699	4.1585 E - 03	$4.1471 \mathrm{E}{-03}$	0.2748
9	d	8	8	d	7	5919.6705	6.164 ± -26	6.139 ± 26	0.4092	4.0454 ± 0.03	$4.0127 \! \pm \! \cdot \! 03$	0.8149

TT 200	T Z		F TI 320
Таолина З 2 2 –	Интенсивности и ширинь	і некоторых линии полосы	- 51/2 МОЛЕКУЛЫ Н°~ 8
raomina 0.2.2	initenentineerin n mitphild	i nekerepiik inninn neiteen	Ov Z monon juni 119 S

инструментальная функция формы линии не была учтена.

^{b)} Инструментальная функция формы линии была учтена.

c) Отношение $\frac{\left(S_{\nu}^{N}(\mathbf{a}) - S_{\nu}^{N}(\mathbf{b})\right)}{S_{\nu}^{N}(\mathbf{b}))} \times 100\%.$

 $^{d)}$ Отношение $\frac{(\gamma(\mathbf{a})-\gamma(\mathbf{b}))}{\gamma(\mathbf{b}))}\times 100\%;\,\gamma$ - полуширина линии.

Рисунок 3.2.4 – Экспериментальная форма линий переходов (5 d 5)–(4 d 4) и (6 d 6)–(5 d 5) полосы $5\nu_2$ молекулы $H_2^{32}S$.

Определение параметров эффективного дипольного момента. Интенсивности 176 переходов из столбца 4 таблицы С.1 (см. Приложение С, стр. 168) использовались в процедуре подгонки и позволили нам определить семь параметров эффективного дипольного момента (последние показаны в столбце 3 таблицы 3.2.3 вместе с их статистическими доверительными интервалами 1 σ , которые показаны в скобках). Полученный набор из семи параметров эффективного дипольного момента позволяет воспроизвести значения 154 начальных интенсивностей линий (176 переходов) ($J^{\text{max}} = 12$ и $K_a^{\text{max}} = 7$) с $d_{\text{rms}} = 3,4\%$. В этом случае значение d_{rms} было определено в соответствии с формулой

$$d_{\rm rms} = \left\{ \frac{1}{n} \sum_{i} \left(100 \times \frac{(\exp)S_{\nu_i}^N - (\operatorname{calc})S_{\nu_i}^N}{(\exp)S_{\nu_i}^N} \right)^2 \right\}^{1/2},$$
(3.2.11)

где *n* - количество интенсивностей линий, используемых в подгонке. Для иллюстрации качества результата, в столбце 5 таблицы С.1 (см. приложение С) представлены значения различий (в процентах)

$$\delta_{\nu}^{S} = 100 \times \left(\frac{(\exp)S_{\nu_{i}}^{N} - (\operatorname{calc})S_{\nu_{i}}^{N}}{(\exp)S_{\nu_{i}}^{N}}\right)$$
(3.2.12)

между экспериментальными интенсивностями линий и интенсивностями, рассчитанными с использованием параметров из таблицы 3.2.3. На рис. 3.2.5 показаны отклонения в результате подгонки параметров линий в зависимости от квантового числа J.

Рисунок 3.2.5 – Разница между экспериментальной и рассчитанной силой линий (в процентах) для полосы 5 ν_2 молекулы Н $^{32}_2$ S.

В нижних частях рис. 3.2.2 и 3.2.3 представлены смоделированные спектры, которые были построены на основе параметров эффективного гамильтониана из [166] и параметров эффективного дипольного момента из таблицы 3.2.3 этой работы. Видна очень хорошая корреляция между верхней и нижней частью рис. 3.2.2 и 3.2.3. Некоторые очень слабые линии, которые присутствуют в верхней части, но отсутствуют в нижней части рис. 3.2.3, принадлежат другим полосам второй гексады H₂S.

В качестве итога, был создан список переходов полосы 5 ν_2 молекулы H₂³²S, и результаты представлены в формате HITRAN в Приложении С. Также материалы, которые легли в основу данного параграфа, опубликованы в работе [170]. Необходимо отметить, что (несмотря на то, что только для части линий, указанных в приложении С, были определены значения экспериментальных линий), все линии, представленные в приложении С, отчетливо видны в экспериментальном спектре.

Оператор	Параметр	Значение
1	2	3
ik_{Zx}	$(v_2=5)\mu_{x1}/10^{-4}$	0.6530(17)
$\left\{k_{Zx}, J^2\right\}_+$	$(v_2=5)\mu_{x2}/10^{-7}$	0.312(24)
$\left\{k_{Zx}, J_z^2\right\}_+$	$^{(v_2=5)}\mu_{x3}/10^{-7}$	-0.445(72)
$\left\{ik_{Zy},J_{z} ight\}_{+}$	$(v_2=5)\mu_{x4}/10^{-6}$	-0.7808(91)
$\{k_{Zz},\{J_x,J_z\}_+\}$	$(v_2=5)\mu_{x6}/10^{-7}$	-0.404(57)
$\frac{1}{2} \left[\left\{ k_{Zx}, J_{xy}^2 \right\} - \left\{ ik_{Zy}, i\{J_x, J_y\}_+ \right\} \right]$	$(v_2=5)\mu_{x7}/10^{-7}$	0.478(34)
$\frac{1}{2} \left[\left\{ k_{Zx}, J_{xy}^2 \right\} + \left\{ ik_{Zy}, i\{J_x, J_y\}_+ \right\} \right]$	$(v_2=5)\mu_{x8}/10^{-7}$	0.248(44)

Таблица 3.2.3 – Ненулевые параметры эффективного дипольного момента полосы 5 ν_2 молекулы ${
m H}_2^{32}{
m S}$ (в Дебаях)^{*a*)*b*).}

^{а)} В таблице 3.2.3, $\{A, B\}_+ = AB + BA$,
и $J^2_{xy} = J^2_x - J^2_y$.

b) Значения в скобках – 1 отклонения.

Обсуждение результатов. Интересно сравнить результаты настоящего исследования с количественными результатами других авторов. На момент написания диссертационной работы в литературе имелось только два набора данных об интенсивностях полосы 5 ν_2 , и оба этих набора не свободны от недостатков. Речь идет о данных из спектроскопической базы данных HITRAN [98] и о результатах вариационных вычислений [171] – [172].

Коэффициенты Эйнштейна из [171] и соответствующие значения S_{ν}^{N} (HIT) показаны в столбцах 7 и 10 таблицы С.1 (см. приложение С). Видно, что значения в столбцах 7 и 10 значительно выше (от 1.3 до 2.0 раз; среднее значение составляет 1.75), чем наши экспериментальные данные (см. столбцы 6 и 9 таблицы С.1 (приложение С) и рис. 3.2.6). Следует обратить внимание, что порядок отклонения вариационно рассчитанных интенсивностей линий в полосе 5 ν_2 упоминался в [171], [174] самими авторами.

Рассмотрим данные из базы спектроскопической информации HITRAN 2016 года [98]: значения S_{ν}^{N} (HIT) и коэффициенты Эйнштейна из [98] воспроизводятся в столбцах 8 и 11 таблицы С.1 (приложение С). Как видно, различия между экспериментальными данными из столбца 6 и данными HITRAN из столбца 8 иногда довольно велики. Чтобы проиллюстрировать это, на рис. 3.2.6 представлены соотношения между нашими экспериментальными значениями интенсивности линий (в случае отсутствия экспериментального значения использовалось расчетное значение) и соответствующими значениями из HITRAN2016 (крас-

Рисунок 3.2.6 – Соотношения значений интенсивности линий $S_{\nu}^{N}_{(\text{HIT})}$ к S_{ν}^{N} (отмечено треугольникам) и $S_{\nu}^{N}_{(\text{ExoMol})}$ к S_{ν}^{N} (отмечено кружками) для линий полосы 5 ν_{2} молекулы $\mathrm{H}_{2}^{32}\mathrm{S}$. Значения S_{ν}^{N} - интенсивности, полученные нами в данном исследовании.

ные треугольники). Аналогичное сравнение наших данных и данных из [171],[174] также представлено на рис. 3.2.6 (синие кружки). Обратите внимание, что многие линии из нашего экспериментального спектра отсутствуют в [98]. Список этих линий представлен в таблице C.2. Значительное количество слабых линий в списке таблицы C.2 указывает на более высокую чувствительность настоящего эксперимента по сравнению с той, что использовалась в HITRAN. С другой стороны, в таблице C.2 представлено много сильных линий, которые отсутствуют в базе данных HITRAN2016. Также можно отметить, что несколько линий, которые указаны в [98] в виде отдельных линий, рассматриваются в наших экспериментальных данных как дублеты (они отмечены в столбце 1 таблицы C.2 звездами). Это говорит о более высоком разрешении в нашем эксперименте по сравнению с экспериментами, использованными в HITRAN2016. Также в HITRAN2016 имеется много линий, положения которых значительно смещены относительно реальных экспериментальных значений. В качестве иллюстрации в таблице 3.2.4 представлены некоторые линии, для которых такие сдвиги являются самыми большими (более 0,01 см⁻¹). Кроме того, как видно из таблицы 3.2.4, наши расчетные значения (колонка 3) соответствуют эксперименту (колонка 4) значительно лучше,

Be	рхн.		H	ажн.		$ u^{a)}$	u, эксп.	Инт. (296) ^{<i>a</i>)}	$\nu(\mathrm{HITRAN})^{b)}$	Инт. $(296)(HITRAN)^{b)}$	$\delta^{c)}_{ u}$
J	K_a	K_c	J'	K'_a	K_c'	${ m cm}^{-1}$	${ m cm}^{-1}$	$\mathrm{cm}^{-1}/\mathrm{mon.cm}^{-2}$	$_{\rm CM}^{-1}$	$\mathrm{cm}^{-1}/\mathrm{moj.cm}^{-2}$	cm^{-1}
	1			2		3	4	5	6	7	8
3	2	2	4	3	1	5723.16630	5723.16866	$0.748 ext{E-}26$	5723.18450	1.682 E- 26	-0.0158
9	2	7	10	3	8	5728.91682	5728.91417	1.288 E-26	5728.94294	1.003 E-26	-0.0288
9	2	7	9	3	6	5785.28091	5785.27886	0.992 E-26	5785.30738	1.278 E-26	-0.0285
5	2	3	5	3	2	5806.25727	5806.25749	$6.997 ext{E-26}$	5806.24000	10.690 E-26	0.0175
6	5	2	6	6	1	5830.94764	5830.94809	$1.564 ext{E-26}$	5830.95990	2.474 E- 26	-0.0118
4	1	3	4	0	4	5845.83566	5845.83536	$1.049 ext{E-26}$	5845.84940	1.730 E-26	-0.0140
5	5	0	4	4	1	5952.85056	5952.84926	$7.159 ext{E-26}$	5952.83320	3.924 E-26	0.0161
9	2	7	8	3	6	5956.47206	5956.47106	$2.766 ext{E-26}$	5956.49130	2.404 E-26	-0.0202
6	5	2	5	4	1	5970.18571	5970.18872	$4.053 ext{E}-26$	5970.20220	3.480 ± 26	-0.0135
6	5	2	5	2	3	6004.17983	6004.17933	$5.685 ext{E-27}$	6004.19720	$7.762 ext{E-} 27$	-0.0179

Таблица 3.2.4 – Список переходов из HITRAN2016, которые сдвинуты от соответствующих экспериментальных значений более чем на 0.01 см⁻¹.

^{а)}Результаты данной работы.

^{b)}Результаты, взятые из HITRAN2016.

 $^{c)}$ Здесь δ_{ν} – это разница между значениями в колонках 4 и б.

нежели значения из HITRAN2016.

Вывод. В качестве результатов данного параграфа можно выделить следующее. Был зарегистрирован FTIR-спектр высокого разрешения молекулы $H_2^{32}S$ в области, где локализуется колебательная полоса $5\nu_2$. Были определены интенсивности 176 переходов при помощи процедуры фиттинга в модели профиля Артмана-Тран. Был получен набор из семи параметров эффективного дипольного момента с использованием определенных экспериментальных интенсивностей линий. Проведено сравнение с известными данными из HITRAN и результатами вариационных расчетов. Показано значительно более высокое качество проделанного анализа полосы $5\nu_2$ молекулы $H_2^{32}S$ в настоящей работе по сравнению с данными, известными на текущий момент в научной литературе. Результаты приведены в приложении C в формате HITRAN.

Глава 4. Исследование спектров молекул высокой симметрии

4.1 Анализ спектров молекулы CH₃D

Результаты настоящего параграфа были получены в коллаборации с лабораторией LiPhy, г. Гренобль, Франция при поддержке Посольства Франции в РФ (грант "Остроградский") и являются частью большого проекта (см. [175], [176] и ссылки в них), посвященного детальному анализу ИК спектра поглощения метана в области 5850–7920 см⁻¹. В этот спектральный диапазон входят две важные области очень слабого поглощения – так называемые окна прозрачности метана – диапазоны вблизи 1,58 μ м [175] и 1,28 μ м [176], которые имеют особое значение для исследований планет-гигантов и Титана. Данный спектральный диапазон позволяет изучать атмосферы обозначенных астрономических объектов, проникая вглубь атмосферы вплоть до тропосферы и даже до поверхности. Кроме того, качество коэффициентов поглощения метана, используемых при выводе альбедо поверхности, важно во всех планетарных симуляциях и сильно влияет на конечные результаты.

В данной работе объектом исследования стал спектр молекулы CH₃D в области 1,58 μ м окна прозрачности метана. Одна из причин, по которой окно прозрачности 1,58 μ м важно для планетологии и, в частности, для Титана, заключается в том, что данный диапазон включает полосу $3\nu_2$ молекулы CH₃D и может использоваться для определения отношения D/H в метане для исследуемых атмосфер. Данная полоса использовалась для определения отношения D/H на Уране [177], Нептуне [178] и Титане [179] - [181]. Помимо полосы $3\nu_2$ в поглощение в этой области вносит вклад ряд более слабых полос CH₃D. Поскольку относительное содержание CH₃D/CH₄ значительно варьируется в атмосферах планет [178], отличие переходов CH₃D и CH₄ необходимо для удовлетворительного учета пропускания в окне 1,58 μ м путем масштабирования интенсивностей CH₃D в соответствии с содержанием данного изотополога в среде.

Для регистрации окна прозрачности метана 1,58 μ м как при комнатной температуре (RT), так и при 80 K был использован метод спектроскопии CW-Cavity Ring Down (CRDS) или иначе метод внутрирезонаторной лазерной спектроскопии. Исследования в этой области привели к формированию списков спектральных линий WKC (Wang-Kassi-Campargue) при 296 K (16 149 линий) [182] и 80 K (12 268 линий) [175] для метана в области 6165–6750 см⁻¹.

Как показано в работе [183], несмотря на очень малое содержание (около $5 \cdot 10^{-4}$ в образце), вклад CH₃D в поглощение существенен в широкой области спектра. При этом важно

отметить, что относительный вклад CH_3D гораздо более важен при 80 K, чем при комнатной температуре. Если при комнатной температуре он составляет в максимуме 25% от общего поглощения вблизи Q-ветви полосы $3\nu_2$ при 6430 см⁻¹ и в области наименьшей непрозрачности вблизи 6300 см⁻¹, то при 81K CH_3D фактически является основным поглотителем (порядка 75% от общего поглощения) в микроокне 6250–6350 см⁻¹ спектра. Повышение значимости относительного вклада CH_3D при низкой температуре связано с сильным уменьшением интенсивностей линий CH_4 при охлаждении. Действительно, остаточное поглощение CH_4 в рассматриваемом диапазоне обусловлено линиями с большим значением квантового числа J, возникающими из-за переходов R-ветви тетрадекады ниже 6300 см⁻¹ и от P-ветвей икосады выше 6600 см⁻¹. Эти линии становятся намного слабее при 81 K, приводя к спектральному интервалу 100 см⁻¹ около 6300 см⁻¹, где оставшееся поглощение в основном связано с CH_3D [183]. Другим следствием является то, что в спектре метана при комнатной температуре многие линии CH_3D , наблюдаемые при 81 K, не могут быть измерены, поскольку они полностью перекрываются гораздо более сильными линиями CH_4 .

Таким образом, целью настоящей работы является всесторонний анализ спектра молекулы CH₃D в диапазоне 6000-6550 см⁻¹, где CH₃D вносит большой вклад в поглощение метана. Для реализации поставленной цели решались следующие задачи: обработка и моделирование экспериментального спектра при помощи специальной программы, определение нижних уровней энергии для большинства линий при помощи метода "двух температур" , анализ группы наиболее сильных колебательно-вращательных полос, локализованных в исследуемом диапазоне.

Эксперимент. Высокочувствительные спектры поглощения молекулы CH₃D (чистота образцов около 98%) регистрировались методом дифференциальной абсорбционной спектроскопии в диапазоне 6099 - 6991 см⁻¹ (1,64 – 1,43 µм). Условия эксперимента представлены в таблице 4.1.1.

Таблица 4.1.1 – Экспериментальные данные инфракрасного спектра молекулы CH₃D в диапазоне 6099–6991 см⁻¹

N⁰	T, K	P, Topp	Длина пути, см
Ι	294	10	294
II	81	6	294

Экспериментальная установка подробно описана в работе [176]. Непрерывное покрытие спектрального диапазона было достигнуто с помощью серии из 37 оптоволоконных ди-

одных лазеров DFB (20 мВт). Каждый диодный лазер перекрывает диапазон около 35 см⁻¹, а результирующий диапазон содержит около 100 000 спектральных точек. Каждая точка спектра соответствует среднему значению нескольких сотен измерений. Эквивалентное поглощение шума, достигаемое для этих спектров, имеет порядок $\alpha_{min} = 5 \cdot 10^{-8}$ см⁻¹. Чтобы выполнить абсолютную спектральную калибровку обоих спектров, измеренные положения линий были статистически сопоставлены с точными положениями линий CH₃D, извлеченными из Фурье спектра (FTS), записанного в USTC-Hefei при комнатной температуре. Экспериментальные условия Фурье спектра: P = 20 Topp, l = 105 м, неаподизированное разрешение 0.015 см⁻¹. Фурье спектр FTS был откалиброван по положению линий H₂O, значения которых были взяты из базы данных HITRAN.

Моделирование спектра. Целью первого этапа исследования является моделирование экспериментального спектра I в диапазонах 6100-6200 и 6380-6530 см⁻¹. Часть работ по моделированию экспериментальных значений спектра I в диапазоне 6200-6394 см⁻¹ и спектра II в диапазоне 6100-6530 см⁻¹ была выполнена в 2011 г., результаты этого этапа представлены в справочной работе [183]. На рис. 4.1.1 показаны экспериментальные спектры, а также выделены два диапазона, которые не были рассмотрены в работе [183] и требуют обработки. На рисунке 4.1.1 верхняя часть соответствует спектру, снятому при комнатной температуре RT (I), а нижняя часть соответствует спектру, снятому при 81 K (II).

Рисунок 4.1.1 – Экспериментальные спектры I (верхняя часть) и II(нижняя часть).

Диапазон 6100-6200 см⁻¹ регистрировался с помощью 4-х диодов, поэтому при детальном рассмотрении спектра можно увидеть небольшие фрагменты 35 см⁻¹. Каждый из фрагментов соответствует определенному диоду (см. рис. 4.1.2.а). Диапазон 6380-6530 см⁻¹ регистрировался с помощью 6 диодов. Каждый из фрагментов соответствует определенному диоду (см. рис. 4.1.2.b).

Рисунок 4.1.2 – Экспериментальный спектр (I) поглощения CH₃D в диапазонах 6100-6200 ${\rm cm^{-1}}$ и 6380-6530 ${\rm cm^{-1}}$

На рис. 4.1.2 видно, что фрагменты перекрываются по волновым числам (подробнее см. табл. 4.1.2). Каждый из фрагментов рассматривался независимо от предыдущего в специальной интерактивной программе полилинейной аппроксимации [184]. Эта программа позволяет определять абсолютные интенсивности линий и затем моделировать экспериментальный спектр. Как известно, интенсивность линии колебательного перехода $S_{\nu 0}$ (см/молекула) с центром в точке v_0 связана с интегральным поглощением линии $I_{\nu 0}$ (см⁻²/молекула) формулой:

$$I_{\nu 0}(T) = \int_{line} \alpha_{\nu} l d\nu = \int_{line} ln \left[\frac{I_0(\nu)}{I(\nu)} \right] d\nu = S_{\nu 0}(T) N l, \qquad (4.1.1)$$

где $\frac{I_0(\nu)}{I(\nu)}$ - отношение падающей интенсивности к интенсивности после прохождения кюветы; l - длина пути поглощения (см); ν - волновое число (см⁻¹); α_{ν} – коэффициент поглощения (см⁻¹); N - концентрация молекул (молекула/см³), полученная из измеренного значения давления P = NkT.

Для каждой из этих спектральных областей предполагалось, что локальная базовая линия является квадратичной функцией волнового числа. Помимо локальной базовой линии, для каждого перехода определялись три параметра: центр линии, интегральное поглощение и полуширина на полувысоте (HWHM) лоренцевской компоненты. Для подгонки линий ис-

N	E_{min} ,	$E_{max},$	Доплеровское	№ линий	$E'_{min},$	$E'_{max},$
	cm ⁻¹	cm ⁻¹	уширение, $10^3 { m cm}^{-1}$		${}_{\rm CM}^{-1}$	см-1
1	6098	6132	9.128	691	6098	6132
2	6133	6167	9.181	676	6133	6167
3	6149	6182	9.204	780	6167	6182
4	6167	6201	9.232	809	6182	6201
5	6374	6409	9.542	776	6394	6409
6	6400	6430	9.576	924	6409	6430
7	6424	6455	9.612	792	6430	6454
8	6435	6471	9.633	931	6454	6471
9	6460	6496	9.670	781	6471	6496
10	6494	6530	9.721	907	6496	6530
Обг	цее число	линий				8067

Таблица 4.1.2 – Диапазоны волновых чисел для каждого экспериментального файла

пользовался профиль Фойгта. Полуширина на полувысоте (HWHM) гауссовой компоненты была зафиксирована на теоретическом значении, а коэффициент уширения давлением изменялся. В случае смешанных линий или линий с низким отношением сигнал/шум лоренцева HWHM также ограничивалась средним значением, полученным из соседних линий. Важно, что ширина линии DFB (1–5 МГц) намного меньше, чем доплеровское уширение (HWHM 150 МГц), и поэтому ею пренебрегают.

Следует отметить, что между 6132 и 6133 см⁻¹ имеется разрыв в 1 см⁻¹, а между 6201-6204 см⁻¹ - примерно 3 см⁻¹ (см. таблицу 4.1.2). В результате процедуры подгонки мы получили смоделированный спектр из 8067 обработанных линий (табл. 4.1.2). Полные списки линий для обоих восстанавливаемых диапазонов были получены путем объединения малых диапазонов, соответствующих различным лазерным диодам. В этой работе начало каждого нового диапазона было отрезано, а сращивание выполнялось по концу каждого предыдущего диапазона (см. табл. 4.1.2, последние два столбца). Окончательный набор смоделированных спектральных линий на основе экспериментальных данных показан в верхней части рис. 4.1.3. В нижней части рис. 4.1.3 приведено сравнение экспериментальных и смоделированных линий. Таким образом мы дополнили недостающий набор данных и получили два списка с переходами, зарегистрированными при разных температурах.

Маркировка линий, принадлежащих молекуле CH₄. Для корректного спектрального анализа из смоделированного спектра следует убрать (или отметить) все линии, принадлежащие основному изотопологу CH₄. Причем процедура маркировки линий, принадлежащих CH₄, должна быть проведена для обоих спектров I и II. Для этого были использованы данные о CH₄ из базы спектроскопической информации HITRAN. Однако мы

Рисунок 4.1.3 – Измеренный профиль линии в спектре (I) молекулы CH₃D в диапазонах 6100-6200 см⁻¹ и 6380-6530 см⁻¹

должны учесть соотношение концентрации CH_3D/CH_4 в образце. Для этого был проведен следующий анализ. Были выбраны линии, положения которых совпадают с точностью до 0,003 см⁻¹, после чего рассчитывалось отношение I_A/I_B (I_A -интенсивность линий CH_3D и I_B -интенсивность линий CH_4). На основе подготовленных данных был построен график (рис. 4.1.4). По оси х отложена интенсивность линии молекулы CH_4 (логарифмическая шкала), а по оси ординат - отношение I_A/I_B (логарифмическая шкала). Используя этот график, можно найти среднее соотношение концентрации CH_3D/CH_4 в образце. Для спектра I видно медленное изменение отношения I_A/I_B к интенсивностям линий CH_4 . Для оценки отношения CH_3D/CH_4 для в спектре I мы опирались на самые сильные линии, которые являются более надежными. Отношение CH_3D/CH_4 составляет 0,002 по левому графику и 0,0017 по правому графику.

Рисунок 4.1.4 – Зависимость отношения I_A/I_B (A-CH₃D, B-CH₄) от интенсивностей линий CH₄

После определения правильной концентрации CH₄ в образце, мы могли сопоставить списки спектральных линий молекул CH₃D и CH₄ и вручную пометить все линии CH₄ в нашем глобальном списке линий для обоих спектров I и II. Для спектра II найдено около 70 совпадений с линиями CH₄, для спектра I около 50 совпадений.

Метод "Двух температур". Для определения уровней энергии основного состояния использовался метод двух температур [175], который заключается в следующем. Сила линий пропорциональна постоянной Больцмана по следующему закону:

$$S_{\nu 0}(T) \propto \frac{exp(-E/k_B T)}{Z(T)},$$
 (4.1.2)

где Z(T) — статистическая сумма, а E — уровень энергии нижнего состояния. В нашем диапазоне температур колебательное возбуждение незначительно, и необходимо учитывать только вращательную статистическую сумму. Поскольку Z(T) пропорциональна $T^{3/2}$, эта зависимость приводит к простому выражению для отношения интенсивностей линий при двух температурах:

$$-\ln\left(\frac{S_{\nu 0}(T_1)}{S_{\nu 0}(T_2)}\right) = \frac{3}{2}\ln\left(\frac{T_1}{T_2}\right) - E\left[\frac{1}{k_B T_1} - \frac{1}{k_B T_2}\right].$$
(4.1.3)

Если спектр одного и того же вещества регистрируется при разных температурах, то можно сравнить экспериментальные интенсивности, принадлежащие переходам с одинаковыми энергиями, и, используя уравнение (4.1.3), определить энергию нижнего состояния.

Для определения энергии нижнего состояния использовались два набора экспериментальных данных, полученных при температурах $T_1 = 294$ К и $T_2 = 81$ К. С помощью специальной программы эти два набора данных сравнивались по значениям центров линий. Две линии считались соответствующими одному и тому же переходу, если разница между их центрами различалась менее чем на 0,003 см⁻¹. Таким методом удалось найти порядка 4500 совпадений пар линий.

Литературный обзор. Ранее Рей М., Никитин А.В., Тютерев В. в работе [185] представили вариационный расчет спектра молекулы CH₃D в диапазоне 0 – 6500 см⁻¹. Также исследуемый диапазон ранее анализировался и обсуждался в статьях [175], [186]-[188]. Наиболее интенсивной и, как следствие, наиболее изученной является полоса $3\nu_2$, которая изначально обсуждалась в [186],[187]. В работе [186] авторы проанализировали только положения линий CH₃D, а в работе [187] приводится информацию об интенсивностях и коэффициентах самоуширения линий, принадлежащих полосе $3\nu_2$, из спектров, зарегистрированных при T =293,5 К. Авторы работ [186] и [187] обращают внимание читателя на линии, принадлежащие так называемой "6425 Prime Band" полосе, природа происхождения которой не была определена. Всего к полосе "6425 Prime Band" отнесли около 30 переходов. В работе [188] авторы приводят информацию о положении линий, принадлежащих нескольким наиболее сильным полосам ($2\nu_4 E$, $\nu_2 + 2\nu_5 + \nu_6 E$, $\nu_2 + \nu_4 + \nu_6 A_1$, $3\nu_2 A_1$, $\nu_1 + \nu_2 + \nu_6 E$), расположенным в исследуемом диапазоне. Также работа [188] содержит информацию о центрах полос. Таким образом, основываясь на [188], можно заключить, что в области 6100—6530 см⁻¹ имеется около 30 колебательно-вращательных полос. Используя данные ab initio, предоставленные группой TheoReTS, мы смогли выбрать наиболее интенсивные полосы из всего возможного многообразия содержащихся в исследуемом диапазоне (таблица 4.1.3).

Таблица 4.1.3 – Наиболее интенсивные колебательно-вращательные полосы CH₃D в диапазоне 6100-6530 см⁻¹

	Из работы [188	;]	Ране	e
№	Полоса	Центр	J_{max}/K_{max}	<i>N</i> линий
1	$\nu_2 + 2\nu_5 + \nu_6 \ (E)$	6236.182	$6/5^{a,b}$	41
2	$\nu_1 + \nu_2 + \nu_6 (E)$	6298.488	$6/4^{a,b}$	72
3	$\nu_2 + \nu_4 + \nu_6 \ (A_1)$	6337.064	$7/4^{a,b}$	53
4	$\nu_2 + \nu_4 + \nu_6 \ (E)$	6347.815		
5	$3\nu_2 \ (A_1)$	6428.364	$13/6^{a,b,c}$	190
6	$\nu_1 + 3\nu_6 \ (A_1)$	6431.943	$10/0^{a,b,c}$	20
7	$\nu_1 + 3\nu_6 \ (E)$	6417.382		
8	$\nu_1 + \nu_2 + \nu_3 \ (A_1)$			
9	$\nu_2 + \nu_3 + \nu_4 \ (E)$			
Итс)г:			376

 $^{a)}$ Работа [188], $^{b)}$ Работа [175] , $^{c)}$ Работа [187].

Используя всю имеющуюся в литературе информацию, можно построить следующий график (см. рис. 4.1.5), где отмечены цветом все экспериментальные значения, которые были проанализированы ранее. Глядя на график, становится очевидно, что большая область исследуемого диапазона еще не была изучена.

Колебательно-вращательный анализ. Молекула CH₃D является молекулой типа симметричного волчка, группа симметрии которой изоморфна точечной группе симметрии C_{3v} . Молекула имеет девять колебательных мод, обладающих следующей симметрией: $q_l \in$ A_1 при l = 1, 2, 3 и q_m (q_{m1}, q_{m2}) $\in E(E_1, E_2)$ при m = 4, 5, 6. Так, полоса, обладающая симметрией A_1 - типа (или иначе параллельного типа), подчиняется следующим правилам отбора:

 $\Delta J = 0, \pm 1; \Delta K = 0; e \leftrightarrow e, a_1 \leftrightarrow a_2,$

с дополнительным ограничением, что $\Delta J \neq 0$, если K = 0. Здесь буквы a_1 , a_2 и e описывают симметрии колебательно-вращательных состояний. Полоса, обладающая симметрией E-типа (или иначе перпендикулярного типа), подчиняется следующим правилам отбора:

Рисунок 4.1.5 – Все ранее проанализированные линии согласно работе [175]. Синие точки соответствуют полосе $3\nu_2$ (A_1), оранжевые точки - "6425 prime band", зеленые точки - $2\nu_4$ (E), $\nu_2 + 2\nu_5 + \nu_6$ (E), $\nu_2 + \nu_4 + \nu_6$ (A_1), $\nu_1 + \nu_2 + \nu_6$ (E).

$$\Delta J = 0, \pm 1; \Delta K = \pm 1; e \leftrightarrow e, a_1 \leftrightarrow a_2.$$

В первую очередь был проведен анализ полосы $3\nu_2$ молекулы CH₃D, зарегистрированной при T=81 К. Используя данные, имеющиеся в базе данных HITRAN [92], и метод комбинационных разностей основного состояния мы смогли определить 6 новых линий, см. табл. 4.1.4. Основное состояние было взято из работы [189]. Помимо метода комбинационных разностей, для верификации найденных переходов мы использовали двухтемпературный метод. Нижние энергетические уровни, полученные двухтемпературным методом, также приведены в табл. 4.1.4 (последний столбец).

При выполнении анализа были замечены небольшие расхождения между данными из HITRAN (источник данных [187]) и настоящим анализом. Как результат анализа, мы также предлагаем коррекцию 5 переходов (табл. 4.1.5).

Отклонения интенсивности (табл. 4.1.5, столбец 6) рассчитаны по стандартной формуле для относительной ошибки:

$$\Delta I = \frac{I_{exp} - I_{HIT}}{I_{exp}} \cdot 100\%. \tag{4.1.4}$$

В таблице 4.1.5 в столбцах 1-2 показаны частоты и интенсивности перехода из HITRAN;

		Be	Верхнее		Них	кнее		
ν	E'	J	K		J'	K'	I (81 K)	$^{a)}E'$
cm^{-1}	cm^{-1}						см/мол.	cm^{-1}
6425.09420	175.16981	6	3		6	3	$7.809 ext{E-} 24$	168.36
6483.52340	229.40467	8	3		7	3	$1.780 ext{E-} 24$	237.51
6421.56600	291.36226	8	3		8	3	1.470 E-25	303.09
6351.89520	361.03262	8	3		9	3	$1.734\mathrm{E}{-}25$	376.77
6351.94730	361.03259	8	3		9	3	1.210E-24	321.61
6424.18280	238.96351	7	4		7	4	2.486 E- 24	235.46

Таблица 4.1.4 – Список переходов, отсутствующих в HITRAN

^{а)} Энергии нижних состояний, полученные двухтемпературным методом

						Верхнее		Нижнее	
u	I* (81 K)	u	I (81 K)	$\Delta \nu$	ΔI	J	K	J'	K'
${}_{\rm CM}^{-1}$	см/мол.	cm^{-1}	см/мол.	${ m cm}^{-1}$	%				
1	2	3	4	5	6	7		8	
6428.94986 ^a	4.755E-23 ^a	6428.95500^b	$2.354\mathrm{E}\text{-}23^{b}$	-0.00514	101.9	2	1	2	1
6421.45724^{a}	$7.022 ext{E-} 25^a$	6421.44880^b	$3.248\mathrm{E}\text{-}25^{b}$	0.00844	116.2	8	2	8	2
6426.44699^a	3.883E-23 ^a	6426.43900^{c}	2.217×23^c	0.00799	93.1	5	3	5	3
6423.47313^{a}	$2.443 \text{E-} 24^a$	6423.47930^b	$1.265\mathrm{E}\text{-}24^b$	-0.00617	91.7	7	3	7	3
6477.70798^{a}	1.887E-23 ^a	6477.70070^{b}	$9.844 \text{E-} 24^{b}$	0.00728	75.2	7	3	6	3

Таблица 4.1.5 – Ошибки в HITRAN и наши предложения

*) Интенсивности были взяты из HITRAN для T = 81К и разделены на естественное содержание CH₃D, ^{*a*}) Работа [187], ^{*b*}) Настоящая работа, ^{*c*}) Работа [183].

столбцы 2-3 показывают частоты и интенсивности перехода, которые мы предлагаем в качестве коррекции; столбец 5 указывает разницу между столбцами 1 и 3; в столбце 6 представлена разница в интенсивностях, см. уравнение (4.1.4); столбцы 7 и 8 показывают квантовые числа верхнего и нижнего состояний.

Как видно из столбца 5 таблицы 4.1.5, разница между значением из HITRAN и значением, полученным в данной работе, не превышает 0,01 см⁻¹, но остается значительной по меркам спектроскопии высокого разрешения. Те переходы, которые мы предлагаем использовать в качестве правильных данных, подтверждаются комбинационными разностями с двумя другими экспериментальными переходами с высокой точностью (0,0001-0,001 см⁻¹), а переходы, которые мы предлагаем исправить, имеют комбинационные разности с меньшей точностью (около 0,006 см⁻¹), что говорит о возможной ошибочной интерпретации данных.

Также при детальном анализе данных, соответствующих полосе $3\nu_2$ в HITRAN, возникли вопросы по некоторым другим линиям (см. табл. 4.1.6). В HITRAN эти линии отмечены как принадлежащие полосе $3\nu_2$ со ссылкой на [187]. Однако в первоисточнике [187] утверждается, что эти данные принадлежат какой-то другой полосе под названием "6425 Prime Band", происхождение которой неясно. Более того, указанные волновые числа в HITRAN соответствуют другим квантовым числам верхнего состояния (см. [187]).

ν	E'	I (81 K)	Значение ^а	Значение ^{b,c}
$_{\rm CM}^{-1}$	cm^{-1}	см/мол.		
6439.465560	0.0000	$7.105\mathrm{E}\text{-}27$	$\mathrm{Q}~(0,0)$	R(0,0)
6446.728310	7.7602	$1.284\mathrm{E} extrm{-}26$	Q(1,0)	R(1,0)
6416.184720	23.2793	$8.890\mathrm{E}\text{-}27$	$\mathrm{Q}~(2,0)$	P(2,0)
6453.705160	23.2793	$1.531\mathrm{E} ext{-}26$	$\mathrm{Q}~(2,0)$	R(2,0)
6460.381610	46.5548	$1.391\mathrm{E}\text{-}26$	$\mathrm{Q}~(3,0)$	R(3,0)
6407.933800	46.5548	$9.175\mathrm{E}\text{-}27$	$\mathrm{Q}~(3,0)$	P(3,0)
6466.770240	77.5829	$1.122\mathrm{E} ext{}26$	Q(4,0)	R(4,0)
6399.401590	77.5829	$7.346\mathrm{E}\text{-}27$	Q(4,0)	P (4,0)
6472.903120	116.3586	$7.472\mathrm{E}\text{-}27$	$\mathrm{Q}~(5,0)$	R(5,0)
6478.810680	162.8756	$4.452\mathrm{E}\text{-}27$	Q(6,0)	R(6,0)
6484.521860	217.1263	$1.970\mathrm{E}\text{-}27$	$_{ m Q}~(7,0)$	R(7,0)
6490.072440	279.1019	$7.325\mathrm{E} ext{}28$	Q(8,0)	R(8,0)
6494.483710	348.7925	$2.165 ext{E-28}$	$Q_{(9,0)}$	R (9,0)
6471.328520	121.8268	$3.522\mathrm{E}\text{-}27$	Q(5,2)	R(5,2)
6483.192110	222.5815	$7.971\mathrm{E}{-28}$	Q(7,2)	R(7,2)
6489.126150	284.5492	$4.727\mathrm{E}\text{-}28$	Q(8,2)	R(8,2)
6460.216480	58.8820	$4.388\mathrm{E}\text{-}27$	$Q_{(3,3)}$	R(3,3)
6429.842960	58.8820	$2.553 ext{E-26}$	${ m Q}~(3,3)$	P(3,3)
6398.833090	89.9010	$5.801\mathrm{E}{-}27$	Q(4,3)	P (4,3)

Таблица 4.1.6 – Неправильные обозначения в HITRAN

a) Отмечено HITRAN, b) Отмечено в исх. [187], c) Отмечено в исх. [183], дополнительный материал.

Для колебательно-вращательного анализа "6425 Prime Band"и других менее интенсивных полос использовалось три подхода: метод комбинационных разностей основного состояния, двухтемпературный метод и данные ab initio. Путем сравнения квантовых чисел и положений линий из, так называемого, "6425 Prime Band"(см. [187]) и предсказаний ab initio (см. [185]) мы обнаружили, что переходы с K=0 из работы [187] относятся к полосе $\nu_1 + 3\nu_6$ (симметрия A_1).

Продолжая анализ полосы $\nu_1 + 3\nu_6$ (A_1), удалось найти порядка 50 новых переходов, см. таблицу D.1, приложение D. Переход 1 0 -> 0 0 первоначально не был подтвержден двухтемпературным методом, но мы заметили, что такая же частота соответствует переходу 7 4 -> 7 4 полосы $3\nu_2$. Опираясь на расчет интенсивности ab initio, мы оценили примерный вклад в общую интенсивность каждого из двух переходов и снова применили двухтемпературный метод. Эмпирическое значение энергии нижнего уровня с учетом каждого вклада выглядит идеально. Тот же подход мы применили и для других смешанных линий. Две полосы $3\nu_2$ и $\nu_1 + 3\nu_6$ (A_1) расположены близко друг к другу и, как следствие, имеют сильное взаимодействие между собой. Это взаимодействие видно на рис. 4.1.6, где ось x соответствует квантовому числу J, а ось y соответствует приведенному значению верхнего энергетического уровня (значение верхнего уровня энергии уменьшили на величину (A + B)/2J(J+1), для удобства чтения графика).

Рисунок 4.1.6 – Взаимодействие между полосами $3\nu_2$ и $\nu_1 + 3\nu_6$ (A_1) молекулы CH₃D

Опираясь на те же самые три подхода, удалось осуществить анализ других полос, расположенных в исследуемом диапазоне. Основным методом анализа являлся метод комбинационных разностей основного состояния, для привязки к полосе использовались данные ab initio, а для верификации проведенного анализа использовался двухтемпературный метод. Таким образом, был проведен расширенный анализ 5 полос (с указанием положений линий и интенсивностей). Кроме того 1 из этих полос ($\nu_2 + \nu_4 + \nu_6 E$) была проанализирована впервые (рис. 4.1.7). Статистическая информация представлена в таблице 4.1.7.

Результат анализа 6 колебательно-вращательных полос (включая 3 ν_2) представлен на рис. 4.1.7.

Выводы. Интересно было провести сравнение между экспериментальными данными и данными ab initio pacчетов (рис. 4.1.8.a, рис. 4.1.8.b). Наибольшая разница между значениями положений линий (рис. 4.1.8.a) характерна для полосы $3\nu_2$, в то время как остальные полосы довольно близки к предсказанию. Некоторые сильные разногласия объясняются

Ранее В данной работе Полоса Центр Jmax/Kmax J_{max}/K_{max} N⁰ *N* линий N линий $6/5^{a,b}$ 1 $\nu_2 + 2\nu_5 + \nu_6 (E)$ 6236.182 419/6319 $6/4^{a,b}$ $\mathbf{2}$ $\nu_1 + \nu_2 + \nu_6 (E)$ 6298.488 729/7203 $\nu_2 + \nu_4 + \nu_6 \ (A_1)$ $7/4^{a,b}$ 3 6337.0645310/8152 $\nu_2 + \nu_4 + \nu_6 \ (E)$ 6347.815 10/62124 $13 / 6^{a,b,c}$ $3\nu_2 (A_1)$ 6428.36419013/61965 $10/0^{a,b,c}$ $\nu_1 + 3\nu_6 (A_1)$ $6\,431.943$ 2010/680 6 3761162Итог:

Таблица 4.1.7 – Сравнение результатов анализа из данной работы и имеющихся в литературе информации о колебательно-вращательных полосах CH₃D в диапазоне 6100-6530 ⁻¹

^{a)} Работа [188], ^{b)} Работа [175], ^{c)} Работа [187].

Рисунок 4.1.7 – Результат анализа колебательно-вращательных полос молекулы CH₃D в диапазоне 6100-6530 см $^{-1}$

перестановками колебательных квантовых чисел. Отношения нтенсивностей (рис. 4.1.8.b) флуктуируют около единицы, независимо от диапазона, хотя встречаются и сильные отклонения.

На рис. 4.1.9 представлен полный список экспериментальных линий и тех линий, которые остались в спектре, если удалить из него все найденные переходы и линии, принадлежащие молекуле ¹²CH₄. Следует также отметить, что в этой области до сих пор не были

Рисунок 4.1.8 – а) Зависимость отношения $I_{abinitio}/I_{exp}$ от экспериментальной интенсивности; b) Разница между экспериментальными и ab initio значениями в зависимости от энергии верхнего уровня

проинтерпретированы некоторые полосы, а наиболее интенсивные остаточные линии, вероятно, принадлежат изотопологу ¹³CH₄.

Рисунок 4.1.9 – Сравнение исходных экспериментальных данных (верхняя часть) с данными после удаления всех проинтерпретированных линий, включая линии, принадлежащие молекуле ¹²CH₄ (нижняя часть). На рисунке представлен спектр II

Итак, если подвести итоги данного исследования, то можно заключить:

101

- Был смоделирован и составлен список линий по формату HITRAN, состоящий из порядка 8000 линий, с указанием положений и абсолютных интенсивностей;
- Были оценены порядка 4000 эмпирических уровней энергий нижних состояний методом двух температур;
- Исследованы 6 колебательно-вращательных полос в диапазоне 6000-6900 см⁻¹ молекулы CH₃D с использованием спектра II;
- Определено порядка 800 новых переходов в исследуемом диапазоне (как положений линий, так и интенсивностей);
- Впервые исследована полоса $\nu_2 + \nu_4 + \nu_6 E$;

Результаты, которые легли в основу данного параграфа, были представлены на двух международных конференциях [190] - [191].

4.2 Анализ спектров молекул $^{M}SiD_{4}$ (M=29, 30)

В природе существует три вида изотопологов дейтерированного силана с массовыми числами 28, 29 и 30, натуральная концентрация которых равна 92,23 %, 4,68 % и 3,09 % соответственно. В данной главе будет представлен анализ положений и интенсивностей линий Фурье-спектров высокого разрешения для ²⁹SiD₄ и ³⁰SiD₄ в области локализации четырех фундаментальных полос ν_2/ν_4 (550–800 см⁻¹) и ν_1/ν_3 (1480–1700 см⁻¹).

Эксперимент. Для количественного анализа данных использовалось 9 спектров высокого разрешения SiD₄, зарегистрированных в ИК-лаборатории г. Брауншвейг (Германия) в спектральном диапазоне 350–4000 см⁻¹. Для регистрации спектров использовались два ИК спектрометра Bruker с Фурье-преобразованием высокого разрешения HR IFS120 и HR IFS125 в сочетании с различными оптическими ячейками из нержавеющей стали и высокопроизводительным детектором (Ge:Cu) с жидкостным охлаждением гелием. Экспериментальная информация представлена в таблице 4.2.1

Теоретическая информация. Обе молекулы ²⁹SiD₄ и ³⁰SiD₄ относятся к молекулам типа сферического волчка, группа симметрии которых изоморфна точечной группе симметрии T_d. их девять колебательных координат распределены между четырьмя колебательными модами: одной невырожденной (q_1, A_1), одной дважды вырожденной (q_2, E) и двумя трижды вырожденными (q_3 и q_4, F_2). Обычно в молекулах такого типа колебательно-вращательные состояния делятся на группы (полиады) более или менее изолированных состояний, которые

Спектр	Разрешение /см ⁻¹	Диапазон /см ⁻¹	Опт. длина пути /м	Диафрагма /мм	Температура /°С	Давление /Па	Калибр. газ
I	0.00096	350 - 900	4	1.3	24 ± 0.5	0.9	CO_2
II	0.0016	350 - 900	4	1.7	24 ± 0.5	1	CO_2
III	0.0016	350 - 900	4	1.7	24 ± 0.5	30	CO_2
IV	0.0016	350 - 900	8	1.7	24 ± 0.5	150	CO_2
V	0.0021	580 - 1210	4	1.5	25 ± 1.0	60	CO_2
VI	0.0021	580 - 1210	24	1.7	25 ± 1.0	443	CO_2
VII	0.0025	700 - 2100	0.23	1.5	25 ± 0.5	80	H_2O
VIII	0.0020	1060 - 4000	0.23	1.15	24 ± 0.5	400	H ₂ O
IX	0.0021	1060 - 2050	4	1.15	25 ± 1	300	H ₂ O

Таблица 4.2.1 – Экспериментальная информация о спектрах, зарегистрированных в области 350 - 4000 см⁻¹ молекулы SiD₄

взаимодействуют между собой внутри полиады. Для молекулы CH₄ (наиболее известная молекула типа сферического волчка) такими полиадами являются Монада (основное колебательное состояние), Диада (колебательные состояния (0100) и (0001)), Пентада ((1000), (0010), (0200), (0101) и (0002) колебательные состояния) и др. (см., например, ссылки [194]-[196]). Для молекул SiH₄/SiD₄ состояния (1000) и (0010) также объединяются в диаду. При этом два набора состояний Пентады, ((1000)/(0010) и (0200)/(0101)/(0002), можно рассматривать как отдельные полиады с сильными взаимодействиями внутри обеих субполиад (см., например, [197]-[198]). По этой причине анализ фундаментальных полос с высоким разрешением молекул ²⁹SiD₄ и ³⁰SiD₄, проведенный в настоящей работе, может быть выполнен корректно только в рамках модели, рассматривающей резонансные взаимодействия между колебательными состояниями (0100, E) и (0001, F₂) и между колебательными состояниями $(1000, A_1)$ и $(0010, F_2)$. Кроме того, высокая симметрия молекулы силана требует использования специального математического аппарата (теории неприводимых тензорных множеств, см., например, [199] - [202]) для описания ее колебательно-вращательных спектров. Различные аспекты применения этого формализма к молекулам XY₄ (T_d-симметрия) неоднократно обсуждались в спектроскопической литературе (см., например, [203] – [206]). Опираясь на эти работы, можно утверждать, что гамильтониан, учитывающий T_d-симметрию молекулы и наличие резонанса взаимодействий в полиадах $u_2/
u_4$ и $u_1/
u_3$, можно использовать в следующем виде: [206]-[208]:

$$H^{vib.-rot.} = \sum_{v\gamma,v'\gamma'} \sum_{n\Gamma} [(|v\gamma\rangle \otimes \langle v'\gamma'|)^{n\Gamma} \otimes H^{n\Gamma}_{v\gamma,v'\gamma'}]^{A_1}$$

$$\equiv \sum_{v\gamma,v'\gamma'} \sum_{n\Gamma} \sum_{\Omega K} [(|v\gamma\rangle \otimes \langle v'\gamma'|)^{n\Gamma} \otimes R^{\Omega(K,n\Gamma)}]^{A_1} Y^{\Omega(K,n\Gamma)}_{v\gamma,v'\gamma'}, \qquad (4.2.1)$$

где $|v\gamma\rangle$ – симметризованные колебательные функции, γ – симметрии этих функций; $R_{\sigma}^{\Omega(K,n\Gamma)}$ – симметризованные вращательные операторы, и Ω – полная степень операторов вращения J_{α} ($\alpha = x, y, z$) в операторах R; K – ранг этого оператора, Γ – симметрия в T_d точечной группе симметрии, и n различает возможные разные операторы $R_{\sigma}^{\Omega(K,n\Gamma)}$ имеющие одинаковые значения Ω , K и Γ . Знак \otimes обозначает тензорное произведение, а значения $Y_{v\gamma,v'\gamma'}^{\Omega(K,n\Gamma)}$ различные типы спектроскопических параметров.

Анализ спектров изотополога ³⁰SiD₄. Обзорный спектр I в области 580–780 см⁻¹ показан в верхней части рис. 4.2.1 (левая часть). Аналогичный обзорный спектр VII в области 1500 - 1700 см⁻¹ можно увидеть в верхней части рис. 4.2.1 (правая часть). На рис. 4.2.1 (правая часть) видны как четко выраженные три (P-, Q- и R-) ветви полосы ν_3 ²⁸SiD₄, так и более слабые (но, тем не менее, тоже отчетливые), P- и R- ветви полосы ν_3 изотопологов ²⁹SiD₄ и ³⁰SiD₄. Линии ²⁹SiD₄ и ³⁰SiD₄ не видны в экспериментальном спектре на рис. 4.2.1, так как спектр ²⁸SiD₄ значительно более плотный в области 580 - 780 см⁻¹, чем в области 1500 - 1700 см⁻¹, и слабые линии ²⁹SiD₄ и ³⁰SiD₄ перекрываются более сильными линиями ²⁸SiD₄. В верхней части рис. 4.2.2–4.2.3 показаны небольшие фрагменты спектров высокого разрешения. На рис. 4.2.2 видны линии, принадлежащие ²⁹SiD₄ и ³⁰SiD. ₄. Неотмеченные линии относятся, вероятно, к «горячим» полосам. На рис. 4.2.3 представлен небольшой фрагмент спектра высокого разрешения VII с отмеченными эквивалентными кластерами, принадлежащими всем трем изотопологам силана. Видны характерные сдвиги таких кластеров при переходах от ²⁸SiD₄ к ³⁰SiD₄ разновидности силана.

Поскольку SiD₄ является молекулой типа сферического волчка симметрии T_d -типа, при поглощении симметрией молекулы допускаются только переходы из основных колебательных состояний в колебательные состояния F_2 -симметрии. По этой причине полосы ν_4 и ν_3 являются разрешенными, а линии, принадлежащие полосам ν_2 и ν_1 , могут появляться в поглощении только из-за резонансного взаимодействия между ν_4 и ν_2 полосами или ν_3 и ν_1 . Что касается полос ν_4 и ν_2 , то резонансное взаимодействие типа Кориолиса между этими полосами достаточно сильное, так что многочисленные переходы, принадлежащие полосе ν_2 , видны даже для изотопологов ²⁹SiD₄ и ³⁰SiD₄, хотя их концентрация достаточно

Рисунок 4.2.1 – Верхний график: экспериментальный спектр, где присутствуют линии все изотопологов силана ²⁸SiD₄, ²⁹SiD₄ и ³⁰SiD₄; Нижние графики: смоделированный спектр. Спектры представлены в двух различных диапазонах

мала. С другой стороны, кориолисово взаимодействие между полосами ν_3 и ν_1 очень слабое, и расстояние между центрами полос ν_3 и ν_1 достаточно велико. По этой причине перенос интенсивности из полосы ν_3 в полосу ν_1 незначителен, и мы не смогли надежно определить переходы, принадлежащие полосе ν_1 .

Анализ переходов производился совместно с подбором параметров эффективного гамильтониана. В качестве первого шага анализа рассматривался изотополог ³⁰SiD₄. Начальные значения эффективных параметров для этого изотополога приняты равными значениям соответствующих параметров изотополога ²⁸SiD₄ из работ [55] и [56] (см. в столбце 4 таблицы Е.1 Приложение Е). В результате анализа были определены 2832 перехода со значениями квантовых чисел $J^{max} = 31$, 31 и 34 для полос ν_2 , ν_4 и ν_3 молекулы ³⁰SiD₄ (см. также статистическую информацию в табл. 4.2.2). На этой основе определены 2040 колебательновращательных уровней энергий состояний (0100, E), (0001, F_2) и (0010, F_2) молекулы ³⁰SiD₄. Полный список найденных переходов представлен в работе [214].

Значения 2040 энергетических уровней использовались затем в процедуре определе-

105

Рисунок 4.2.2 – Небольшая часть экспериментального спектра высокого разрешения I в области *R*-ветви полосы ν_4 . В нижней части рисунка показан смоделированный спектр ²⁸SiD₄, ²⁹SiD₄ и ³⁰SiD₄ в этой области. Переходы, принадлежащие ²⁸SiD₄, отмечены темными кружками. Линии изотополога ²⁹SiD₄ отмечены темными квадратами, а темными треугольниками — линии изотопа ³⁰SiD₄. Неопределенные переходы, которые можно

увидеть на рисунке, относятся к «горячим» переходам

ния параметров эффективного гамильтониана (4.2.1). Результаты подгонки представлены в столбце 6 таблицы Е.1 Приложение Е вместе с их статистическими доверительными интервалами 1 σ (последние приведены в скобках). Параметры в табл. Е.1 Приложение Е, приведенные без скобок, были ограничены соответствующим значениям параметров молекулы ²⁸SiD₄ из [192]–[193]. Корректность полученных результатов подтверждается тем, что 22 параметра, полученные в результате подгонки, воспроизводят 2832 исходных положения экспериментальных линий с $d_{rms} = 2, 67 \times 10^{-4}$ см⁻¹. В качестве дополнительного подтверждения кореектности полученных результатов фрагменты 4.2.4.с и 4.2.4.d на рис. 4.2.4 показывают статистику подгонки для исследуемых полос.

Анализ спектров изотополога ${}^{29}SiD_4$. Изотополог ${}^{29}SiD_4$ находится в образце в количестве 4,68 %. Это почти такое же содержание, как и изотополога ${}^{30}SiD_4$ с 3,09 % в природной смеси силановых частиц. По этой причине интенсивности линий ${}^{29}SiD_4$ несколько

Рисунок 4.2.3 – Небольшая часть экспериментального спектра высокого разрешения VII в области R-ветви полосы ν_3 В нижней части рисунка показан смоделированный спектр ${}^{28}\text{SiD}_4$, ${}^{29}\text{SiD}_4$ и ${}^{30}\text{SiD}_4$ в этой области. Видны сдвиги кластеров при переходе от ${}^{28}\text{SiD}_4$ (самые сильные линии) к ${}^{29}\text{SiD}_4$ и ${}^{30}\text{SiD}_4$. Переходы, принадлежащие кластерам R(1), R(2),

R(3), R(4) и R(5), отмечены светлыми звездочками, квадратами, треугольниками, кружками, и ромбами соответственно. Многочисленные неопознанные переходы, которые можно увидеть на рисунке, относятся к «горячим» переходам или, возможно, к полосе ν₁

выше соответствующих интенсивностей линий изотополога ³⁰SiD₄. Анализ положений линий молекулы ²⁹SiD₄ производился по той же схеме, что и для ³⁰SiD₄. В соответствии с общими положениями теории изотопического замещения (см. ссылки [104], [209]) можно ожидать, что значения спектроскопических параметров молекуль ²⁹SiD₄ должны быть близки к полусумме значений соответствующих параметров молекул ²⁸SiD₄ и ³⁰SiD₄. Начальные значения всех спектроскопических параметров ²⁹SiD₄ выбраны в соответствии с этим правилом. В результате анализа были определены 3369 переходов с квантовыми числами $J^{max} = 31, 31$ и 35 для полос ν_2 , ν_4 и ν_3 молекул ²⁹SiD₄ (см. также статистическую информацию в таблице 4.2.2). На этой основе определены 2252 колебательно-вращательных уровней энергий состояний (0001, F_2), (0100, E) и (0010, F_2) молекулы ²⁹SiD₄. Полный список найденных переходов

Рисунок 4.2.4 – Эксперимент - расчет положений и силы линий, а также статистика для полос ν_2 , ν_4 и ν_3 для молекул $^{29}SiD_4$ и $^{30}SiD_4$

представлен в работе [214].

Значения 2252 энергетических уровней использовались затем в процедуре определения параметров эффективного гамильтониана, уравнение (4.2.1). Результаты подгонки представлены в столбце 5 таблицы Е.1 Приложение Е вместе с их статистическими доверительными интервалами 1 σ (последние приведены в скобках). Как и ранее, параметры, показанные без круглых скобок, не менялись и были ограничены соответствующими значениями, как обсуждалось двумя абзацами ранее. Из сравнения значений одноименных параметров в столбцах 4–6 видно, что полученные результаты полностью удовлетворяют упомянутому выше утверждению теории изотопического замещения о практически линейной зависимости любого спектроскопического параметра от массы M вещества ^MSi.

Полученные в результате подгонки 22 параметра, воспроизводят 3369 начальных экспериментальных положений линий с $d_{rms} = 2,34 \times 10^{-4}$ см⁻¹. Фрагменты 4.2.4.a и 4.2.4.b рис. 4.2.4 показывают статистику для исследованных полос ²⁹SiD₄.

Анализ интенсивностей. Для анализа интенсивностей использовались спектры I и VII (см. табл. 4.2.1). Из этих двух экспериментальных спектров для анализа были выбра-

108
Молекула	Полоса	Центр/см ⁻¹	J^{max}	$N_t^{a)}$	$N_l^{a)}$	$m_1{}^{b)}$	$m_2{}^{b)}$	$m_3{}^{b)}$	$\mathrm{d}_{rms}/10^{-4}~\mathrm{cm}^{-1}$
29SiD ($u_0(E)$	689 88679	31	840	541	77.0	16.3	6.7	2.20
$^{29}SiD_4$	$\nu_2(E)$ $\nu_4(F_2)$	672.93384	31	1641	883	78.5	16.2	5.3	2.20 2.10
$^{29}\mathrm{SiD}_4$	$\nu_3(F_2)$	1596.21377	35	888	828	64.6	22.6	12.8	2.91
20	()								
$^{30}SiD_4$	$\nu_2(E)$	689.89950	31	638	429	74.3	18.2	7.5	2.36
$^{30}\mathrm{SiD}_4$	$\nu_4(F_2)$	671.43227	31	1356	834	71.0	20.4	8.6	2.47
$^{30}\mathrm{SiD}_4$	$\nu_3(F_2)$	1594.10591	34	838	777	61.2	22.0	16.8	3.24

Таблица 4.2.2 – Статистическая информация для полос ν_2 , ν_4 и ν_3 молекул ²⁹SiD₄ и ³⁰SiD₄.

^{a)} N_t - количество найденных переходов, N_l - количество определенных уровней энергии.

^{b)} Здесь $m_i = n_i/N_t \times 100 \%$ $(i = 1, 2, 3); n_1, n_2,$ и $n_3 -$ число переходов, для которых разница $\delta = \nu^{exp} - \nu^{calc}$ удовлетворяет условиям $\delta \leq 2 \times 10^{-4}$ см⁻¹, 2×10^{-4} см⁻¹ $< \delta \leq 4 \times 10^{-4}$ см⁻¹, и $\delta > 4 \times 10^{-4}$ см⁻¹.

ны 221 не очень слабых и ненасыщенных линий изотополога ²⁹SiD₄ и 134 линии изотополога ³⁰SiD₄. Абсолютные интенсивности выбранных линий определялись по согласованию их формы с профилем Артмана-Тран [103],[210]. В качестве иллюстрации проведенного анализа на рис. 4.2.5 показаны несколько примеров подгонки формы линии. Значение $\tau(\tilde{\nu})/(P \cdot L)$ (в единицах см⁻¹атм⁻¹) показано в зависимости от волнового числа $\tilde{\nu}$, где

$$\tau(\widetilde{\nu}) = S_{\nu}^{N} \cdot F^{HT}(\widetilde{\nu} - \nu) \cdot N \cdot L.$$
(4.2.2)

В уравнении (4.2.2) L — длина оптического пути; $F^{HT}(\tilde{\nu}-\nu)$ — профильная функция Артмана– Тран; S_{ν}^{N} - интенсивность отдельной линии (в ед. см⁻¹/мол.·см⁻², которые рекомендуются для использования в HITRAN). Интенсивности линий, полученные в результате анализа экспериментальных данных, можно найти в работе [214].

На заключительном этапе анализа все 355 экспериментально полученных значения интенсивностей S_{ν}^{N} использовались в процедуре взвешенной аппроксимации с целью определения параметров эффективного дипольного момента (см., например, [211] и [212]). Параметры, полученные в результате фиттинга (в обозначениях пакета программ Dijon XTDS, [213]), представлены в столбцах 4 и 5 таблицы 4.2.3 (для сравнения в столбце 3 приведены значения соответствующих параметров ²⁸SiD₄) вместе с их статистическими доверительными интервалами 1 σ . Видно, что значения параметров изменяются практически линейно при переходе от ²⁸SiD₄ к ³⁰SiD₄. Параметры, полученные в результате подгонки, воспроизводят 221 и 134 начальных экспериментальных интенсивностей линий молекул ²⁹SiD₄ и ³⁰SiD₄ с d_{rms} = 5, 5.% и d_{rms} = 6, 5% соответственно.

Рисунок 4.2.5 – Экспериментальные формы линий $R(8, F_1)$ (полоса ν_4 ; спектр I) и $R(5, F_2)$ (полоса ν_3 ; спектр VII) переходов изотопологов ²⁹SiD₄ и ³⁰SiD₄. Подгонка экспериментальных форм линий производилась по профилю Артмана-Трана. Сплошная и штриховая линии соответствуют экспериментальному и расчетному значению $\tau(\tilde{\nu})$. В нижней части рисунков показаны разницы (эксп.-расч.)

Для иллюстрации качества результата на рис. 4.2.4 (фрагменты 4.2.4.е–4.2.4.h) представлены невязки аппроксимации интенсивностей линий в зависимости от квантового числа *J* (см. также моделирование спектров в нижних частях рис. 4.2.1-4.2.3). Наконец, сила всех 6201 линий, представленных в дополнительных материалах, была получена на основе параметров из столбцов 4 и 5 таблицы 4.2.3, см. столбец 6.

Выводы. Были зарегистрированы инфракрасные спектры ²⁹SiD₄ и ³⁰SiD₄ в областях 550-800 см⁻¹ и 1480-1700 см⁻¹ с высоким разрешением. При последующем всестороннем анализе было определено 840/1641/888 переходов с $J^{max.} = 31/31/35$ и 638/1356/838 переходов с $J^{max.} = 31/31/34$ для полос ν_2 , ν_4 и ν_3 для молекул ²⁹SiD₄ и ³⁰SiD₄. Определены параметры вращательного, центробежного искажения, тетраэдрического расщепления и резонансного взаимодействия для колебательных состояний (0100, E), (0001, F_2), (0010, F_2) и (1000, A_1). Полученный набор параметров воспроизводит исходные экспериментальные данные с точностью, близкой к экспериментальной. Все полученные результаты опубликованы в работе [214].

110

Таблица 4.2.3 – Спектроскопические параметры $p_{v_{gr}A_1,v_u\Gamma_u}^{\Omega K(1,n\Gamma_r)}$ эффективного дипольного момента (в Дебаях)^{a)}

(v_u, Γ_u)	$(\Omega, K, n\Gamma)$	$^{28}\mathrm{SiD}_4^b$	$^{29}\mathrm{SiD}_4$	$^{30}\mathrm{SiD}_4$
1	2	3	4	5
$(0001, F_1)$	$(0, 0, A_1)$	0.35493	0.37257(21)	0.38552(30)
	$(1, 1, F_1)10^3$	-0.2321	-0.2321	-0.2321
	$(2, 0, A_1)10^4$	-0.1110	-0.1110	-0.1110
(0100, E)	$(1, 1, F_2)10^3$	-0.1612	-0.1612	-0.1612
$(0010, F_2)$	$0(0A_1)$	0.22350	0.21091(11)	0.20880(12)
	$1(1F_1)10^3$	0.5728	0.5728	0.5728
	$2(0A_1)10^4$	-0.1408	-0.1408	-0.1408

^{a)} Значения в скобках – это 1 σ статистические доверительные интервалы. Параметры для $^{29}SiD_4$ и $^{30}SiD_4$, представленные без статистических доверительных интервалов, были фиксированы параметрами для $^{28}SiD_4$.

^{b)} Воспроизведено из работ [55] - [56].

Заключение

Диссертационная работа всецело посвящена исследованию изотопологов различной симметрии методами молекулярной спектроскопии высокого разрешения. В работе была получена новая или значительно улучшенна уже имеющаяся в литературе информация о колебательных состояниях таких молекул как $D_2^M S$ (M=32, 33, 34), H₂S, CH₃D,^MSiD₄ (M=29, 30), а также получен новый метод оценки парциального давления в смеси газов.

Более подробно результаты можно сформулировать следующим образом:

- Разработан уникальный метод оценки парциальных давлений изотопологов в их смеси;
- Впервые получены аналитические соотношения между параметрами эффективного дипольного момента «материнской» молекулы и изотополога для молекул типа асимметричного волчка для фундаментальных полос;
- На основе полученных соотношений произведен расчет главного параметра эффективного дипольного момента для ряда молекул типа асимметричного волчка;
- Значительно улучшен анализ состояний второй триады молекулы D₂³²S; получен набор из 97 параметров эффективного гамильтониана, способный воспроизводить исходный спектр с точностью, превышающей в 10 раз точность предыдуших исследований;
- Впервые исследована колебательно-вращательная структура спектров минорных изотопологов D₂³³S и D₂³⁴S диоксида серы в диапазоне 2300-2900 см⁻¹; получен набор параметров эффективного гамильтониана, способный воспроизводить исходный спектр с d_{rms} = 2.29 · 10⁻⁴ см⁻¹ и d_{rms} = 2.39 · 10⁻⁴ см⁻¹ соответственно;
- Впервые определены абсолютные интенсивности 300 линий полосы 3ν₂ молекулы D₂³²S;
 получен набор из 8 параметров эффективного дипольного момента, способный воспроизводить исходный спектр с d_{rms} = 3.1 %;
- Впервые определены абсолютные интенсивности 800 линий полосы ν₁+ν₂ и ν₂+ν₃ молекулы D₂³⁴S; получен набор из 6 параметров эффективного дипольного момента, способный воспроизводить исходный спектр с d_{rms} = 9.7 %;
- Впервые определены параметры основного колебательного состояния молекулы D₂³²S;

- Получен набор параметров эффективного дипольного момента колебательного состояния (050) молекулы H₂³²S, способный воспроизвести спектр с точностью, превосходящей имеющиеся в литературе данные; определены полуширины спектральных линий; подготовлен список линий по формату HITRAN;
- Значительно расширен диапазон данных о структуре колебательно-вращательного спектра молекулы CH₃D в области 1.58 μm окна прозрачности метана; впервые были определены порядка 800 колебательно-вращательных переходов;
- Разработан комплексный подход к изучению спектров высокого разрешения в области локализации сильно взаимодействующих состояний;
- Впервые осуществлен комплексный анализ спектров высокого разрешения молекул $^{M}{
 m SiD_4}~({
 m M}{=}29,30)$ в области локализации фундаментальных полос $\nu_2, \nu_3, \nu_4.$

Литература

- [1] Landau L. D. The theory of the spectra of two atom molecules/ L. D. Landau // Zeitschrift fur Physik/ - 1926. - T. 40. - № 8. - C. 621 - 627.
- [2] Hund F. On the explanation of molecular spectra. I./ F. Hund // Zeitschrift fur Physik/ 1926. – T. 40. - № 10. – C. 742 – 764.
- [3] Heitler W. The origin of the homopolar electron pair in H₂ / W. Heitler, H.F. London // Physik – 1927. – T. 44. – C. 455 – 461.
- [4] Pauling L. The Shared Electron Chemical Bond / L. Pauling // Proceedings of the National Academy of the Sciences USA – 1928. – T. 14. – C. 359 – 362.
- [5] Ельяшевич М. А. Вращательно-колебательная энергия многоатомных молекул/ М. А. Ельяшевич. – ОНТИ, 1938.
- [6] Ельяшевич М. А. Атомная и молекулярная спектроскопия/ М. А. Ельяшевич. Москва: Физматгиз, 1962.
- [7] Герцберг Г. Колебательные и вращательные спектры многоатомных молекул/ Г. Герцберг. – Москва: Издательство иностранной литературы, 1949.
- [8] Griffiths P. R. Fourier Transform Infrared Spectrometry/ P. R. Griffiths, J. A. de Haseth.
 -New York: Wiley-Interscience, 1986.
- [9] Flaud J. M. Water Vapour Line Parameters from Microwave to Medium Infrared: An Atlas of H₂¹⁶O, H₂¹⁷O and H₂¹⁸O Line Positions and Intensities between 0 and 4350 cm⁻¹/ J. M. Flaud, C. Camy-Peyret, R. A. Toth. – Elsevier, 2013. – T. 19.
- [10] Vastel C. First detection of doubly deuterated hydrogen sulfide/ C. Vastel, T. G. Phillips,
 C. Ceccarelli //The Astrophysical Journal Letters. 2003. T. 593. №. 2. C. L97.
- [11] Thaddeus P. Interstellar hydrogen sulfide/ P. Thaddeus, R. W. Wilson, M. L. Kutner, et. al.// The Astrophysical Journal. -1972. -T. 176. -C. 73-76.
- [12] Ukita N. Hydrogen sulfide in a circumstellar envelope/ N. Ukita, M. Morris // Astronomy and Astrophysics. – 1983. –T. 121. –C.15-18.

- [13] Minh Y. C. Detection of interstellar hydrogen sulfide in cold, dark clouds/ Y. C. Minh, W. M. Irvine, L. M. Ziurys // The Astrophysical Journal. -1989. -T.345. -C.63-66.
- [14] Minh Y. C. Observations of the H₂S toward OMC-1./ Y. C. Minh, L. M. Ziurys, W. M. Irvine, D. McGonagle // The Astrophysical Journal. -1990. -T. 360. -C. 136-141.
- [15] Macdonald G. H. A 330-360 GHz spectral survey of G 34.3+0.15. I. Data and physical analysis./G. H. Macdonald, A. G. Gibb, R. J. Habing, T. J. Millar // Astronomy and Astrophysics Supplement Series. -1996. -T.119. -C.333-367.
- [16] Halonen L. Fermi resonances and local modes in water, hydrogen sulfide, and hydrogen selenide/L. Halonen, Jr. T. Carrington //The Journal of Chemical Physics. 1988. T. 88.
 №. 7. C. 4171-4185.
- [17] Kozin I. N. Fourfold clusters of rovibrational energy levels for H₂S studied with a potential energy surface derived from experiment/ I. N. Kozin, P. Jensen //Journal of Molecular Spectroscopy. - 1994. - T. 163. - №. 2. - C. 483-509.
- [18] Polyansky O. L. The potential energy surface of hydrogen sulfide/ O. Polyansky, P. Jensen,
 J. Tennyson //Journal of Molecular Spectroscopy. 1996. T. 178. №. 2. C. 184-188.
- [19] Tyuterev V. G. An accurate isotopically invariant potential function of the hydrogen sulphide molecule/ V. G. Tyuterev, S. A. Tashkun, D. W. Schwenke //Chemical Physics Letters. – 2001. – T. 348. – №. 3-4. – C. 223-234.
- [20] Tyuterev V. G. Global variational calculations of high-resolution rovibrational spectra: isotopic effects, intensity anomalies and experimental confirmations for H₂S, HDS, D₂S molecules/ Vl. G. Tyuterev, L. Regalia-Jarlot, D. W. Schwenke, et al. //Comptes Rendus Physique. - 2004. - T. 5. - №. 2. - C. 189-199.
- [21] Cours T. Ab initio dipole moment function of H₂S/ T. Cours, P. Rosmus, V. G. Tyuterev //Chemical Physics Letters. - 2000. - T. 331. - №. 2-4. - C. 317-322.
- [22] Cours T. Ab initio dipole moment functions of H₂³²S and intensity anomalies in rovibrational spectra / T. Cours, P. Rosmus, V. G. Tyuterev //The Journal of Chemical Physics. 2002.
 T. 117. №. 11. C. 5192-5208.
- [23] Tarczay G. The barrier to linearity of hydrogen sulphide/G. Tarczay, A. Csaszar, M. Leininger, W. Klooper //Chemical Physics Letters. 2000. T. 322. №. 1-2. C. 119-128.

- [24] Polovtseva E. R. Information system for molecular spectroscopy. 5. Ro-vibrational transitions and energy levels of the hydrogen sulfide molecule/ E. R. Polovtseva, N. A. Lavrentiev, S. S. Voronina, O. V. Naumenko, A. Z. Fazliev //Atmospheric and Oceanic Optics. - 2012. - T. 25. - №. 2. - C. 157-165.
- [25] Allen W. D. Geometrical structures, force constants, and vibrational spectra of SiH, SiH₂, SiH₃, and SiH₄/ W. D. Allen, III H. F. Schaefer//Chemical Physics. 1986. T. 108. №.
 2. C. 243–274.
- [26] Chuprov L. A. High-resolution fourier-transform IR spectroscopic determination of impurities in silicon tetrafluoride and silane prepared from it/ L. A. Chuprov, P. G. Sennikov, K. G. Tokhadze, S. K. Ignatov, O. Schrems // Inorganic materials. 2006. T. 42. №. 8. C. 924-931.
- [27] Treffers R. R. Upper limits to trace constituents in Jupiter's atmosphere from an analysis of its 5-μm spectrum/R. R. Treffers, H. P. Larson, U. Fink, T. N. Gautier //Icarus. 1978.
 T. 34. №. 2. C. 331–343.
- [28] Larson H. P. The middle infrared spectrum of Saturn-Evidence for phosphine and upper limits to other trace atmospheric constituents/H. P. Larson, U. Fink, H. A. Smith, V. S. Davis //The Astrophysical Journal. – 1980. – T. 240. – C. 327–337.
- [29] Fegley Jr B. Chemical models of the deep atmospheres of Jupiter and Saturn/ Jr. B. Fegley,
 K. Lodders //Icarus. 1994. T. 110. №. 1. C. 117-154.
- [30] Cochran A. L. Solar system science enabled with the next generation space telescope/ A. L. Cochran //Science With The NGST. - 1998. - T. 133. - C. 188.
- [31] Goldhaber D. M. Silane in IRC+ 10216/ D. M. Goldhaber, A. L. Betz //The Astrophysical Journal. - 1984. - T. 279. - C. L55-L58.
- [32] Monnier J. D. Mid-infrared interferometry on spectral lines. III. Ammonia and silane around IRC+ 10216 and VY canis majoris/J. D. Monnier, W. C. Danchi, D. S. Hale, P. G. Tuthill, C. H. Townes//The Astrophysical Journal. - 2000. - T. 543. - №. 2. - C. 868.
- [33] Steward W. B. The infrared absorption spectrum of silane/ W. B. Steward, H. H. Nielsen // Physical Review. - 1935. - T. 47. - №. 11. - C. 828.
- [34] Tindal C. H. The Vibration-Rotation Spectrum of SiH₄/ C. H. Tindal, J. W. Straley, H. H. Nielsen // Physical Review. 1942. T. 62. №. 3-4. C. 151.

- [35] Wilkinson G. R. Infrared spectra of some ^MH₄ molecules/ G. R. Wilkinson, M. K. Wilson // The Journal of Chemical Physics. - 1966. - T. 44. - №. 10. - C. 3867-3874.
- [36] Cabana A. High resolution infrared measurements on the ν₃ vibration-rotation band of ²⁸SiH₄/ A. Cabana, L. Lambert, C. Pepin //Journal of Molecular Spectroscopy. 1972. T. 43. №. 3. C. 429-440.
- [37] Cabana A. Vibration-rotation coupling between v₁ and v₃ in SiH₄/ A. Cabana, D. L. Gray,
 I. M. Mills, A. G. Robiette //Journal of Molecular Spectroscopy. 1977. T. 66. №. 1. C. 174-176.
- [38] Cabana A. Analysis of the ν₃ and ν₁ infra-red bands of SiH₄/ A. Cabana, D. L. Gray, A. G. Robiette, G. Pierre // Molecular Physics. 1978. T. 36. №. 5. C. 1503-1516.
- [39] Owyoung A. High-resolution inverse Raman spectroscopy of the ν₁ band of ²⁸SiH₄/ A. Owyoung, P. Esherick, A. G. Robiette, R. S. McDowell // Journal of Molecular Spectroscopy.
 1981. T. 86. №. 1. C. 209-215.
- [40] Pierre G. Le niveau de base du silane obtenu à partir de l'étude du spectre à transformée de Fourier de ν₂ et ν₄/ G. Pierre , A. Valentin, L. Henry //Canadian Journal of Physics. – 1984. – T. 62. – №. 3. – C. 254-259.
- [41] Pierre G. Etude par transformée de Fourier, du spectre, du silane dans la région de 1000 cm⁻¹. Analyse de la diade ν₂ et ν₄ / G. Pierre, A. Valentin, L. Henry // Canadian Journal of Physics. 1986. T. 64. №. 3. C. 341-350.
- [42] Prinz H. The vibration-induced dipole moment in the ν₂/ν₄ diad of ¹³CD₄ and ²⁸SiH₄/ H.
 Prinz, W. Höhe, W. A. Kreiner, et al. //Journal of Molecular Spectroscopy. 1989. T.
 135. №. 1. C. 144-160.
- [43] Prinz H. The silane isotopomers ²⁹SiH₄ and ³⁰SiH₄ constants of the ν₂/ν₄ dyad/ H. Prinz,
 W. A. Kreiner, G. Pierre //Canadian Journal of Physics. 1990. T. 68. №. 7-8. C. 551-562.
- [44] Prinz H. ²⁹SiH₄ and ³⁰SiH₄: Dipole moment parameters of the ν₂/ν₄ dyad from Stark effect observations with laser sidebands/ H. Prinz, W. A. Kreiner, M. Loëte, J. M. Jouvard //Journal of Molecular Spectroscopy. – 1990. – T. 139. – №. 1. – C. 30-38.

- [45] Lavorel B. Study of ν₁/ν₃ interacting bands of silane: Analysis of infrared and Raman spectra/ B. Lavorel, G. Millot, Q. L. Kou, et al. //Journal of Molecular Spectroscopy. – 1990. – T. 143. – №. 1. – C. 35-49.
- [46] Höhe W. Double modulation sideband spectroscopy: μ₀, μ₂₄, and μ₄₄ of ²⁸SiH₄/ W. Höhe,
 A. Ainetschian, W. A. Kreiner, M. Loete //Journal of Molecular Spectroscopy. 1992. T.
 153. №. 1-2. C. 316-323.
- [47] Cadot J. Measurement of the transition dipole moment of silane ²⁸SiH₄ by diode laser spectroscopy/ J. Cadot // Journal of Molecular Spectroscopy. 1992. T. 154. №. 2. C. 383-390.
- [48] Boutahar A. Raman Intensities of the ν₁/ν₃ Dyad of ²⁸SiH₄/ A. Boutahar, L. Touzani, M. Loete, G. Millot, B. Lavorel // Journal of Molecular Spectroscopy. 1995. T. 169. №. 1. C. 38-57.
- [49] Wenger C. Spherical top data system (STDS) software for the simulation of spherical top spectra / C. Wenger, J. P. Champion // Journal of Quantitative Spectroscopy and Radiative Transfer. - 1998. - T. 59. - №. 3-5. - C. 471-480.
- [50] Terki-Hassaı M. Analysis of the Infrared Fourier Transform Spectrum of the Spectra of Silane in the Range 2930-3300 cm⁻¹/ M. Terki-Hassaı, C. Claveau, A. Valentin, G. Pierre //Journal of Molecular Spectroscopy. - 1999. - T. 197. - №. 2. - C. 307-321.
- [51] Van Helden J. H. High resolution spectroscopy of silane with an external-cavity quantum cascade laser: Absolute line strengths of the ν₃ fundamental band at 4.6 µm/ J. H. Van Helden, D. Lopatik, A. Nave, et al. //Journal of Quantitative Spectroscopy and Radiative Transfer. 2015. T. 151. C. 287-294.
- [52] Kattenberg H. W. Infrared and laser raman gas spectra of SiH₄ and SiD₄/ H. W. Kattenberg,
 A. Oskam //Journal of Molecular Spectroscopy. 1974. T. 49. №. 1. C. 52-69.
- [53] Willetts D. V. Vibration-rotation Raman spectra of the ν₃ bands of SiH₄ and SiD₄/ D. V. Willetts, W. J. Jones, A. G. Robiette // Journal of Molecular Spectroscopy. 1975. T. 55.
 №. 1-3. C. 200-216.
- [54] Qian H. High-resolution spectroscopy of ν₃ and ν₁+ ν₃ bands of SiD₄/ H. B. Qian, Q. S. Zhu,
 H. Ma, B. A. Thrush //Chemical Physics Letters. 1992. T. 192. №. 4. C. 338-347.

- [55] Ulenikov O. N. First quantitative analysis of the ν₂/ν₄ dyad of ²⁸SiD₄: Line strengths and widths/ O. N. Ulenikov, O. V. Gromova, E. S. Bekhtereva, et al. //Journal of Quantitative Spectroscopy and Radiative Transfer. – 2018. – T. 219. – C. 350-359.
- [56] Ulenikov O. N. First quantitative study of the high-resolution spectrum of ²⁸SiD₄ in the region of the ν₃ band: Line strengths and widths/ O. N. Ulenikov, O. V. Gromova, E. S. Bekhtereva, et al. //Journal of Quantitative Spectroscopy and Radiative Transfer. 2018.
 T. 221. C. 18-30.
- [57] Ulenikov O. N. Extended high resolution analysis of the second triad of D₂³²S, D₂³³S and D₂³⁴S / O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, et al. // Journal of Quantitative Spectroscopy and Radiative Transfer. - 2020. - T. 245. - C. 106879.
- [58] Ulenikov O. N. Extended analysis of the ν₃ band of HD³²S: Line positions, energies, and line strengths / O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, et al. //Journal of Quantitative Spectroscopy and Radiative Transfer. – 2019. – T. 230. – C. 131-141.
- [59] Ulenikov O. N. First line strength analysis of ³⁴SO₂ in the ν₂ region: Isotopic relations for the dipole moment parameters / O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, et al. //Journal of Quantitative Spectroscopy and Radiative Transfer. – 2019. – T. 229. – C. 166-178.
- [60] Sydow C. Extended analysis of FTIR high resolution spectra of HD³²S and HD³⁴S in the region of the ν₂ band: Positions and strengths of individual lines / C. Sydow, O. N. Ulenikov, E. S. Bekhtereva, et al. //Journal of Quantitative Spectroscopy and Radiative Transfer. 2019. T. 225. C. 286-300.
- [61] Papousek D. Molecular vibrational-rotational spectra/ D. Papousek, M. R. Aliev. Prague: Academia, 1982. – 324 c.
- [62] Давыдов А. С. Квантовая механика/ А. С. Давыдов. Москва: Наука, 1973. –703 с.
- [63] Wilson E. B. The vibration-rotational energy levels of polyatomic molecules. I. Mathematical theory of semirigid assimetrical top molecules/ E. B. Wilson, J. B. Howard//The Journal of Chemical Physics. - 1936. - T.4. - №. 4. - C. 260-268.
- [64] Свердлов Л. М. Колебательные спектры многоатомных молекул/ Л. М. Свердлов, М. А. Ковнер, Е. П. Крайнов. — Москва: Наука, 1970. – 561 с.

- [65] Макушкин Ю. С. Симметрия и ее применения к задачам колебательно-вращательной спектроскопии молекул/ Ю. С. Макушкин, О. Н. Улеников, А. Е. Чеглоков, науч. ред. В. С. Смирнов. – Томск: Изд-во Томского Университета, 1990. – 220 с.
- [66] Darling B. T. The water vapor molecule/B. T. Darling, D. M. Dennison //Physical Review.
 1940. T. 57. №. 2. C. 128.
- [67] Watson J. K. G. Simplification of the molecular vibration-rotation Hamiltonian/J. K. G. Watson //Molecular Physics. 1968. T. 15. №. 5. C. 479–490.
- [68] Aliev M. R. Calculated sextic centrifugal distortion constants of polyatomic molecules/ M.
 R. Aliev, J. K. G. Watson //Journal of Molecular Spectroscopy. 1976. T. 61. №. 1. C. 29-52.
- [69] Nielsen H. H. The vibration-rotation energies of molecules/H. H. Nielsen //Reviews of Modern Physics. - 1951. - Vol. 23. - №. 2. - P. 90.
- [70] Amat G. Rotation-vibration of polyatomic molecules/G. Amat, H. H. Nielsen, G. Tarrago.
 New York: M. Dekker, 1971. 441 c.
- [71] Rao K. N. Molecular spectroscopy: modern research/ed. K. N. Rao. T. 3. Florida: Academic Press, 1985. - 456 c.
- [72] Макушкин Ю. С. Методы возмущений и эффективные гамильтонианы в молекулярной спектроскопии/ Ю. С. Макушкин, В. Г. Тютерев. – Новосибирск: Наука, 1984. – 240 с.
- [73] Макушкин Ю. С. О методе эффективного нежесткого волчка в многоатомных молекулах/ Ю. С. Макушкин, О. Н. Улеников// Известия вузов СССР. Физика. – 1975. – №.8.
 – С. 54–59.
- [74] Jörgensen N. Projector formulation for Van Fleck transformation: I. Degenerate case/ N. Jörgensen, T. A. Pedersen// Molecular Physics. -1974. T. 27. №.1. C. 33 47.
- [75] Jörgensen N. Projector formulation for Van Fleck transformation: II. Near-degenerate case/
 N. Jörgensen, T. A. Pedersen// Molecular Physics. -1974. T. 27. №.4. C. 959 971.
- [76] Watson J. K. G. Aspects of quartic and sextic centrifugal effects on rotational energy levels/
 J. K. G. Watson //Vibrational spectra and structure. 1977. T. 6. C. 1 89.

- [77] Flaud J. M. Vibration-rotation intensities in H₂O-type molecules application to the 2ν₂, ν₁, and ν₃ bands of H₂¹⁶O / J. M. Flaud, C. Camy-Peyret // Journal of Molecular Spectroscopy.
 1975. T. 55. C. 278 310.
- [78] Синица Л. Н. Методы спектроскопии высокого разрешения: Учебное пособие /Л. Н. Синица. -Томск: Томский государственный университет, 2006. - 364 с.
- [79] Albert S. High-resolution Fourier transform infrared spectroscopy. In: Quack M, Merkt F, eds. Handbook of high-resolution spectroscopy/ S. Albert, K. Albert-Keppler, M. Quack.
 -New York: John Wiley & Sons, Ltd., 2011. p. 965 1019. T. 2.
- [80] Bell R. J. Introductory Fuorier Transform Spectroscopy/ R. J. Bell. New York: Academic Press, 1972.
- [81] Vasilchenko S. Development of an ultrasensitive cavity ring down spectrometer in the 2.10-2.35 μm region: application to water vapor and carbon dioxide : diss. – Université Grenoble Alpes, 2017.
- [82] Lehmann K. K. An introduction to cavity ringdown spectroscopy/ K. K. Lehmann, G. Berden, R. Engeln //Cavity Ringdown Spectroscopy Techniques and Applications. 2009. – C. 1-26.
- [83] Tennyson J. The ExoMol database: molecular line lists for exoplanet and other hot atmospheres/ J. Tennyson, S. N. Yurchenko, A. F. Al-Refaie, et al. //Journal of Molecular Spectroscopy. - 2016. - T. 327. - C. 73-94.
- [84] Rothman L. S. HITEMP, the high-temperature molecular spectroscopic database/ L. S. Rothman, I. E. Gordon, R. J. Barber, et al. //Journal of Quantitative Spectroscopy and Radiative Transfer. - 2010. - T. 111. - №. 15. - C. 2139-2150.
- [85] Norton R. H. ATMOS data processing and science analysis methods/ R. H. Norton, C. P. Rinsland //Applied optics. - 1991. - T. 30. - №. 4. - C. 389-400.
- [86] Flaud J. M. A spectroscopic database for MIPAS / J. M. Flaud, C. Piccolo, B. Carli //ESA Special Publication. - 2003. - V. 531.
- [87] Müller H. S. P. The Cologne Database for Molecular Spectroscopy, CDMS: a useful tool for astronomers and spectroscopists/ H. S. Müller, F, Schlöder, J. Stutzki, G. Winnewisser //Journal of Molecular Structure. - 2005. - T. 742. - №. 1-3. - C. 215-227.

- [88] Chance K. The smithsonian astrophysical observatory database SAO92/ K. Chance, K. W. Jucks, D. G. Johnson, W. A. Traub //Journal of Quantitative Spectroscopy and Radiative Transfer. 1994. T. 52. №. 3-4. C. 447-457.
- [89] Babikov Y. L. S&MPO an information system for ozone spectroscopy on the WEB/ Y. L. Babikov, S. N. Mikhailenko, A. Barbe, V. G. Tyuterev //Journal of Quantitative Spectroscopy and Radiative Transfer. – 2014. – T. 145. – C. 169-196.
- [90] Тимофеев Ю. М. Исследование атмосферы Земли методом прозрачности/ Ю. М. Тимофеев. – Спб.: Наука, 2016.
- [91] Rothman L. S. History and future of the molecular spectroscopic databases/ L. S. Rothman,
 N. Jacquinet-Husson, C. Boulet, A. M. Perrin //Comptes Rendus Physique. 2005. T. 6.
 №. 8. C. 897-907.
- [92] HITRANonline [Электронный pecypc]. URL: https://hitran.org/ (дата обращения: 25.10.2020)
- [93] GEISA spectroscopic database [Электронный ресурс]. URL: https://geisa.aeris-data.fr (дата обращения: 18.02.2020)
- [94] Hartmann J. M. Collisional effects on molecular spectra: laboratory experiments and models, consequences for applications/ J. M. Hartmann, C. Boulet, D. Robert. – Elsevier, 2008. – 409 c.
- [95] Lisak D. Application of the Hartmann–Tran profile to analysis of H₂O spectra/ D. Lisak, A. Cygan, D. Bermejo, et al.//Journal of Quantitative Spectroscopy and Radiative Transfer. 2015. T. 164. C. 221-230.
- [96] Boulet C. Collisional effects on spectral line-shapes / C. Boulet //Comptes Rendus Physique.
 2004. T. 5. №. 2. C. 201-214
- [97] Dicke R. H. The effect of collisions upon the Doppler width of spectral lines/ R. H. Dicke //Physical Review. - 1953. - T. 89. - №. 2. - C. 472.
- [98] Gordon I. E. The HITRAN2016 molecular spectroscopic database/I. E. Gordona, L. S. Rothmana, C. Hilla, et al. //Journal of Quantitative Spectroscopy and Radiative Transfer.
 2017. T. 203. C. 3 69.

- [99] Петрова Т. М. Параметры уширения линий поглощения молекулы воды давлением аргона, полученные с помощью различных моделей формы контура/ Т. М. Петрова, А. М. Солодов, А.П. Щербаков и др. // Оптика атмосферы и океана. 2016. Т.26. №. 10. –С. 821–827
- [100] Tennyson J. Recommended isolated-line profile for representing high-resolution spectroscopic transitions (IUPAC Technical Report) / J. Tennyson, P. F. Bernath, A. Campargue, et al. // Pure and Applied Chemistry. - 2014. - T. 86. - №.12. - C. 1931 - 1943.
- [101] Ngo N. H. An isolated line-shape model to go beyond the Voigt profile in spectroscopic databases and radiative transfer codes/ N. H. Ngo, D. Lisak, H. Tran, et al. //Journal of Quantitative Spectroscopy and Radiative Transfer. - 2013. - T. 129. - C. 89 - 100.
- [102] Strow L. L. Effect of line mixing on atmospheric brightness temperatures near 15 μm/ L. L. Strow, D. Reuter//Applied optics. - 1988. - T.27. - №.5. - C. 872-878
- [103] Tran H. Efficient computation of some speed-dependent isolated line profiles/H. Tran, N.
 H. Ngo, J.-M. Hartmann //Journal of Quantitative Spectroscopy and Radiative Transfer.
 2013. T.129. C. 199-203.
- [104] Bykov A. D. On isotope effects in polyatomic molecules: some comments on the method /
 A. D. Bykov, Yu. S. Makushkin, O. N. Ulenikov // Journal of Molecular Spectroscopy. –
 1981. T. 85. C. 462–479.
- [105] Bykov A. D. On the displacements of centers of vibration-rotation bands under isotope substitution in polyatomic molecules / A. D. Bykov, Yu. S. Makushkin, O. N. Ulenikov // Journal of Molecular Spectroscopy. - 1982. - T. 93. - C. 46-54.
- [106] Ulenikov O. N. Isotope substitution in near local mode H₂X molecules: The v₁ and v₃ bands of D₂Se / O. N. Ulenikov, G. A. Onopenko, N. E. Tyabaeva, et al. // Journal of Molecular Spectroscopy. - 1999. - Vol. 197. - P. 100-113.
- [107] Ulenikov O. N. Isotopic effects in XH₃ (C_{3v}) molecules: The lowest vibrational bands of PH₂D reinvestigated / O. N. Ulenikov, E. S. Bekhtereva, G. V. Onopenko, et al. // Journal of Molecular Spectroscopy. - 2001. - Vol. 208. - P. 236-248.

- [108] Bykov A. D. On the displacements of centers of vibration-rotation lines under isotope substitution in polyatomic molecules / A. D. Bykov, Yu. S. Makushkin, O. N. Ulenikov // Molecular Physics. - 1984. - Vol. 51. - P. 907-918.
- [109] Карловец Е. В. Влияние изотопического замещения на параметры эффективного дипольного момента молекулы CO₂ / Е. В. Карловец, В. И. Перевалов // Оптика и спектроскопия. – 2015. – №.1. – С. 18–24.
- [110] Davis S.P. Fourier transform spectrometry / S. P. Davis, M. C. Abrams, J. W. Brault. USA: Academic Press, 2001. – P.257
- [111] Jörgensen F. Effective hamiltonians/ F. Jörgensen //Molecular Physics. 1975. T. 29. -№. 4. - C. 1137-1164.
- [112] Nielsen H. H. The vibration-rotation energies of molecules / H. H. Nielsen // Reviews of Modern Physics. - 1951. - T. 23. - C. 90-136.
- [113] Ulenikov O. N. On the method of precise abundance determination of isotopologues in a gas mixture/ O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, et al. //Physical Chemistry Chemical Physics. - 2019. - T. 21. - №. 16. - C. 8464-8469.
- [114] Ulenikov O. N. On the method of precise abundance determination of isotopologues in a gas mixture: Effective dipole moment parameters for the fundamental bands of different isotopologues of H₂O, H₂S, H₂Se, SO₂, O₃, H₂CO, H₂CS, and C₂H₄ / O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, A S. Belova, S. Bauerecker //Journal of Quantitative Spectroscopy and Radiative Transfer. 2020. T. 242. C. 106791.
- [115] Зятькова А. Г. Влияние изотопозамещения на параметры разложения эффективного дипольного момента в молекулах типа XY₂/XYZ / А. Г. Зятькова, А. С. Белова, О. В. Громова, Е. С. Бехтерева // Оптика и спектроскопия. – 2019. – Т. 127. – С. 364 – 372.
- [116] Belova A. S. Determination of the effective dipole moment parameters for fundamental bands of isotopologuees of different type molecules with the aim to obtain the precise abundance of isotopologue in the gas mixture / A. S. Belova, O. V. Gromova, E. S. Bekhtereva, O. N. Ulenikov, S. Bauerecker // 26th International Colloquium on High Resolution Molecular Spectroscopy: Book of Abstracts. Dijon, France, August 26 30, 2019. Dijon, 2019. C. 48.

- [117] Ziatkova A. G. Influence of isotope substitution on the parameters of the dipole moment in molecules XY₂/XYZ type / A. G. Ziatkova, A. S. Belova, E. S. Bekhtereva, O. V. Gromova, O. N. Ulenikov. // 26th International Colloquium on High Resolution Molecular Spectroscopy: Book of Abstracts. Dijon, France, August 26 - 30, 2019. – Dijon, 2019. – C. 248.
- [118] Belova A. S. Effective dipole moment parameters of XY₂ type molecules calculated on the basis of isotopic substitution theory / A. S. Belova // XVII International Conference of Students and Young Scientists «Prospects of fundamental sciences developments»: Book of abstracts. Tomsk, Russia, April 24 - 27, 2020. – Tomsk, 2020. – C. 13.
- [119] Partridge H. The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data/ H. Partridge, D. W. Schwenke //The Journal of Chemical Physics. - 1997. - T. 106. - №. 11. - C. 4618-4639.
- [120] Martin J. M. L. Accurate ab-initio quartic force fields for the sulfur compounds H₂S, CS₂, OCS, and CS/ J. M. L. Martin, J. P. Francois, R. Gijbels //Journal of Molecular Spectroscopy. - 1995. - T. 169. - №. 2. - C. 445-457.
- [121] Kuchitsu K. Estimation of anharmonic potential constants. I. linear XY₂ molecules / K. Kuchitsu, Y. Morino //Bulletin of the Chemical Society of Japan. 1965. T. 38. №. 5. C. 805-813.
- [122] Ulenikov O. N. On the high resolution spectroscopy and intramolecular potential function of SO₂/ O. N. Ulenikov, E. S. Bekhtereva, S. Alanko //Journal of Molecular Spectroscopy.
 2009. T. 257. №. 2. C. 137-156.
- [123] Barbe A. Infrared spectra of ¹⁶O₃ and ¹⁸O₃: Darling and Dennison resonance and anharmonic potential function of ozone /A. Barbe, C. Secroun, P. Jouve //Journal of Molecular Spectroscopy. - 1974. - T. 49. - №. 2. - C. 171-182.
- [124] Martin J. M. L. An accurate ab initio quartic force field for formaldehyde and its isotopomers
 / J. M. L. Martin, T. J. Lee, P. R. Taylor //Journal of Molecular Spectroscopy. 1993. –
 T. 160. №. 1. C. 105-116.
- [125] Martin J. M. L. The anharmonic force field of thioformaldehyde, H₂CS, by ab initio methods
 / J. M. L. Martin, J. P. Francois, R. Gijbels //Journal of Molecular Spectroscopy. 1994.
 T. 168. Nº. 2. C. 363-373.

- [126] Martin J. M. L. The anharmonic force field of ethylene, C₂H₄, by means of accurate ab initio calculations / J. M. L. Martin, T. J. Lee, P. R. Taylor, J. – P. Francois // The Journal of Chemical Physics. – 1995. – T. 103. – №. 7. – C. 2589-2602.
- [127] Shostak S. L. The dipole moment of water. I. Dipole moments and hyperfine properties of H₂O and HDO in the ground and excited vibrational states/S. L. Shostak, W. L. Ebenstein, J. S. Muenter //The Journal of Chemical Physics. 1991. T. 94. №. 9. C. 5875-5882.
- [128] Camy-Peyret C. Line positions and intensities in the ν₂ band of H₂¹⁶O / C. Camy-Peyret, J. M. Flaud //Molecular Physics. 1976. T. 32. №. 2. C. 523-537.
- [129] Clough S. A. Dipole moment of water from Stark measurements of H₂O, HDO, and D₂O / S. A. Clough, Y. Beers, G. P. Klein, L. S. Rothman // The Journal of Chemical Physics. 1973. T. 59. №. 5. C. 2254-2259.
- [130] Toth R. A. HDO and D₂O low pressure, long path spectra in the 600-3100 cm⁻¹ region: II.
 D₂O line positions and strengths /R. A. Toth //Journal of Molecular Spectroscopy. 1999.
 T. 195. №. 1. C. 98-122.
- [131] Camy-Peyret C. Line positions and intensities for the 2ν₂, ν₁ and ν₃ bands of H₂¹⁷O / C. Camy-Peyret, J. M. Flaud, R. A. Toth //Molecular Physics. – 1981. – T. 42. – №. 3. – C. 595-604.
- [132] Flaud J. M. Line positions and intensities for the $2\nu_2$, ν_1 and ν_3 bands of H₂¹⁸O / J. M. Flaud, C. Camy-Peyret, R. A. Toth //Canadian Journal of Physics. 1980. T. 58.
- [133] Toth R. A. HD¹⁶O, HD¹⁸O, and HD¹⁷O transition frequencies and strengths in the ν₂ bands/ R. A. Toth //Journal of Molecular Spectroscopy. - 1993. - T. 162. - №. 1. - C. 20-40.
- [134] Pickett H. M. The vibrational and rotational spectra of ozone for the (0, 1, 0) and (0, 2, 0) states / H. M. Pickett, E. A. Cohen, L. R. Brown, et al. //Journal of Molecular Spectroscopy. 1988. T. 128. №. 1. C. 151-171.
- [135] Consalvo D. The 10-µm Bands of the ¹⁷O₃ Isotopic Species of Ozone/ D. Consalvo, A. Perrin, J. M. Flaud, et al. //Journal of Molecular Spectroscopy. 1994. T. 168. №. 1. C. 92-98.
- [136] Flaud J. M. The ν₁ and ν₃ bands of ¹⁸O₃ and ¹⁸O¹⁶O¹⁸O: Line positions and intensities / J. M. Flaud, C. Camy-Peyret, V. M. Devi, C. P. Rinsland, M. A. H. Smith //Journal of Molecular Spectroscopy. 1987. T. 122. №. 1. C. 221-228.

- [137] Perrin A. The ν₂ bands of ¹⁸O₃, ¹⁸O¹⁶O¹⁸O, and ¹⁶O¹⁸O¹⁸O¹⁸O: Line positions and intensities/
 A. Perrin, A. M. Vasserot, J. M. Flaud, et al. //Journal of Molecular Spectroscopy. 1990.
 T. 143. №. 2. C. 311-317.
- [138] Heyart M. The ν₁ and ν₃ bands of ¹⁶O¹⁷O¹⁶O line positions and intensities/ M. Heyart, A. Perrin, J. M. Flaud, et al. //Journal of Molecular Spectroscopy. 1992. T. 156. №. 1. C. 210-216.
- [139] Rinsland C. P. The ν₂ bands of ¹⁶O¹⁷O¹⁶O and ¹⁶O¹⁶O¹⁷O: Line positions and intensities/
 C. P. Rinsland, M. A. H. Smith, V. M. Devi, et al. //Journal of Molecular Spectroscopy. –
 1991. T. 149. №. 2. C. 474-480.
- [140] Perrin A. The ν₁ and ν₃ Bands of the ¹⁷O¹⁶O¹⁷O Isotopomer of Ozone/ A. Perrin, J. M. Flaud, A. Valentin, C. Camy-Peyret, H. Gbaguidi //Journal of Molecular Spectroscopy. 2000. T. 200. №. 2. C. 248-252.
- [141] Flaud J. M. The ν₂ bands of ¹⁶O¹⁸O¹⁶ Band ¹⁶O¹⁶O¹⁸O: Line positions and intensities/ J. M. Flaud, C. Camy-Peyret, A. N'gom, et al. //Journal of Molecular Spectroscopy. 1989.
 T. 133. №. 1. C. 217-223.
- [142] Camy-Peyret C. The hybrid-type bands ν₁ and ν₃ of ¹⁶O¹⁶O¹⁸O: line positions and intensities/ C. Camy-Peyret, J. M. Flaud, A. Perrin, et al. //Journal of Molecular Spectroscopy. – 1986. – T. 118. – Nº. 2. – C. 345-354.
- [143] Patel D. Electric dipole moment of SO₂ in ground and excited vibrational states / D. Patel,
 D. Margolese, T. R. Dyke //The Journal of Chemical Physics. 1979. T. 70. №. 6. C.
 2740-2747.
- [144] Chu P. M. Line intensities for the 8-µm bands of SO₂/ P. M. Chu, S. J. Wetzel, W. J. Lafferty, et al. //Journal of Molecular Spectroscopy. 1998. T. 189. №. 1. C. 55-63.
- [145] Ulenikov O. N. Extended analysis of the high resolution FTIR spectrum of ³²S¹⁶O₂ in the region of the ν₂ band: Line positions, strengths, and pressure broadening widths/ O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, et al. //Journal of Quantitative Spectroscopy and Radiative Transfer. 2018. T. 210. C. 141-155.
- [146] Flaud J. M. Line intensities for the ν₁, ν₃ and ν₁ + ν₃ bands of ³⁴SO₂/ J. M. Flaud, W. J. Lafferty, R. L. Sams //Journal of Quantitative Spectroscopy and Radiative Transfer. 2009. T. 110. №. 9-10. C. 669-674.

- [147] Ulenikov O. N. First line strength analysis of ³⁴SO₂ in the ν₂ region: Isotopic relations for the dipole moment parameters /O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, et al. //Journal of Quantitative Spectroscopy and Radiative Transfer. – 2019. – T. 229. – C. 166-178.
- [148] Viswanathan R. Electric dipole moments and nuclear hyperfine interactions for H₂S, HDS, and D₂S/ R. Viswanathan, T. R. Dyke //Journal of Molecular Spectroscopy. - 1984. - T. 103. - №. 2. - C. 231-239.
- [149] Brown L. R. The absorption spectrum of H₂S between 2150 and 4260 cm⁻¹: analysis of the positions and intensities in the first (2ν₂, ν₁, and ν₃) and second (3ν₂, ν₁ + ν₂, and ν₂ + ν₃) triad regions/ L. R. Brown, J. A. Crisp, D. Crisp, et al. //Journal of Molecular Spectroscopy. 1998. T. 188. №. 2. C. 148-174.
- [150] Ulenikov O. N. Extended analysis of the high resolution FTIR spectra of H₂MS (M= 32, 33, 34, 36) in the region of the bending fundamental band: the ν₂ and 2ν₂ ν₂ bands: line positions, strengths, and pressure broadening widths/ O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, et al. //Journal of Quantitative Spectroscopy and Radiative Transfer. 2018. T. 216. C. 76-98.
- [151] Sydow C. Extended analysis of the FTIR high-resolution spectrum of D₂³²S in the region of the ν₂ band/ C. Sydow, O. N., Ulenikov, E. S. Bekhtereva, et al. //Journal of Quantitative Spectroscopy and Radiative Transfer. - 2019. - T. 224. - C. 460-473.
- [152] Lamouroux J. et al. Measurements of line intensities and determination of transition moment parameters from experimental data for the ν₁ and ν₃ bands of D₂³²S/ J. Lamouroux, L. Regalia-Jarlot, V. G. Tyuterev, et al. //Journal of Molecular Spectroscopy. 2008. T. 250.
 №. 2. C. 117-125.
- [153] Fabricant B. Molecular beam electric resonance study of formaldehyde, thioformaldehyde, and ketene/ B. Fabricant, D. Krieger, J. S. Muenter //The Journal of Chemical Physics. – 1977. – T. 67. – №. 4. – C. 1576-1586.
- [154] Perrin A. Absolute line intensities measurements and calculations for the 5.7 and 3.6 µm bands of formaldehyde / A. Perrin, D. Jacquemart, F. K. Tchana, N. Lacome //Journal of Quantitative Spectroscopy and Radiative Transfer. 2009. T. 110. №. 9-10. C. 700-716.

- [155] Perrin A. New analysis of the ν_2 , ν_3 , ν_4 , and ν_6 bands of formaldehyde H₂¹²C¹⁶O line positions and intensities in the 5–10 μ m spectral region / A. Perrin, F. Keller, J. M. Flaud //Journal of Molecular Spectroscopy. – 2003. – T. 221. – Nº. 2. – C. 192-198.
- [156] Gomez L. New Analysis of the ν₃ fundamental band of HDCO: Positions and intensities/ L.
 Gomez, A. Perrin, G. Mellau //Journal of Molecular Spectroscopy. 2009. T. 256. №.
 1. C. 28-34.
- [157] Ahonen T. A long path cell for the Fourier spectrometer Bruker IFS 120 HR: Application to the weak ν₁+ν₂ and 3ν₂ bands of carbon disulfide/ T. Ahonen, S. Alanko, V.-M. Horneman, et al.// Journal of Molecular Spectroscopy. -1997. -T. 181. -C.279-286.
- [158] Ulenikov O. N. Extended analysis of the ν₃ band of HD³²S: Line positions, energies, and line strengths/O. N. Ulenikov, E. S. Bekhtereva, O. G. Gromova, et al //Journal of Quantitative Spectroscopy and Radiative Transfer. – 2019. – T. 230. – C. 131-141.
- [159] Watson J.K.G. Determination of centrifugal distortion coefficients of asymmetric-top molecules/ J. K. G. Watson // The Journal of Chemical Physics. -1967. -T. 46. -C. 1935 – 1949.
- [160] Tan T. L. High-resolution Fourier transform infrared spectrum of the ν₁₂ fundamental band of ethylene (C₂H₄)/ T. L. Tan, S. Y. Lau, P. P. Ong, et al. //Journal of Molecular Spectroscopy. – 2000. – T. 203. – C. 310–313.
- [161] Camy-Peyret C. The far-infrared spectrum of deuterated hydrogen sulfide: The ground state rotational constants of D₂³²S, D₂³⁴S, HD³²S, and HD³⁴S/C. Camy-Peyret, J.-M. Flaud, L. Lechuga-Fossat, J. W. C. Johns //Journal of Molecular Spectroscopy. 1985. T. 109. C. 300-333..
- [162] Liu A.-W. Global fit of the high-resolution infrared spectrum of D₂S/ A.-W. Liu, O. N. Ulenikov, G. A. Onopenko, et al. // Journal of Molecular Spectroscopy. -2006. T.-238. C.-23-40.
- [163] Ulenikov O. N. Extended high resolution analysis of the second triad of D₂³²S, D₂³⁴S and D₂³³S/O. N. Ulenikov, E. S. Bekhtereva, O. G. Gromova, et al. //Journal of Quantitative Spectroscopy and Radiative Transfer. 2020. T. 245. C. 106879.

- [164] Ulenikov O. N. Line strength analysis of the second overtone 3ν₂ band of D₂S/ O. N. Ulenikov, E. S. Bekhtereva, O. G. Gromova, et al. //Journal of Quantitative Spectroscopy and Radiative Transfer. 2021. T. 270. C. 107686.
- [165] Белова А. С. Экспериментальные интенсивности линий колебательно вращательных переходов в полосах v₁ + v₂ и v₂ + v₃ молекулы D₂³⁴S / А. С. Белова, Е. С. Бехтерева, Т. Ерсин, П. А. Глушков, Ф. Джан, К. Зидо // Известия ВУЗов. Физика. 2022. Т. 65. 170 177.
- [166] Ulenikov O. N. Extended FTIR high resolution analysis of hydrogen sulfide in the region of the second hexad: line positions and ro-vibrational energies of H₂^MS (M = 32, 33, 34)/ O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, et. al.//Journal of Quantitative Spectroscopy and Radiative Transfer. -2019. -T.240. -C. 106710.
- [167] Davis S. P. Fourier transform spectrometry/ S. P. Davis, M. C. Abrams, J. W. Brault. San Diego: Academic Press; 2001.
- [168] Simeĉková M. Rothman. Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database/M. Simeĉková, D. Jacquemarta, L. S. Rothman, et al. //Journal of Quantitative Spectroscopy and Radiative Transfer. -2006. -T. 98. -C. 130-155.
- [169] Gamache R. R. Total internal partition sums for 166 isotopologues of 51 molecules important in planetary atmospheres: Application to HITRAN2016 and beyond/ R.R. Gamache, Ch. Roller, E. Lopes, et al.//Journal of Quantitative Spectroscopy and Radiative Transfer. – 2017. –T. 203. –C. 70–87.
- [170] Ulenikov O.N. Experimental line strengths of the 5ν₂ band of H₂³²S in comparison with the results of "variational" calculation and HITRAN database/ O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, et al. //Journal of Quantitative Spectroscopy and Radiative Transfer. 2020. –T. 243. C. 106812.
- [171] Azzam A. A. A. ExoMol molecular line lists XVI: the rotation-vibration spectrum of hot H₂S/ A. A. A. Azzam, J. Tennyson, S. N. Yurchenko, O. V. Naumenko // Monthly Notices of the Royal Astronomical Society. - 2016. - T.460. - C. 4063 - 4074.
- [172] High temperature molecular line list for modeling exoplanet atmospheres [Электронный pecypc]. URL:http://www.exomol.com (дата обращения: 13.04.2020)

- [173] Gordon I. E. The HITRAN 2016 molecular spectroscopic database/ I. E. Gordon, L. S. Rothman, C. Hill, et al. //Journal of Quantitative Spectroscopy and Radiative Transfer. 2017. T. 203. C. 3 69.
- [174] Azzam A. A. A. The dipole moment surface for hydrogen sulfide H₂S/ A. A. A. Azzam, L. Lody, S. N. Yurchenko, J. Tennyson // Journal of Quantitative Spectroscopy and Radiative Transfer. 2015. T.161. C. 41 49.
- [175] Wang L. The 1.58 μm transparency window of methane (6165 6750 cm⁻¹): Empirical line list and temperature dependence between 80 and 296 K / L. Wang, S. Kassi, A. W. Liu, S. M. Hu, A. Campargue //Journal of Quantitative Spectroscopy and Radiative Transfer. 2011. T. 112. №. 6. C. 937-951.
- [176] Mondelain D. The 1.28 µm transparency window of methane (7541 7919 cm⁻¹): empirical line lists and temperature dependence (80 K –300 K) / D. Mondelain, S. Kassi, L. Wang, A. Campargue //Physical Chemistry Chemical Physics. – 2011. – T. 13. – №. 17. – C. 7985-7996.
- [177] De Bergh C. Monodeuterated methane in the outer solar system. II-Its detection on Uranus at 1.6 microns / C. De Bergh, B. L. Lutz, T. Owen, J. Brault, J. Chauville //The Astrophysical Journal. - 1986. - T. 311. -C. 501-510.
- [178] De Bergh C. Monodeuterated methane in the outer solar system. IV-Its detection and abundance on Neptune / C. De Bergh, B. L. Lutz, T. Owen, J. P. Maillard //The Astrophysical Journal. - 1990. - T. 355. - C. 661-666.
- [179] De Bergh C. Monodeuterated methane in the outer solar system. III-Its abundance of Titan
 / C. De Bergh, B. L. Lutz, T. Owen, J. Chauville //The Astrophysical Journal. 1988. T. 329. C. 951-955.
- [180] Penteado P. F. Measurements of CH₃D and CH₄ in Titan from infrared spectroscopy / P.
 F. Penteado, C. A. Griffith, T. K. Greathouse, C. De Bergh //The Astrophysical Journal.
 2005. T. 629. №. 1. C. L53.
- [181] De Bergh C. Applications of a new set of methane line parameters to the modeling of Titan's spectrum in the 1.58 µm window / C. De Bergh, R. Courtin, B. Bezard, et al.//Planetary and Space Science. - 2012. - T. 61. - №. 1. - C. 85-98.

- [182] Campargue A. Empirical line parameters of methane in the 1.63 1.48 µm transparency window by high sensitivity Cavity Ring Down Spectroscopy / A. Campargue, L. Wang, A. W. Liu, S. M. Hu, S. Kassi //Chemical Physics. 2010. T. 373. №. 3. C. 203-210.
- [183] Lu Y. The CH₃D absorption spectrum in the 1.58 μm transparency window of methane: Empirical line lists at 81 K and 294 K and temperature dependence / Y. Lu, D. Mondelain, S. Kassi, A. Campargue //Journal of Quantitative Spectroscopy and Radiative Transfer. – 2011. – T. 112. – Nº. 17. – C. 2683-2697.
- [184] Daumont L. Line intensity measurements in ¹⁴N₂¹⁶O and their treatment using the effective dipole moment approach: I. The 4300 - to 5200 cm⁻¹ region / L. Daumont, J. Vander Auwera, J. L. Teffo, V. I. Perevalov, S. A. Tashkun //Journal of Molecular Spectroscopy. – 2001. – T. 208. – Nº. 2. – C. 281-291.
- [185] Rey M. First principles intensity calculations of the methane ro vibrational spectra in the infrared up to 9300 cm⁻¹/ M. Rey, A. V. Nikitin, V. Tyuterev //Physical Chemistry Chemical Physics. – 2013. – T. 15. – №. 25. – C. 10049-10061.
- [186] Lutz B. L. Monodeuterated methane in the outer solar system. I Spectroscopic analysis of the bands at 1.55 and 1.95 microns / B. L. Lutz, C. De Bergh, J. P. Maillard //The Astrophysical Journal. - 1983. - T. 273. - C. 397-409.
- [187] Boussin C. Line intensities and self-broadening coefficients for the 3ν₂ band of monodeuterated methane / C. Boussin, B. L. Lutz, C. De Bergh, A. Hamdouni //Journal of Quantitative Spectroscopy and Radiative Transfer. – 1998. – T. 60. – №. 4. – C. 501-514.
- [188] Ulenikov O. N. High resolution infrared spectroscopy and global vibrational analysis for the CH₃D and CHD₃ isotopomers of methane /O. N. Ulenikov, E. S. Bekhtereva, S. Albert // Molecular Physics. - 2010. - T. 108. - №. 7-9. - C. 1209-1240.
- [189] Ulenikov O. N. On the rotational analysis of the ground vibrational state of CH₃D molecule/
 O. N. Ulenikov, G. A. Onopenko, N. E. Tyabaeva //Journal of Molecular Spectroscopy. –
 1999. T. 193. №. 2. C. 249-259.
- [190] Belova A. S. The absorption spectrum of CH₃D in the 1.58 μm transparency window of methane / A. S. Belova, A. Campargue // XVIII International Conference of Students and Young Scientists «Prospects of fundamental sciences developments»: Book of abstracts. Tomsk, Russia, April 27 – 30, 2021. – Tomsk, 2021. – C. 71.

- [191] Belova A. S. Analysis of the CH₃D absorption spectrum in the 1.58 μm transparency window of methane / A. S. Belova, A. Campargue, D. Modelain // 27th Colloquium on High-Resolution Molecular Spectroscopy: Book of Abstracts, 30 August 3 September, 2021. Virtual Conference, 2021. C. 52.
- [192] Ulenikov O. N. First quantitative study of the high-resolution spectrum of ²⁸SiD₄ in the region of the ν₃ band: Line strengths and widths/ O. N. Ulenikov, O. V. Gromova, E. S. Bekhtereva, et al.//Journal of Quantitative Spectroscopy and Radiative Transfer. 2018. T. 221. C. 18-30.
- [193] Ulenikov O. N. First high-resolution analysis of the dyad of ²⁸SiD₄: Appearance of the isotopic substitution properties in the XY₄ (T_d-symmetry) molecules/ O. N. Ulenikov, O. V. Gromova, E. S. Bekhtereva, et al. //Journal of Quantitative Spectroscopy and Radiative Transfer. 2018. T. 218. C. 115-124.
- [194] H.-M. Niederer, Doctoral dissertation, ETH Zürich, 2021.
- [195] Niederer H. M. Analysis of the ro-vibrational spectrum of ¹³CH₄ in the Octad range/ H. M. Niederer, X. G. Wang, Jr. T. Carrington //Journal of Molecular Spectroscopy. 2013. T. 291. C. 33-47.
- [196] Ulenikov O. N. Survey of the high resolution infrared spectrum of methane (¹²CH₄ and ¹³CH₄): Partial vibrational assignment extended towards 12000 cm⁻¹/ O. N. Ulenikov, E. S. Bekhtereva, S. Albert, et al. //The Journal of Chemical Physics. 2014. T. 141. №. 23. C. 234302.
- [197] Cabana A. Analysis of the v₃ and v₁ infra-red bands of SiH₄/ A. Cabana, D. L. Gray, A. G. Robiette, G. Pierre //Molecular Physics. 1978. T. 36. №. 5. C. 1503-1516.
- [198] Lavorel B. Study of ν₁/ν₃ interacting bands of silane: Analysis of infrared and Raman spectra/ B. Lavorel, G. Millot, Q. Kou, et al. //Journal of Molecular Spectroscopy. 1990.
 T. 143. №. 1. C. 35-49.
- [199] Fano U. Irreducible tensorial sets/ U. Fano, G. Racah //Irreducible tensorial sets. –New York: Academic Press, 1959.
- [200] Wigner E. P. On the matrices which reduce the Kronecker products of representations of SR groups, manuscript (1940), published in LC Biedenharn and H. Van Dam (eds.), Quantum Theory of Angular Momentum. - C. 87–133. – 1965.

- [201] Varshalovich D. A. Quantum theory of angular momentum / D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskii. Singapore: World scientific, 1988.
- [202] Жилинский Б. И. Метод неприводимых тензорных операторов в теории спектров и строения молекул/Б. И. Жилинский. Москва: МГУ, 1984.
- [203] Hecht K. T. The vibration-rotation energies of tetrahedral XY₄ molecules: Part I. Theory of spherical top molecules / K. T. Hecht //Journal of Molecular Spectroscopy. - 1961. - T. 5. - №. 1-6. - C. 355-389.
- [204] Moret-Bailly J. Sur l'interprétation des spectres de vibration-rotation des molécules á symétrie tétraédrique ou octaédrique: дис. – Éd. de la Revue d'optique théorique et instrumentale, 1961.
- [205] Champion J. P. Développement complet de l'hamiltonien de vibration-rotation adapté á l'étude des interactions dans les molécules toupies sphériques. Application aux bandes ν₂ et ν₄ de ¹²CH₄/ J. P. Champion //Canadian Journal of Physics. – 1977. – T. 55. – №. 20. – C. 1802-1828.
- [206] Boudon V. Spherical top theory and molecular spectra/ V. Boudon, J. P. Champion, T. Gabard, et al. //Handbook of High resolution Spectroscopy. 2011.
- [207] Ulenikov O. N. On the determination of the reduced rotational operator for polyatomic molecules/ O. N. Ulenikov //Journal of Molecular Spectroscopy. – 1986. – T. 119. – №. 1. – C. 144-152.
- [208] Robert O. First assignment and line strengths of the 4ν₄ band of ¹²CH₄ near 1.9 μm/
 O. Robert, J. C. Hilico, M. Loëte, J. P. Champion, L. R. Brown //Journal of Molecular Spectroscopy. 2001. T. 209. №. 1. C. 14-23.
- [209] Boudon V. Symmetry-adapted tensorial formalism to model rovibrational and rovibronic spectra of molecules pertaining to various point groups/ V. Boudon, J. P. Champion, T. Gabard, et al. //Journal of Molecular Spectroscopy. - 2004. - T. 228. - №. 2. - C. 620-634.
- [210] Tran H. Velocity effects on the shape of pure H₂O isolated lines: Complementary tests of the partially correlated speed-dependent Keilson-Storer model/ H. Tran, N. H. Ngo, J. M. Hartmann //The Journal of Chemical Physics. - 2013. - T. 138. - №. 3. - C. 034302.

- [211] Loëte M. Développement complet du moment dipolaire des molécules tétraédriques. Application aux bandes triplement dégénérées et à la diade ν₂ et ν₄/ M. Loëte //Canadian Journal of Physics. - 1983. - T. 61. - №. 8. - C. 1242-1259.
- [212] Saveliev V. N. Calculation of vibration-rotation line intensities of polyatomic molecules based on the formalism of irreducible tensorial sets / V. N. Saveliev, O. N. Ulenikov //Journal of Physics B: Atomic and Molecular Physics (1968-1987). - 1987. - T. 20. - №. 1. - C. 67.
- [213] Wenger C. XTDS and SPVIEW: Graphical tools for the analysis and simulation of highresolution molecular spectra/ C. Wenger, V. Boudon, M. Rotger, M. Sanzharov, J. P. Champion //Journal of Molecular Spectroscopy. - 2008. - T. 251. - №. 1-2. - C. 102-113.
- [214] Sydow C. First high-resolution analysis of the fundamental bands of ²⁹SiD₄ and ³⁰SiD₄: Line positions and strengths / C. Sydow, O. v. Gromova, E. S. Bekhtereva, et al. //Journal of Quantitative Spectroscopy and Radiative Transfer. 2019. T. 225. C. 125-155.

HD¹⁶O (Cs) $\mathbf{2}$ 3 4 $\mathbf{5}$ 1 $b_x^{\xi\gamma}$ $c_{1x}^{\xi\gamma}$ $c_{2x}^{\xi\gamma}$ $c_{3z}^{\xi\gamma}$ $\bar{\nu}^1 \tilde{\mu}_{x1}$ 0.00028 0.59590-0.01347-0.20473 $^{\nu 1}\tilde{\mu}_{z1}$ 0.00524 0.00072 -0.23184-0.52621 $\nu^2 \tilde{\mu}_{x1}$ -0.00790 0.006300.87239-0.00094 $\nu^2 \tilde{\mu}_{z1}$ -0.02031-0.00245-0.33941-0.00242 $\nu^3 \tilde{\mu}_{x1}$ -0.00015 0.62644-0.00593 0.26827 $\nu^3 \tilde{\mu}_{z1}$ -0.00039 -0.243720.002310.68954HD¹⁷O (Cs) $^{\nu 1}\tilde{\mu}_{x1}$ 0.000220.59277-0.01041-0.20725 $\nu^1 \tilde{\mu}_{z1}$ 0.00055-0.233630.00410-0.52584 $\nu^2 \tilde{\mu}_{x1}$ -0.00802 0.004840.86974-0.00075 $\nu^2 \tilde{\mu}_{z1}$ -0.02036 -0.00191-0.34279-0.00191 $\nu^3 \tilde{\mu}_{x1}$ -0.00011 0.62642-0.00449 0.27051 $\nu^3 \tilde{\mu}_{z1}$ -0.00028 -0.246890.00177 0.68636 $HD^{18}O$ (Cs) $\nu^1 \tilde{\mu}_{x1}$ -0.00768 0.000160.58996-0.20953 $^{\nu 1}\tilde{\mu}_{z1}$ 0.00039 -0.235240.00306 -0.52547 $\nu^2 \tilde{\mu}_{x1}$ -0.008140.003540.86732-0.00058 $\nu^2 \tilde{\mu}_{z1}$ -0.02040 -0.00141-0.34584-0.00145 $\nu^3 \tilde{\mu}_{x1}$ -0.00008 0.62636 -0.00320 0.27254 $\nu^3 \tilde{\mu}_{z1}$ -0.00019 -0.249750.00128 0.68349 $D_2^{16}O(C_{2v})$ $\nu^1 \tilde{\mu}_{x1}$ 0.84897 -0.03536 $\nu^2 \tilde{\mu}_{x1}$ 0.015360.85496 $\nu^3 \tilde{\mu}_{z1}$ -0.002020.85600 $D_2^{17}O(C_{2v})$ $\nu^1 \tilde{\mu}_{x1}$ -0.03128 0.84807 $\nu^2 \tilde{\mu}_{x1}$ 0.013580.85346 $^{\nu 3}\tilde{\mu}_{z1}$ -0.00178 0.85428 $D_2^{18}O(C_{2v})$ $\nu^1 \tilde{\mu}_{x1}$ -0.027640.84726 $\nu^2 \tilde{\mu}_{x1}$ 0.011990.85210

 $\nu^3 \tilde{\mu}_{z1}$

-0.00157

0.85275

Таблица А.1 – Коэффициенты $b_{\delta}^{\xi\gamma}$
и $c_{\lambda\alpha}^{\xi\gamma}$ в формуле (2.2.19) для изотопологов H2O

 \mathbf{H}_2 ¹⁷O (\mathbf{C}_{2v})

$^{\nu 1}\tilde{\mu}_{x1}$		0.99942	0.00254	
$\nu^2 \tilde{\mu}_{x1}$		-0.00109	0.99892	
$^{\nu 3}\tilde{\mu}_{z1}$	0.00024			0.99892
		10 .		
		\mathbf{H}_2 ¹⁸ O (C	$_{2v}$)	
$\nu^1 \tilde{\mu}_{r1}$		$H_2^{18}O$ (C	2v)	
$^{ u 1} \tilde{\mu}_{x1}$ $^{ u 2} \tilde{\mu}_{x1}$		H_2 ¹⁸ O (C 0.99891 -0.00207	2v) 0.00480 0.99796	

Таблица А.2 – Коэффициенты $b_{\delta}^{\xi\gamma}$
и $c_{\lambda\alpha}^{\xi\gamma}$ в формуле (2.2.19) для изотопологов H2S

$\mathrm{H}\mathrm{D}^{32}\mathrm{S}$ (Cs)					
1	2	3	4	5	
	$b_x^{\xi\gamma}$	$c_{1x}^{\xi\gamma}$	$c_{2x}^{\xi\gamma}$	$c_{3z}^{\xi\gamma}$	
$^{\nu 1}\tilde{\mu}_{x1}$	0.00031	0.47662	-0.00794	-0.36587	
$^{\nu 1} \tilde{\mu}_{z1}$	0.00040	-0.37503	0.00625	-0.46497	
$\nu^2 \tilde{\mu}_{x1}$	-0.01162	0.00347	0.73323	-0.00159	
$^{\nu 2}\tilde{\mu}_{z1}$	-0.01477	-0.00273	-0.57694	-0.00202	
$^{\nu 3}\tilde{\mu}_{x1}$	-0.00010	0.55054	-0.00237	0.44126	
$^{\nu 3}\tilde{\mu}_{z1}$	-0.00013	-0.43320	0.00186	0.56079	
		$HD^{33}S$ (C	Cs)		
$\nu^1 \tilde{\mu}_{x1}$	0.00028	0.47566	-0.00717	-0.36662	
$^{\nu 1} \tilde{\mu}_{z1}$	0.00036	-0.37572	0.00566	-0.46414	
$^{\nu 2}\tilde{\mu}_{x1}$	-0.01166	0.00309	0.73193	-0.00147	
$^{\nu 2}\tilde{\mu}_{z1}$	-0.01476	-0.00244	-0.57815	-0.00187	
$\nu^3 \tilde{\mu}_{x1}$	-0.00008	0.54967	-0.00198	0.44216	
$\nu^3 \tilde{\mu}_{z1}$	-0.00011	-0.43418	0.00156	0.55977	
		$HD^{34}S$ (C	Cs)		
$^{\nu 1}\tilde{\mu}_{x1}$	0.00026	0.47475	-0.00644	-0.36733	
$^{\nu 1}\tilde{\mu}_{z1}$	0.00032	-0.37637	0.00510	-0.46335	
$\nu^2 \tilde{\mu}_{x1}$	-0.01170	0.00273	0.73070	-0.00137	
$^{\nu 2}\tilde{\mu}_{z1}$	-0.01475	-0.00216	-0.57928	-0.00173	
$\nu^3 \tilde{\mu}_{x1}$	-0.00007	0.54885	-0.00162	0.44300	
$\nu^3 \tilde{\mu}_{z1}$	-0.00009	-0.43511	0.00128	0.55880	
		\mathbf{D}_2 $^{32}\mathbf{S}$ (C	$_{2v})$		
$^{\nu 1}\tilde{\mu}_{x1}$		0.84683	-0.02027		
$^{\nu 2}\tilde{\mu}_{x1}$		0.00905	0.84720		
$^{\nu 3}\tilde{\mu}_{z1}$	-0.00102			0.84762	
		$D_2^{33}S$ (C	_{2v})		
$^{\nu 1}\tilde{\mu}_{x1}$		0.84648	-0.01907		
$\nu^2 \tilde{\mu}_{r1}$		0.00851	0.84685		

0.84722

 $^{
u 3} \tilde{\mu}_{z1}$ -0.00096

		\mathbf{D}_2 ³⁴ \mathbf{S} (C	2v)	
$^{\nu 1}\tilde{\mu}_{x1}$		0.84616	-0.01793	
$\nu^2 \tilde{\mu}_{x1}$		0.00801	0.84652	
$^{\nu 3}\tilde{\mu}_{z1}$	-0.00090			0.84685
		$\mathbf{H}_2{}^{33}\mathbf{S}$ (C	_{2v})	
$^{\nu 1} \tilde{\mu}_{x1}$		0.99979	0.00075	
$\nu^2 \tilde{\mu}_{x1}$		-0.00033	0.99976	
$^{\nu 3}\tilde{\mu}_{z1}$	0.00004			0.99976
$^{\nu 1}\tilde{\mu}_{x1}$		0.99959	0.00145	
$\nu^2 \tilde{\mu}_{x1}$		-0.00065	0.99954	
$\nu^3 \tilde{\mu}_{z1}$	0.00007			0.99954

Таблица А.3 – Коэффициенты $b_{\delta}^{\xi\gamma}$ и $c_{\lambda\alpha}^{\xi\gamma}$ в формуле (2.2.19) для изотопологов H₂Se

 $\nu^2 \tilde{\mu}_{x1}$

$\mathrm{HD}^{78}\mathrm{Se}\ (\mathrm{C}s)$					
1	2	3	4	5	
	$b_x^{\xi\gamma}$	$c_{1x}^{\xi\gamma}$	$c_{2x}^{\xi\gamma}$	$c_{3z}^{\xi\gamma}$	
$^{\nu 1}\tilde{\mu}_{x1}$	0.00009	0.44316	-0.00189	0.40024	
$^{\nu 1}\tilde{\mu}_{z1}$	0.00010	-0.40869	0.00174	0.43400	
$\nu^2 \tilde{\mu}_{x1}$	-0.01270	-0.00039	0.68495	0.00155	
$^{\nu 2}\tilde{\mu}_{z1}$	-0.01377	0.00036	-0.63168	0.00168	
$\nu^3 \tilde{\mu}_{x1}$	-0.00017	-0.51586	-0.00367	0.48301	
$^{\nu 3}\tilde{\mu}_{z1}$	-0.00018	0.47573	0.00339	0.52375	
		HD ⁸⁰ Se (0	Cs)		
$^{\nu 1}\tilde{\mu}_{x1}$	0.00010	0.44281	-0.00214	0.40048	
$^{\nu 1}\tilde{\mu}_{z1}$	0.00011	-0.40891	0.00197	0.43368	
$\nu^2 \tilde{\mu}_{x1}$	-0.01271	-0.00027	0.68447	0.00160	
$\nu^2 \tilde{\mu}_{z1}$	-0.01376	0.00025	-0.63206	0.00173	
$^{\nu 3}\tilde{\mu}_{x1}$	-0.00016	-0.51552	-0.00355	0.48330	
$\nu^3 \tilde{\mu}_{z1}$	-0.00018	0.47605	0.00327	0.52338	
		HD ⁸² Se (0	Cs)		
$^{\nu 1}\tilde{\mu}_{x1}$	0.00011	0.44248	-0.00238	0.40070	
$^{\nu 1}\tilde{\mu}_{z1}$	0.00012	-0.40911	0.00220	0.43339	
$\nu^2 \tilde{\mu}_{x1}$	-0.01272	-0.00016	0.68401	0.00164	
$^{\nu 2}\tilde{\mu}_{z1}$	-0.01376	0.00015	-0.63241	0.00177	
$\nu^3 \tilde{\mu}_{x1}$	-0.00016	-0.51521	-0.00343	0.48357	
$\nu^3 \tilde{\mu}_{z1}$	-0.00017	0.47635	0.00317	0.52303	
]	$D_2^{80}\mathbf{Se}$ (C	$_{2v})$		
$^{\nu 1}\tilde{\mu}_{x1}$		0.84345	0.00826		

-0.00358

0.84376

$\nu^3 \tilde{\mu}_{z1}$	-0.00041			0.84369		
\mathbf{D}_2 ⁷⁸ Se (\mathbf{C}_{2v})						
$^{\nu 1}\tilde{\mu}_{x1}$		0.84357	0.00868			
$\nu^2 \tilde{\mu}_{x1}$		-0.00376	0.84389			
$^{\nu 3}\tilde{\mu}_{z1}$	-0.00043			0.84383		
	$\mathrm{H_2}\ ^{78}\mathrm{Se}\ (\mathbf{C}_{2v})$					
$^{\nu 1}\tilde{\mu}_{x1}$		1.00007	0.00025			
$\nu^2 \tilde{\mu}_{x1}$		-0.00011	1.00008			
$\nu^3 \tilde{\mu}_{z1}$	-0.00001			1.00008		
	\mathbf{H}_{2} 82 Se (\mathbf{C}_{2v})					
$^{\nu 1}\tilde{\mu}_{x1}$		0.99993	-0.00024			
$\nu^2 \tilde{\mu}_{x1}$		0.00010	0.99992			
$\nu^3 \tilde{\mu}_{z1}$	0.00001			0.99992		

Таблица А.4 – Коэффициенты $b_{\delta}^{\xi\gamma}$
и $c_{\lambda\alpha}^{\xi\gamma}$ в формуле (2.2.19) для изотоплогов SO₂

		$^{33}\mathbf{SO}_2$ (\mathbf{C}_{23}	v)		
1	2	3	4	5	
	$b_x^{\xi\gamma}$	$c_{1x}^{\xi\gamma}$	$c_{2x}^{\xi\gamma}$	$c_{3z}^{\xi\gamma}$	
$^{\nu 1}\tilde{\mu}_{x1}$		0.99848	0.00622		
$\nu^2 \tilde{\mu}_{x1}$		-0.00278	0.99770		
$\nu^3 \tilde{\mu}_{z1}$	0.00011			0.99675	
		$^{34}\mathbf{SO}_2$ (\mathbf{C}_{24}	v)		
$^{\nu 1}\tilde{\mu}_{x1}$		0.99703	0.01212		
$\nu^2 \tilde{\mu}_{x1}$		-0.00541	0.99546		
$^{\nu 3}\tilde{\mu}_{z1}$	0.00018			0.99367	
		$^{36}\mathbf{SO}_2$ (\mathbf{C}_{24}	v)		
$^{\nu 1}\tilde{\mu}_{x1}$		0.99433	0.02304		
$\nu^2 \tilde{\mu}_{x1}$		-0.01027	0.99121		
$^{\nu 3}\tilde{\mu}_{z1}$	0.00033			0.98794	
	3	$^2\mathbf{S}^{17}\mathbf{O}_2$ (C	$_{2v})$		
$\nu^1 \tilde{\mu}_{x1}$		0.98800	-0.01249		
$\nu^2 \tilde{\mu}_{x1}$		0.00560	0.98943		
$^{\nu 3}\tilde{\mu}_{z1}$	-0.00013			0.99146	
${}^{32}{ m S}{}^{18}{ m O}_2~({ m C}_{2v})$					
$^{\nu 1}\tilde{\mu}_{x1}$		0.97691	-0.02444		
$\nu^2 \tilde{\mu}_{x1}$		0.01096	0.97955		
$^{\nu 3}\tilde{\mu}_{z1}$	-0.00027			0.98367	
	3	${}^3\mathbf{S}{}^{17}\mathbf{O}_2$ (C	$_{2v})$		

$^{\nu 1}\tilde{\mu}_{x1}$		0.98644	-0.00608	
$\nu^2 \tilde{\mu}_{x1}$		0.00272	0.98716	
$^{\nu 3}\tilde{\mu}_{z1}$	-0.00005			0.98812
	3	3e180 (C	`	
	0	$^{\circ}S^{1\circ}O_{2}$ (C	2v)	
$^{\nu 1}\tilde{\mu}_{x1}$		0.97532	-0.01785	
$\nu^2 \tilde{\mu}_{x1}$		0.00800	0.97731	
$^{\nu 3}\tilde{\mu}_{z1}$	-0.00019			0.98026
	3	${}^4\mathbf{S}{}^{17}\mathbf{O}_2$ (C	$_{2v})$	
		- 、		
$\nu^1 \tilde{\mu}_{x1}$		0.98496		
$\nu^2 \tilde{\mu}_{x1}$			0.98496	
$\nu^3 \tilde{\mu}_{z1}$	0.00003			0.98496
	3	${}^4\mathbf{S}{}^{18}\mathbf{O}_2$ (C	$_{2v})$	
$\nu^1 \tilde{\mu}_{r1}$		0.97381	-0.01160	
$\nu^2 \tilde{\mu}_{x1}$		0.00519	0.97514	
$\nu^3 \tilde{\mu}_{z1}$	-0.00012			0.97702
	32	s ¹⁶ 0 ¹⁷ 0 (
		5.0.0(Cs)	
$^{\nu 1}\tilde{\mu}_{x1}$		0.99194	-0.00648	0.00057
$^{\nu 1}\tilde{\mu}_{z1}$	-0.00010	-0.01052	0.00007	0.05351
$\nu^2 \tilde{\mu}_{x1}$		0.00280	0.99471	0.00002
$\nu^2 \tilde{\mu}_{z1}$	0.00048	-0.00003	-0.01055	0.00169
$\nu^3 \tilde{\mu}_{x1}$		-0.06348	-0.00408	0.01054
$\nu^3 \tilde{\mu}_{z1}$	-0.00004	0.00067	0.00004	0.99424
	33	$S^{16}O^{17}O$ ($\mathbf{C}s$)	
$^{\nu 1}\tilde{\mu}_{x1}$		0.99028	-0.00018	0.00060
$^{\nu 1}\tilde{\mu}_{z1}$	-0.00009	-0.01070	0.00000	0.05509
$\nu^2 \tilde{\mu}_{x1}$		-0.00003	0.99242	0.00002
$\nu^2 \tilde{\mu}_{z1}$	0.00048	0.00000	-0.01072	0.00166

${}^{34}\mathbf{S}{}^{16}\mathbf{O}{}^{17}\mathbf{O}$ (Cs)

-0.06523

0.00070

-0.00439

0.00005

0.01070

0.99085

 $^{\nu 3}\tilde{\mu}_{x1}$

 $\nu^3 \tilde{\mu}_{z1}$

0.00003

$^{\nu 1}\tilde{\mu}_{x1}$		0.98870	0.00579	0.00062
$^{\nu 1} \tilde{\mu}_{z1}$	-0.00009	-0.01087	-0.00006	0.05668
$\nu^2 \tilde{\mu}_{x1}$		-0.00271	0.99020	0.00002
$^{\nu 2}\tilde{\mu}_{z1}$	0.00049	0.00003	-0.01089	0.00163
$\nu^3 \tilde{\mu}_{x1}$		-0.06699	-0.00471	0.01086
$^{\nu 3}\tilde{\mu}_{z1}$	0.00011	0.00074	0.00005	0.98763

$^{32}S^{16}O^{18}O$ (Cs)

$^{\nu 1}\tilde{\mu}_{x1}$		0.98130	-0.01304	0.00200
$^{\nu 1}\tilde{\mu}_{z1}$	-0.00021	-0.01985	0.00026	0.09909
$\nu^2 \tilde{\mu}_{x1}$		0.00548	0.98977	0.00007
$^{\nu 2}\tilde{\mu}_{z1}$	0.00091	-0.00011	-0.02003	0.00332

$\nu^3 \tilde{\mu}_{x1}$		-0.11794	-0.00731	0.01996		
$^{\nu 3}\tilde{\mu}_{z1}$	-0.00010	0.00239	0.00015	0.98668		
$^{33}{ m S}^{16}{ m O}^{18}{ m O}$ (Cs)						
$^{\nu 1}\tilde{\mu}_{x1}$		0.97934	-0.00668	0.00210		
$^{\nu 1} \tilde{\mu}_{z1}$	-0.00019	-0.02019	0.00014	0.10193		
$\nu^2 \tilde{\mu}_{x1}$		0.00261	0.98749	0.00007		
$^{\nu 2}\tilde{\mu}_{z1}$	0.00092	-0.00005	-0.02036	0.00326		
$^{\nu 3}\tilde{\mu}_{x1}$		-0.12110	-0.00788	0.02027		
$^{\nu 3}\tilde{\mu}_{z1}$	-0.00002	0.00250	0.00016	0.98304		
$^{34}{ m S}^{16}{ m O}^{18}{ m O}$ (Cs)						
$^{\nu 1}\tilde{\mu}_{x1}$		0.97744	-0.00066	0.00220		
$^{\nu 1}\tilde{\mu}_{z1}$	-0.00018	-0.02052	0.00001	0.10477		
$\nu^2 \tilde{\mu}_{x1}$		-0.00011	0.98528	0.00007		

Таблица А.5 – Коэффициенты $b_{\delta}^{\xi\gamma}$
и $c_{\lambda\alpha}^{\xi\gamma}$ в формуле (2.2.19) для изотоплогов
О $_3$

-0.12424

0.00261

0.00000 -0.02069

-0.00845

0.00018

0.00320

0.02057

0.97955

 $\nu^2 \tilde{\mu}_{z1}$

 $\nu^3 \tilde{\mu}_{x1}$

 $\nu^3 \tilde{\mu}_{z1}$

0.00094

0.00005

	10	⁵ O ¹⁶ O ¹⁷ O	$(\mathbf{C}s)$	
1	2	3	4	5
	$b_x^{\xi\gamma}$	$c_{1x}^{\xi\gamma}$	$c_{2x}^{\xi\gamma}$	$c_{3z}^{\xi\gamma}$
$^{\nu 1}\tilde{\mu}_{x1}$		0.98445	0.00957	-0.00100
$^{\nu 1}\tilde{\mu}_{z1}$	0.00027	-0.00684	-0.00007	-0.14326
$\nu^2 \tilde{\mu}_{x1}$		-0.00792	0.99570	-0.00009
$\nu^2 \tilde{\mu}_{z1}$	0.00024	0.00006	-0.00692	-0.01296
$\nu^3 \tilde{\mu}_{x1}$		0.13764	0.02127	0.00686
$^{\nu 3}\tilde{\mu}_{z1}$	-0.00008	-0.00096	-0.00015	0.98652
,				

	16	⁵ O ¹⁶ O ¹⁸ O	$(\mathbf{C}s)$	
$\nu^1 \tilde{\mu}_{x1}$		0.94873	0.01273	-0.00382
$^{\nu 1}\tilde{\mu}_{z1}$	0.00054	-0.01253	-0.00017	-0.28898
$\nu^2 \tilde{\mu}_{x1}$		-0.01565	0.99125	-0.00033
$\nu^2 \tilde{\mu}_{z1}$	0.00046	0.00021	-0.01309	-0.02483
$\nu^3 \tilde{\mu}_{x1}$		0.27758	0.04318	0.01256
$^{\nu 3}\tilde{\mu}_{z1}$	-0.00006	-0.00367	-0.00057	0.95089

 ${}^{16}\mathbf{O}^{17}\mathbf{O}^{17}\mathbf{O}$ (Cs)

$^{\nu 1}\tilde{\mu}_{x1}$ 0.98505 -0.01404	-0.00082
$^{\nu 1} \tilde{\mu}_{z1}$ 0.00025 -0.00717 0.00010	-0.11286
$^{\nu 2}\tilde{\mu}_{x1}$ 0.00745 0.98874	-0.00010
$^{ u 2} ilde{\mu}_{z1}$ 0.00025 -0.00005 -0.00720	-0.01311
$^{\nu 3}\tilde{\mu}_{x1}$ 0.10808 0.01851	0.00714
$^{\nu 3}\tilde{\mu}_{z1}$ 0.00016 -0.00079 -0.00013	0.98149

 ${}^{16}\mathbf{O}^{18}\mathbf{O}^{18}\mathbf{O}$ (Cs)

$^{\nu 1}\tilde{\mu}_{x1}$		0.96559	-0.02930	-0.00275
$^{\nu 1}\tilde{\mu}_{z1}$	0.00045	-0.01395	0.00042	-0.19056
$\nu^2 \tilde{\mu}_{x1}$		0.01390	0.97781	-0.00037
$\nu^2 \tilde{\mu}_{z1}$	0.00049	-0.00020	-0.01413	-0.02540
$\nu^3 \tilde{\mu}_{x1}$		0.18205	0.03374	0.01384
$^{\nu 3}\tilde{\mu}_{z1}$	0.00035	-0.00263	-0.00049	0.95785
		$^{17}\mathbf{O}_3$ (C	$_{2v}$)	
$^{\nu 1}\tilde{\mu}_{x1}$		0.98496		
$\nu^2 \tilde{\mu}_{x1}$			0.98496	
$\nu^3 \tilde{\mu}_{z1}$				0.98496
		$^{18}\mathbf{O}_3$ (C	_{2v})	
$\nu^1 \tilde{\mu}_{x1}$		0.97098		
$\nu^2 \tilde{\mu}_{x1}$			0.97098	
$^{\nu 3}\tilde{\mu}_{z1}$				0.97098
	16	O ¹⁷ O ¹⁶ O	(\mathbf{C}_{2v})	
$^{\nu 1}\tilde{\mu}_{x1}$		0.99686	-0.02380	
$\nu^2 \tilde{\mu}_{x1}$		0.01495	0.99281	
$\nu^3 \tilde{\mu}_{z1}$	0.00024			0.99118
	16	O ¹⁸ O ¹⁶ O	(\mathbf{C}_{2v})	
$^{\nu 1}\tilde{\mu}_{x1}$		0.99385	-0.04485	
$\nu^2 \tilde{\mu}_{x1}$		0.02806	0.98575	
$^{\nu 3}\tilde{\mu}_{z1}$	0.00047			0.98313
	17	O ¹⁶ O ¹⁷ O	(\mathbf{C}_{2v})	
$^{\nu 1}\tilde{\mu}_{x1}$		0.98794	0.02496	
$\nu^2 \tilde{\mu}_{x1}$		-0.01580	0.99166	
$^{\nu 3}\tilde{\mu}_{z1}$	-0.00024			0.99394
	18	O ¹⁶ O ¹⁸ O	(\mathbf{C}_{2v})	
$^{\nu 1}\tilde{\mu}_{x1}$		0.97656	0.04918	
$\nu^2 \tilde{\mu}_{x1}$		-0.03124	0.98338	
$^{\nu 3}\tilde{\mu}_{z1}$	-0.00046			0.98847

Таблица А.6 – Коэффициенты $b_{\delta}^{\xi\gamma}$ и $c_{\lambda\alpha}^{\xi\gamma}$ в формуле (2.2.19) для изотоплогов H₂CO

			HDC	\mathbf{O} (\mathbf{C}_s)			
1	2	3	4	5	6	7	8
	$b_z^{\xi\gamma}$	$c_{1x}^{\xi\gamma}$	$c_{2x}^{\xi\gamma}$	$c_{3x}^{\xi\gamma}$	$c_{4y}^{\xi\gamma}$	$c_{5z}^{\xi\gamma}$	$c_{6z}^{\xi\gamma}$
$^{\nu 1}\tilde{\mu}_{x1}$	-0.00207	0.05744	0.01559	-0.00175		-0.55744	0.07275
$^{\nu 1}\tilde{\mu}_{z1}$	0.00019	0.63293	0.17179	-0.01931		0.05059	-0.00660
$\nu^2 \tilde{\mu}_{x1}$	0.00117	-0.00818	0.08776	-0.01259		0.08098	0.02785
$^{\nu 2}\tilde{\mu}_{z1}$	-0.00011	-0.09018	0.96700	-0.13878		-0.00735	-0.00253

$\nu^3 \tilde{\mu}_{x1}$	0.00216	-0.00137	0.00799	0.07462		0.01211	0.49362	
$^{\nu 3}\tilde{\mu}_{z1}$	-0.00020	-0.01511	0.08809	0.82225		-0.00110	-0.04480	
$^{\nu 4}\tilde{\mu}_{y1}$	0.00381				0.96661			
$^{\nu 5}\tilde{\mu}_{x1}$	0.00002	0.06051	-0.00011	0.00043		0.73950	-0.00507	
$^{\nu 5}\tilde{\mu}_{z1}$		0.66673	-0.00122	0.00478		-0.06711	0.00046	
$^{\nu 6}\tilde{\mu}_{x1}$	-0.00643	-0.00160	-0.00681	-0.03840		0.01916	0.78794	
$^{\nu 6}\tilde{\mu}_{z1}$	0.00058	-0.01758	-0.07508	-0.42315		-0.00174	-0.07151	
			TT 12 0					
			$H_2 {}^{13}C$	$CO(C_{2v})$				
$\nu^1 \tilde{\mu}_{x1}$		0.99924	-0.01338	0.00104				
$\nu^2 \tilde{\mu}_{x1}$		0.00804	0.98900	0.01822				
$^{\nu 3}\tilde{\mu}_{x1}$		-0.00068	-0.01595	0.99973				
$^{\nu 4} \tilde{\mu}_{y1}$	-0.00076				0.99495			
$^{\nu 5}\tilde{\mu}_{z1}$	-0.00027					0.99788	0.00890	
$^{\nu 6}\tilde{\mu}_{z1}$	0.00055					-0.00378	0.99625	
			$\mathbf{D}_2\mathbf{C}\mathbf{C}$	\mathbf{D} (\mathbf{C}_{2v})				
$^{\nu 1}\tilde{\mu}_{x1}$		0.82718	0.26643	-0.04211				
$\nu^2 \tilde{\mu}_{x1}$		-0.18864	0.93454	-0.21307				
$\nu^3 \tilde{\mu}_{x1}$		-0.00933	0.16228	0.83678				
$^{\nu 4}\tilde{\mu}_{y1}$	0.00902				0.89534			
$^{\nu 5}\tilde{\mu}_{z1}$	0.00293					0.86211	-0.09313	
$^{\nu 6}\tilde{\mu}_{z1}$	-0.00806					0.04072	0.88576	

Таблица А.7 – Коэффициенты $b_{\delta}^{\xi\gamma}$ и $c_{\lambda\alpha}^{\xi\gamma}$ в формуле (2.2.19) для изотоплогов H₂CS

			HDC	\mathbf{S} (\mathbf{C}_s)			
1	2	3	4	5	6	7	8
	$b_z^{\xi\gamma}$	$c_{1x}^{\xi\gamma}$	$c_{2x}^{\xi\gamma}$	$c_{3x}^{\xi\gamma}$	$c_{4y}^{\xi\gamma}$	$c_{5z}^{\xi\gamma}$	$c_{6z}^{\xi\gamma}$
$^{\nu 1}\tilde{\mu}_{x1}$	-0.00501	0.03370	0.00115	0.00483		-0.55749	0.04286
$^{\nu 1} \tilde{\mu}_{z1}$	0.00026	0.64538	0.02197	0.09252		0.02911	-0.00224
$\nu^2 \tilde{\mu}_{x1}$	0.01197	0.00022	0.03550	-0.00364		-0.00591	-0.52992
$^{\nu 2}\tilde{\mu}_{z1}$	-0.00062	0.00418	0.67981	-0.06970		0.00031	0.02767
$^{\nu 3}\tilde{\mu}_{x1}$	0.00171	-0.00191	0.00359	0.05137		0.03404	-0.10079
$\nu^3 \tilde{\mu}_{z1}$	-0.00009	-0.03666	0.06875	0.98361		-0.00178	0.00526
$^{\nu 4}\tilde{\mu}_{y1}$	0.01793				0.94870		
$\nu^5 \tilde{\mu}_{x1}$	0.00367	0.03463	0.00016	-0.00022		0.74619	-0.00521
$^{\nu 5}\tilde{\mu}_{z1}$	-0.00019	0.66320	0.00302	-0.00430		-0.03897	0.00027
$^{\nu 6}\tilde{\mu}_{x1}$	-0.01034	-0.00075	0.03316	0.00124		0.01341	0.76559
$^{\nu 6}\tilde{\mu}_{z1}$	0.00054	-0.01431	0.63503	0.02380		-0.00070	-0.03998
			$\mathbf{H}_2^{\ 13}\mathbf{C}$	\mathbf{CS} (\mathbf{C}_{2v})			
$^{\nu 1}\tilde{\mu}_{x1}$		1.00000	0.00001	0.00033			
$\nu^2 \tilde{\mu}_{x1}$		0.00000	1.00000	0.00060			
$^{\nu 3}\tilde{\mu}_{x1}$		0.00016	-0.00089	0.99440			
$^{\nu 4} \tilde{\mu}_{y1}$	0.01650				0.99989		
$^{\nu 5}\tilde{\mu}_{z1}$	0.00510					1.00000	
$^{\nu 6}\tilde{\mu}_{z1}$	-0.01479						0.99959

$\mathbf{D}_2\mathbf{CS}~(\mathbf{C}_{2v})$							
$^{\nu 1}\tilde{\mu}_{x1}$		0.84407	0.04095	0.13841			
$^{\nu 2}\tilde{\mu}_{x1}$		-0.00636	0.84724	-0.08837			
$\nu^3 \tilde{\mu}_{x1}$		-0.07957	0.14886	0.97024			
$^{\nu 4}\tilde{\mu}_{y1}$	0.01938				0.87796		
$\nu^5 \tilde{\mu}_{z1}$	0.00695					0.86227	-0.06577
$^{\nu 6} \tilde{\mu}_{z1}$	-0.01631					0.02228	0.87189

Таблица А.8 – Коэффициенты $b_{\delta}^{\xi\gamma}$
и $c_{\lambda\alpha}^{\xi\gamma}$ в формуле (2.2.19) для изотоплогов этилена

$^{13}{ m C}^{12}{ m C}{ m H}_4$ (${ m C}_{2v}$)							
1	2	3	4	5	6		
	$c_{7z}^{\xi\gamma}$	$c_{9x}^{\xi\gamma}$	$c_{10x}^{\xi\gamma}$	$c_{11z}^{\xi\gamma}$	$c_{12z}^{\xi\gamma}$		
$^{\nu 1}\tilde{\mu}_{z1}$				-0.16917	0.00230		
$\nu^2 \tilde{\mu}_{z1}$				0.00336	0.04478		
$\nu^3 \tilde{\mu}_{z1}$				-0.00139	0.03968		
$^{\nu 5}\tilde{\mu}_{x1}$		0.23461	-0.00163				
$^{\nu 6}\tilde{\mu}_{x1}$		0.00201	-0.00684				
$^{\nu7}\tilde{\mu}_{y1}$	0.99473						
$^{\nu 8}\tilde{\mu}_{y1}$	0.08813						
$^{\nu 9}\tilde{\mu}_{x1}$		0.97106	-0.00095				
$^{\nu 10} \tilde{\mu}_{x1}$		0.00034	0.99960				
$^{\nu 11} \tilde{\mu}_{z1}$				0.98518	0.0025		
$^{\nu 12}\tilde{\mu}_{z1}$				-0.00106	0.9972		
<i>u</i> 1 ~		C ₂ H	$l_3 \mathbf{D} (\mathbf{C}s)$	0.05000			
$\nu^1 \tilde{\mu}_{x1}$		0.06183	0.00053	0.05902	-0.00004		
$\nu^{1}\tilde{\mu}_{z1}$		0.00485	0.00004	-0.75195	0.00050		
$\nu^2 \tilde{\mu}_{x1}$		-0.03280	0.03062	0.00296	-0.01318		
$\nu^2 \tilde{\mu}_{z1}$		-0.00257	0.00240	-0.03773	0.16792		
$\nu^{3}\tilde{\mu}_{x1}$		-0.00296	0.10383	0.00036	0.02396		
$\nu^3 \tilde{\mu}_{z1}$		-0.00023	0.00815	-0.00462	-0.30530		
$\nu^4 \tilde{\mu}_{y1}$	0.43261						
$\nu_{5}\tilde{\mu}_{x1}$		0.36299	0.00165	0.02894	-0.00012		
$\nu^{5}\tilde{\mu}_{z1}$		0.02849	0.00013	-0.36867	0.00157		
$\nu_{\tilde{\mu}_{x1}}$		-0.01303	-0.30830	0.00096	-0.02076		
$\nu_0 \tilde{\mu}_{z1}$		-0.00102	-0.02420	-0.01219	0.26448		
$\nu^{\prime}\tilde{\mu}_{y1}$	0.54185						
$\nu \delta \tilde{\mu}_{y1}$	-0.67874						
$\nu^{g}\mu_{x1}$		0.80079	0.00202	0.00666	-0.0002		
$\nu^{g}\tilde{\mu}_{z1}$		0.06286	0.00016	-0.08489	0.00267		
$\nu^{10}\dot{\mu}_{x1}$		-0.00324	0.90089	0.00017	-0.0081		
$\nu^{10}\mu_{z1}$		-0.00025	0.07071	-0.00211	0.10384		
$\mu_{x1}^{\mu_{x1}}$		0.38933	0.00707	-0.03635	0.00154		
${}^{\nu}{}^{11}\dot{\mu}_{z1}$		0.03056	0.00055	0.46313	-0.01967		
$\nu_{12}\tilde{\mu}_{x1}$		0.01424	-0.05724	-0.00132	-0.06704		
$^{\nu 12}\tilde{\mu}_{z1}$		0.00112	-0.00449	0.01687	0.85404		
------------------------------	---------	---	---	----------	----------		
		$\mathbf{C}_2\mathbf{H}_2\mathbf{D}_2$	-trans (\mathbf{C}_{2h})			
$^{\nu 4}\tilde{\mu}_{y1}$	0.64960						
$^{\nu7}\tilde{\mu}_{y1}$	0.67356						
$^{\nu 9}\tilde{\mu}_{x1}$		0.75678	0.00510	0.10207	-0.00093		
$^{\nu 9}\tilde{\mu}_{z1}$		0.11525	0.00078	-0.67019	0.00609		
$^{\nu 10} \tilde{\mu}_{x1}$		-0.00226	0.86996	0.00004	-0.02292		
$^{\nu 10} \tilde{\mu}_{z1}$		-0.00034	0.13249	-0.00029	0.15047		
$^{\nu 11}\tilde{\mu}_{x1}$		0.52263	0.01287	-0.09436	0.00333		
$^{\nu 11} \tilde{\mu}_{z1}$		0.07959	0.00196	0.61961	-0.02189		
$^{\nu 12}\tilde{\mu}_{x1}$		0.00643	-0.28003	-0.00166	-0.13896		
$^{\nu 12}\tilde{\mu}_{z1}$		0.00098	-0.04265	0.01087	0.91244		
		$\mathbf{C}_{2}\mathbf{H}_{2}\mathbf{\Sigma}$	$\mathbf{O}_{2} ext{-}\mathbf{cis}$ (\mathbf{C}_{2v})				
$^{\nu 1}\tilde{\mu}_{x1}$		0.56035	0.01482				
$\nu^2 \tilde{\mu}_{x1}$		-0.06525	0.07594				
$\nu^3 \tilde{\mu}_{x1}$		0.01530	0.31361				
$^{\nu 5}\tilde{\mu}_{z1}$				-0.66421	0.00074		
$^{\nu 6}\tilde{\mu}_{z1}$				-0.01836	0.40704		
$^{\nu7}\tilde{\mu}_{y1}$	0.94161						
$^{\nu 9}\tilde{\mu}_{x1}$		0.74344	0.00450				
$^{\nu 10} \tilde{\mu}_{x1}$		-0.00410	0.86496				
$^{\nu 11} \tilde{\mu}_{z1}$				0.64726	-0.03831		
$^{\nu 12}\tilde{\mu}_{z1}$				0.02878	0.84190		

 $CH_2 = CD_2 (C_{2v})$

$^{\nu 1} \tilde{\mu}_{z1}$				0.69632	-0.00049
$\nu^2 \tilde{\mu}_{z1}$				0.07423	-0.27904
$^{\nu 3}\tilde{\mu}_{z1}$				0.00269	0.52985
$^{\nu 5}\tilde{\mu}_{x1}$		-0.60096	-0.00964		
${}^{\nu 6}\tilde{\mu}_{x1}$		0.02682	0.28374		
$^{\nu7}\tilde{\mu}_{y1}$	0.60916				
$^{\nu 8}\tilde{\mu}_{y1}$	0.71402				
$^{\nu 9}\tilde{\mu}_{x1}$		0.71397	0.00343		
$^{\nu 10} \tilde{\mu}_{x1}$		-0.00758	0.88388		
$^{\nu 11}\tilde{\mu}_{z1}$				0.60736	-0.02717
$^{\nu 12}\tilde{\mu}_{z1}$				0.03655	0.71471

C_2HD_3 (Cs)

$^{\nu 1}\tilde{\mu}_{x1}$		-0.35954	-0.01257	0.01575	-0.00080
$^{\nu 1}\tilde{\mu}_{z1}$		0.02755	0.00096	0.20549	-0.01038
$\nu^2 \tilde{\mu}_{x1}$		0.03062	-0.04442	0.00297	-0.00835
$\nu^2 \tilde{\mu}_{z1}$		-0.00235	0.00340	0.03877	-0.10901
$\nu^3 \tilde{\mu}_{x1}$		-0.01036	-0.05314	0.00016	0.04325
$^{\nu 3}\tilde{\mu}_{z1}$		0.00079	0.00407	0.00206	0.56437
$^{\nu 4}\tilde{\mu}_{y1}$	-0.21154				
$^{\nu 5}\tilde{\mu}_{x1}$		0.14006	0.00437	-0.05565	0.00282
$^{\nu 5}\tilde{\mu}_{z1}$		-0.01073	-0.00033	-0.72622	0.03677
${}^{\nu 6}\tilde{\mu}_{x1}$		0.00593	-0.01068	0.00069	0.00583

$^{\nu 6}\tilde{\mu}_{z1}$		-0.00045	0.00082	0.00903	0.07612
$^{\nu7}\tilde{\mu}_{y1}$	0.70603				
$\nu^8 \tilde{\mu}_{y1}$	0.52541				
$^{\nu 9}\tilde{\mu}_{x1}$		0.53037	0.00480	0.03551	-0.00019
$^{\nu 9}\tilde{\mu}_{z1}$		-0.04064	-0.00037	0.46345	-0.00253
$^{\nu 10} \tilde{\mu}_{x1}$		-0.00558	0.85710	-0.00006	-0.00460
$^{\nu 10} \tilde{\mu}_{z1}$		0.00043	-0.06568	-0.00076	-0.06003
$^{\nu 11}\tilde{\mu}_{x1}$		-0.60933	-0.01401	0.00068	0.00053
$^{\nu 11}\tilde{\mu}_{z1}$		0.04669	0.00107	0.00893	0.00687
$^{\nu 12}\tilde{\mu}_{x1}$		0.00962	0.20664	0.00200	0.05212
$^{\nu 12}\tilde{\mu}_{z1}$		-0.00074	-0.01583	0.02608	0.68022

$\mathbf{C}_2\mathbf{D}_4$ (\mathbf{D}_{2h})

$^{\nu7}\tilde{\mu}_{y1}$	0.86316					
$^{\nu 9}\tilde{\mu}_{x1}$		0.86224	0.02654			
$^{\nu 10} \tilde{\mu}_{x1}$		-0.00617	0.77025			
$^{\nu 11} \tilde{\mu}_{z1}$				0.84913	-0.04655	
$^{\nu 12}\tilde{\mu}_{z1}$				0.02190	0.86028	

 $^{13}\mathbf{C}_{2}\mathbf{H}_{4}$ (\mathbf{D}_{2h})

μv_1	0.99726				
$\nu^9 \tilde{\mu}_{x1}$		0.99800	-0.00262		
$^{\nu 10}\tilde{\mu}_{x1}$		0.00066	0.99926		
$^{\nu 11}\tilde{\mu}_{z1}$				0.99922	0.00429
$^{\nu 12}\tilde{\mu}_{z1}$				-0.00199	0.99802

Приложение В

Таблица В.1 – Спектроскопические параметры колебательных состояний второй триады молекулы $\mathrm{D}_2^{32}\mathrm{S}~(\mathrm{B~cm^{-1}})^{a)}$

Параметр	(110)	(030)	(011)
1	2	3	4
E	2742.665879(34)	2549.074038(42)	2754.451592(30)
A	5.567556(30)	5.9160149(88)	5.534301(31)
В	4.539354(30)	4.7462365(47)	4.561855(31)
C	2.393774(20)	2.3761407(19)	2.404041(20)
$\Delta_K \times 10^3$	1.11488(36)	1.52222(52)	1.112138(73)
$\Delta_{JK} \times 10^3$	-0.63546(32)	-0.83425(26)	-0.648841(99)
$\Delta_J \times 10^3$	0.175813(91)	0.220831(11)	0.181243(22)
$\delta_K \times 10^3$	-0.000736(97)	0.057601(76)	-0.000736
$\delta_J \times 10^3$	0.080131(88)	0.102704(81)	0.0820896(85)
$H_K \times 10^6$	0.3290(13)	0.7305(63)	0.33118(79)
$H_{KJ} \times 10^6$	0.07914(93)	-0.0132(39)	0.08310(82)
$H_{JK} \times 10^6$	-0.19159(78)	-0.2599(21)	-0.20010(22)
$H_J \times 10^6$	0.03841(38)	0.06388(35)	0.042688(39)
$h_K \times 10^6$	0.23718(52)	0.4821(22)	0.23562(18)
$h_{JK} \times 10^6$	-0.067383(88)	-0.08477(49)	-0.059475(91)
$h_J \times 10^6$	0.019406(82)	0.031993(88)	0.021161(32)
$L_K \times 10^9$	-0.5650(55)	-1.932(91)	-0.6451(22)
$L_{KKJ} \times 10^9$	0.732(34)	1.943(75)	0.773(91)
$L_{JK} \times 10^9$	-0.3306(28)	-0.706(33)	-0.3326(16)
$L_{JJK} \times 10^9$	0.0651(26)	-0.0183(29)	0.0651
$L_J \times 10^9$	-0.01327(30)		-0.012824(52)
$l_K \times 10^9$	-0.2256(66)	-0.646(20)	-0.2256
$l_{KJ} \times 10^9$	-0.0358(32)		-0.0358
$l_{JK} \times 10^9$	0.01342(61)		0.01342
$l_J \times 10^9$	-0.006844(18)		-0.006387(32)
$P_K \times 10^{12}$	1.1082(82)	10.25(67)	1.0963(86)
$P_{KKJ} \times 10^{12}$	-1.6335(73)	-10.42(79)	-1.5292(76)
$P_{KJ} \times 10^{12}$	0.551(15)	2.96(29)	0.551
$p_{K} \times 10^{12}$	0.2337(48)		0.2231(15)

а) Значения в скобках – статистические доверительные интервалы 1σ. Когда значения в круглых скобках отсутствуют, это означает, что указанная величина фиксировалась параметрами основного состояния и не менялись в процессе варьирования.

Параметр	Значение	Параметр	Значение	Параметр	Значение
$^{12}F_{KK} \times 10^4$	0.3036(87)	$^{12}F_{JK} \times 10^4$	-0.531(22)	$^{12}F_{JJ} \times 10^4$	-0.167(20)
$^{12}F_{JJJ} \times 10^7$	0.140(16)	$^{12}F_{xy} \times 10^2$	-0.895(37)	$^{12}F_{Kxy}\times 10^{4}$	0.1420(44)
$^{12}F_{Jxy} \times 10^4$	-0.1845(93)	$^{12}F_{JJxy}\times 10^{7}$	0.170(13)	$^{12}F_{KKKxy}\times 10^{10}$	0.462(54)
$^{13}C^1 \times 10$	0.416(28)	$^{13}C_K^1\times 10^3$	0.1514(89)	$^{13}C_J^1 \times 10^4$	-0.588(66)
$^{13}C^1_{JK}\times 10^7$	-0.900(63)	$^{13}C^1_{KKJ}\times 10^9$	0.423(20)	$^{13}C^2 \times 10$	-0.6233(24)
$^{13}C_K^2\times 10^5$	0.965(42)	$^{13}C_{JK}^2\times 10^7$	-0.2394(72)	$^{13}C_{KJJ}^{2}\times 10^{10}$	0.699(18)
$^{23}C^2 \times 10$	-0.1153(11)	$^{23}C_K^2\times 10^5$	0.1672(86)	$^{23}C_J^2\times 10^4$	0.1825(81)

Таблица В.2 – Параметры резонансного взаимодействия колебательных состояний второй триады молекулы $D_2^{32}S$ (в см⁻¹)^{*a*),*b*)}

 a Значения в скобках – статистические доверительные интервалы 1
 $\sigma.$

 b В таблице В.2, $|1
angle = (110, A_{1}), \;\; |2
angle = (030, A_{1})$ и $|3
angle = (011, B_{1}).$

$\mathbf{T}_{\mathbf{A}}$	Таблипа В.3 –	Список	переходов	полосы	$3\nu_2$	молекулы	D_{c}	32	^{2}S
---------------------------	---------------	--------	-----------	--------	----------	----------	---------	----	---------

JK _a K _c J	$K_a'K_c'$	$ u^{a)}$	Инт.(297.15) ^b	$\Delta^{S}{}^{c)}_{\nu}$	Инт.(297.15)	d) $\delta^{Se}_{\nu}^{e)}$	$\Gamma_0^{f)}$	$\Delta_2^{f)}$	$ u_{ m VC}^{f)}$	$R^{g)}$
1	2	3	4	5	6	7	8	9	10	11
17 0 17 1	8 1 1 8	2445.06582	$2.936\mathrm{E} extrm{-}25$	3.6	$9.874\mathrm{E}$ - 26	-0.9	$6.66(40) ext{E-04}$			1.00
$17 \ 1 \ 17 \ 1$	8 0 1 8	2445.06582			$1.975 ext{E-} 25$					
$7 \ 2 \ 6$	835	2447.72747	9.212 E-26	2.5	$8.830 ext{E-} 26$	4.1	$6.27(92) ext{E-04}$			1.00
16 0 16 1	7 1 1 7	2451.75562	4.183 E-25	2.9	2.903 E- 25	-4.2	$6.14(27) ext{E-04}$	$5.68(72) ext{E-02}$		1.31
$16 \ 1 \ 16 \ 1'$	7 0 1 7	2451.75562			1.452 E- 25					
$15 \ 0 \ 15 \ 1$	6 1 1 6	2458.32490	5.967 E-25	2.6	$2.070 ext{E-} 25$	-4.1	$6.70(15) ext{E-04}$	$4.77(69) ext{E-02}$		1.18
$15 \ 1 \ 15 \ 1$	6 0 1 6	2458.32490			4.139E-25					
$16 \ 1 \ 15 \ 1$	7 2 16	2458.94253	2.402 E- 25	2.4	1.697 E- 25	-6.0	$4.87(68) ext{E-04}$	1.18(31) E-01		1.05
$16\ 2\ 15\ 1$	7 1 1 6	2458.94253			8.483E-26					
14 0 14 1	$5 \ 1 \ 15$	2464.77216	$8.520 ext{E-} 25$	2.3	5.747 E- 25	-1.2	$8.30(28) ext{E-04}$	$6.51(69) ext{E-02}$	4.7(16) E-02	1.48
14 1 14 1	$5 \ 0 \ 15$	2464.77216			$2.874\mathrm{E}\text{-}25$					
9 6 4 1	073	2468.21018	$3.201\mathrm{E}$ - 25	3.3	3.105 E- 25	2.9	$9.99(55) ext{E-04}$			1.00
$16 \ 3 \ 13 \ 1$	7 4 1 4	2469.88394	$9.709 ext{E-26}$	2.5	6.293 E- 26	2.7	$6.7(12) ext{E-04}$			1.00
$16 \ 4 \ 13 \ 1$	7 3 1 4	2469.88394			3.147 E-26					
$15\ 2\ 13\ 1$	$6 \ 3 \ 14$	2469.91325	2.404E-25	4.6	$7.72\mathrm{4E}26$	3.6	$5.62(88) ext{E-04}$			1.00
$15 \ 3 \ 13 \ 1$	$6 \ 2 \ 14$	2469.91325			1.545 E-25					
10 8 2 1	$1 \ 9 \ 3$	2470.11076	3.672 E- 25	2.3	$3.674\mathrm{E}\text{-}25$	-0.1	$9.48(73) ext{E-04}$			1.00
$13 \ 0 \ 13 \ 1$	4 1 1 4	2471.09653	$1.131\mathrm{E}$ - 24	2.8	3.867 E- 25	-2.7	8.27(26) E-04	$5.29(66) ext{E-02}$	$4.0(15) ext{E-02}$	1.48
$13 \ 1 \ 13 \ 1$	4 0 1 4	2471.09653			$7.734\mathrm{E}{-}25$					
9731	$0 \ 8 \ 2$	2473.10872	4.734 E- 25	2.6	4.597 E- 25	2.9	$8.91(49) ext{E-04}$	$1.84(15) ext{E-01}$		1.72

JK_aK_c $J'K'_aK'_c$	$\nu^{a)}$	Инт.(297.15) ^t	$^{(b)}\Delta^{Sc)}_{\nu}$	Инт.(297.15)	δ^{Se}_{ν}	$\Gamma_0^{f)}$	$\Delta_2^{f)}$	$\nu_{\rm VC}^{f)}$	$R^{g)}$
$1 \qquad 2$	3	4	5	6	7	- 0 8	2 9	10	11
14 0 14 14 1 13	2473.15330	$1.408 \text{E}{-}25$	2.4	9.111E-26	3.0	11.5(22)E-04	1.12(33) E-01		1.19
$14 \ 1 \ 14 \ 14 \ 2 \ 13$	2473.15330			4.556 E-26		()	· · ·		
$15 \ 3 \ 12 \ 16 \ 4 \ 13$	2474.10917	1.530 E-25	6.4	4.999E-26	1.9	$5.87(94) ext{E-04}$			1.00
15 4 12 16 3 13	2474.10917			9.997 E-26		< <i>/</i>			
9 8 2 10 9 1	2474.66046	$5.876 ext{E-} 25$	2.7	6.215 E- 25	-5.8	6.01(79) E-04	2.80(69) E-02	1.17(15) E-02	1.40
$9 \ 7 \ 2 \ 10 \ 8 \ 3$	2474.83662	2.662 E- 25	2.7	2.571E-25	3.4	9.81(59) E-04	~ /	· · ·	1.00
$13 \ 1 \ 12 \ 14 \ 2 \ 13$	2475.81306	$7.628 ext{E-} 25$	2.3	2.467 E - 25	3.0	11.13(33) E-04	$1.61(10) ext{E-01}$	1.58(25) E-01	2.27
13 2 12 14 1 13	2475.81306			4.934E-25			. ,		
$9 \hspace{.1in} 9 \hspace{.1in} 1 \hspace{.1in} 10 \hspace{.1in} 10 \hspace{.1in} 0$	2476.18140	9.801 E-25	2.4	6.672E-25	-2.7	$10.62(22) ext{E-04}$	$6.27(50) ext{E-02}$	-1.68(12)E-01	2.07
$9 \hspace{.1in} 9 \hspace{.1in} 0 \hspace{.1in} 10 \hspace{.1in} 10 \hspace{.1in} 1$	2476.18140			3.386 E- 25					
12 0 12 13 1 13	2477.29661	$1.466 ext{E-24}$	3.7	1.012E-24	-3.6	8.72(14) E-04	8.22(45)E-02	2.36(82)E-02	2.41
$12 \ 1 \ 12 \ 13 \ 0 \ 13$	2477.29661			$5.060 ext{E-} 25$					
14 4 11 15 3 12	2478.22412	2.194E-25	2.6	1.479 E-25	-1.1	$7.76(59) ext{E-04}$	$8.11(37) ext{E-01}$		2.76
$14 \ 3 \ 11 \ 15 \ 4 \ 12$	2478.22412			7.397E-26					
$8 \ 7 \ 2 \ 9 \ 8 \ 1$	2478.98001	$4.076\mathrm{E}{\text{-}}25$	2.9	$4.296 ext{E-} 25$	-5.4	$7.44(55) ext{E-04}$	$1.18(15) ext{E-01}$		1.33
$8 \ 7 \ 1 \ 9 \ 8 \ 2$	2479.26380	8.124 E-25	2.4	8.116 E-25	0.1	$8.18(24) ext{E-04}$	$2.21(54) ext{E-02}$	$3.5(13) ext{E-02}$	1.12
13 2 11 14 3 12	2479.50541	4.563 E-25	2.5	1.610 E-25	-5.9	$7.77(87) ext{E-04}$			1.00
$13 \ \ 3 \ \ 11 \ \ 14 \ \ 2 \ \ 12$	2479.50541			$3.220 ext{E-} 25$					
9 6 3 10 7 4	2479.55088	1.674 E- 25	6.1	1.652 E-25	1.2	$7.3(13) ext{E-04}$	$5.8(24) ext{E-02}$	$1.39(57) ext{E-01}$	1.14
$13 0 \ 13 13 1 \ 12$	2479.58062	1.871 E- 25	4.3	6.343E-26	-1.7	$6.65(72) ext{E-04}$	$2.31(26) ext{E-01}$		1.88
$13 \ 1 \ 13 \ 13 \ 2 \ 12$	2479.58062			1.269 E- 25					
$10 \ 6 \ 4 \ 11 \ 7 \ 5$	2480.66658	$2.351\mathrm{E}\text{-}25$	4.2	$2.233 ext{E-} 25$	4.9	$10.4(17) ext{E-} 04$	$1.35(30) ext{E-01}$		1.18
$12 \ 1 \ 11 \ 13 \ 2 \ 12$	2481.20722	$9.948\mathrm{E}{-}25$	2.3	6.606E-25	0.3	$9.59(32) ext{E-04}$	$4.08(89) ext{E-02}$	9.7(22) E-02	1.20
$12 \ 2 \ 11 \ 13 \ 1 \ 12$	2481.20722			3.303 E- 25					
$13 3\ 10 14 4\ 11$	2482.22677	$3.328\mathrm{E}{-}25$	3.2	$1.094\mathrm{E}\text{-}25$	1.3	$8.7(24) ext{E-04}$			1.00
$13 \ \ 4 \ 10 \ \ 14 \ \ 3 \ 11$	2482.22677			2.188E-25					
$7 \ 6 \ 2 \ 8 \ 7 \ 1$	2483.95346	$1.137 ext{E-}{24}$	2.7	1.087 E-24	4.3	13.14(77)-04	1.51(16) E-01	$2.42(29) ext{E-01}$	2.54
$12 \ \ 2 \ 10 \ \ 13 \ \ 3 \ 11$	2484.13252	$6.280 ext{E-} 25$	2.3	4.448 E- 25	-6.3	7.14(23)E-04	$8.71(53) ext{E-02}$	$2.1(11) ext{E-02}$	2.26
$12 \ \ 3 \ 10 \ \ 13 \ \ 2 \ 11$	2484.13252			$2.224\mathrm{E}\text{-}25$					
$7 \ 6 \ 1 \ 8 \ 7 \ 2$	2484.65674	$5.189 ext{E-} 25$	2.3	5.188 E- 25	0.0	8.98(34) E-04	$6.16(78) ext{E-02}$	$6.0(19) ext{E-02}$	1.46
$7 \ 7 \ 1 \ 8 \ 8 \ 0$	2484.69032	1.278 E- 24	2.6	$1.316 ext{E-} 24$	-3.0	8.97(20) E-04	$3.89(44) ext{E-02}$	$4.9(11) ext{E-02}$	1.48
$7 \ 7 \ 0 \ 8 \ 8 \ 1$	2484.71312	$6.543 ext{E-}25$	2.3	$6.650 ext{E-} 25$	-1.7	8.42(61)E-04	$9.8(15) ext{E-02}$	5.5(32) E-02	1.35
$12 0 \ 12 12 1 \ 11$	2485.88679	2.493 E- 25	4.5	$1.673 ext{E}-25$	-0.6	9.23(69) E-04	$9.3(20) ext{E-02}$		1.23
$12 \ 1 \ 12 \ 12 \ 2 \ 11$	2485.88679			8.365 E-26					
$12 \ 3 \ 9 \ 13 \ 4 \ 10$	2486.11090	$4.508 ext{E-}25$	2.8	$3.021\mathrm{E}$ - 25	-0.6	$8.16(54) ext{E-04}$			1.00
12 4 9 13 3 10	2486.11090			1.510 ± 25					
$11 \ 1 \ 10 \ 12 \ 2 \ 11$	2486.48328	1.349 E-24	4.7	4.291E-25	4.5	8.75(26) E-04			1.00
$11 \ 2 \ 10 \ 12 \ 1 \ 11$	2486.48328			8.581 E- 25					
8 5 3 9 6 4	2487.48121	4.337 E-25	2.4	4.417E-25	-1.9	$6.83(31) ext{E-04}$	2.19(82) E-02		1.03
7 5 2 8 6 3	2488.03132	3.827 E- 25	2.3	3.834E-25	-0.2	$7.44(49) ext{E-04}$	$6.3(33) ext{E-02}$		1.27
$10 \ 5 \ 5 \ 11 \ 6 \ 6$	2489.10261	$2.598 ext{E-} 25$	2.8	2.505 E- 25	3.5	$7.75(68) ext{E-04}$			1.00
$10 \ 0 \ 10 \ 11 \ 1 \ 11$	2489.32066	$2.391\mathrm{E}{-}24$	3.0	1.574E-24	1.2	8.35(12) E-04	$5.04(36) ext{E-02}$		1.51
$10 \ 1 \ 10 \ 11 \ 0 \ 11$	2489.32066			7.869 E- 25					
6 5 2 7 6 1	2489.48062	5.992 E- 25	2.5	6.174E-25	-3.1	$9.60(29) ext{E-04}$	$5.86(55) ext{E-02}$	6.5(15)E-02	1.82
5 3 3 6 4 2	2489.49506	4.419E-25	2.7	4.349E-25	1.6	11.27(46) E-04	$8.02(94) ext{E-02}$	3.7(21) E-02	1.80
$11 \ 3 \ 8 \ 12 \ 4 \ 9$	2489.86948	2.117E-25	4.3	2.067 E- 25	2.3	$8.4(12) ext{E-04}$			1.00
11 4 8 12 3 9	2489.87638	$4.210 E_{-}25$	2.6	4.134E-25	1.7	$8.7(19) ext{E-04}$			1.00

$JK_{a}K_{c}$ $J'K'_{a}K'_{a}$	$\nu^{a)}$	Инт.(297.15) ^b	$\Delta^{Sc)}$	Инт.(297.15)	d) $\delta^{Se}_{u}^{(e)}$	$\Gamma_{0}^{f)}$	$\Delta_{2}^{f)}$	$\nu_{\rm VC}^{f)}$	$R^{g)}$
$1 \qquad 2$	3	4	5	6	7	8	9	10	11
6 6 1 7 7 0	2490.05709	8.331E-25	2.4	8.236E-25	1.1	8.77(22)E-04	$5.18(68) \pm 02$		1.36
$6 \ 6 \ 0 \ 7 \ 7 \ 1$	2490.12258	1.617 E-24	2.5	1.662 E-24	-2.8	8.29(26)E-04	$5.18(48) \pm 02$		1.36
6 5 1 7 6 2	2491.09858	1.210 E-24	2.5	1.205 E- 24	0.4	11.14(33)E-04	$1.47(54) \pm 02$		1.06
$10 \ 1 \ 9 \ 11 \ 2 \ 10$	2491.63932	1.667 E-24	4.0	1.074E-24	3.3	8.47(15)E-04	$5.61(38) \pm 02$	$3.36(88) \pm 02$	1.83
$10 \ 2 \ 9 \ 11 \ 1 \ 10$	2491.63932			5.372 E- 25		· · ·	`` ,	· · ·	
11 0 11 11 1 10	2492.06984	$3.299 ext{E-} 25$	2.8	1.111E-25	-1.0	7.04(28) E-04	$4.82(85) ext{E-02}$		1.18
11 1 11 11 2 10	2492.06984			2.222 E - 25		· · ·	· · ·		
10 4 6 11 5 7	2492.73946	3.806 E-25	2.3	3.804E-25	0.0	9.24(44) E-04	$8.0(15) ext{E-02}$		1.22
10 3 8 11 2 9	2493.03309	1.126E-24	3.2	3.760 E- 25	-0.3	9.84(13) E-04	5.04(31) E-02	$2.91(73) ext{E-02}$	2.09
10 2 8 11 3 9	2493.03309			7.521E-25		()		()	
10 3 7 11 4 8	2493.49065	5.309 E-25	2.7	5.267 E - 25	0.7	10.08(46) E-04	$8.8(11) ext{E-02}$	1.08(28) E-01	1.52
10 4 7 11 3 8	2493.52094	$2.640 ext{E} - 25$	2.7	2.634E-25	0.2	$9.07(54) \pm 04$	· · ·	()	1.00
9 4 5 10 5 6	2494.79348	2.330 E-25	2.8	2.242 E- 25	3.7	10.99(46) E-04			1.00
9 0 9 10 1 10	2495.14247	2.899E-24	3.1	9.333E-25	3.4	10.05(12) E-04	2.95(25) E-02	4.71(57) E-02	1.75
9 1 9 10 0 10	2495.14247			1.867E-24			()		
5 4 2 6 5 1	2495.38282	1.205 E-24	2.5	1.215E-24	-0.9	9.42(21) E-04	5.27(48) E-02	3.3(12)E-02	1.63
8 4 4 9 5 5	2495.75532	5.600E-25	2.4	5.386E-25	3.8	$13.11(76) \pm 04$	1.54(28)E-01	()	1.23
5 5 1 6 6 0	2496.18572	1.846E-24	2.4	1.890E-24	-2.4	9.56(12) E-04	5.17(36) E-02		1.80
6 4 2 7 5 3	2496.32454	8.626E-25	2.3	8.614E-25	0.1	9.44(28) E-04	$5.56(69) \text{E} \cdot 02$	3.83(15) E-02	1.99
5 5 0 6 6 1	2496.36636	1.014E-24	2.8	9.532E-25	5.9	11.50(19) E-04	9.03(54) E-02	1.12(13) E-02	2.33
9 5 5 10 4 6	2496.42977	4.312E-25	2.6	4.430E-25	-2.8	7.51(58) E-04	8.3(12)E-02	()	1.42
9 1 8 10 2 9	2496 67326	1 937E-24	2.4	6 498E-25	-0.7	7.57(19) E-04	6.63(42)E-02	3.91(85)E-02	2 21
9 2 8 10 1 9	2496 67326	1100111 21	211	1 300E-24	011	1101(10)2 01	0.00(12)12 02	0.01(00)11 02	2.21
9 3 6 10 4 7	2496 93401	$3.468E_{-}25$	2.5	3 290E-25	5 1	$12.85(58)E_04$	2 08(21)E-02		1.82
9 4 6 10 3 7	2490.00401	6.606E 25	2.0	6 570E 25	0.5	9.06(22)E.04	$4.31(74) \pm 02$		1.02
	2497.00231	4 309E 25	2.0	2 789E 25	4.9	$10.80(47) \pm 03$	4.51(74)E-02		1.20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2498.12957	4.00011 20	2.0	1 394E-25	1.0	10:00(41)E 00	10.0(11)11.02		1.00
9 6 4 10 5 5	2498 31884	$2.437E_{-}25$	27	2 381E-25	? ?	$10.02(12)E_04$	8.7(30)E-02	2.78(80) E-01	1 19
5 4 1 6 5 2	2498.71386	6 401E 25	2.1	6.335E 25	1.0	$9.24(17) \ge 0.4$	0.1 (00)1 02	2.10(00)1 01	1.10
$15 \ 2 \ 13 \ 15 \ 3 \ 12$	2490.71900	1 136E 25	2.1	3 923E 26	3.5	$7.12(78) \ge 0.4$			1.00
$15 \ 2 \ 13 \ 15 \ 4 \ 12$	2498.91164	1.1001 20	210	7.846E-26	0.0	1.12(10)1.04			1.00
8 3 5 9 4 6	2490.91104	7 600E 25	23	7.540E-20	0.7	10 92(39)E 04	5 88(92)E 02	7 9(93)E 09	1 99
12 1 11 12 2 10	2500.01303	3 411E 25	2.5	2 200E 25	1 1	9.39(33) = 0.4	$11.7(14) \pm 02$	1.2(23)12-02	1.40
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2500.11175	5.41115-25	0.4	1 140E 25	-1.1	3.33(33)E-04	11.7(14)15-02		1,40
8 4 5 9 3 6	2500.11175	3 802E 25	2.4	3 760E 25	33	11 96(97)E 04		6 21 (32) F 02	1 09
8 0 8 0 1 0	2500.83618	3 207E 24	2.4	9.138F 94	0.0	$0.35(11) \ge 0.4$	5 19/94\F 09	4.88(54) = 02	2.46
8 1 8 0 0 0	2500.83618	5.20715-24	2.0	1.060E-24	0.0	3.33(11)E-04	5.12(24)15-02	4.00(04)E-02	2,40
8 2 6 0 3 7		1.0685.94	2.4	1.009E-24	1.0	8 63(91)E 04	4 77(73) F 09		1.96
836027	2501.42447	5 796F 95	9.4 9.2	5 380E 95	5.8	16.86(68) = 0.4	чи (13)E-02		1.20
8 1 7 0 9 9 4 1	2501.45092	0.120E-20 9.969E-94	⊿.J ე 0	1509E-20	0.0	8 05(11)E 04	5 96(96) 5 09	8 D(56)E 02	1.00 9.56
8 2 7 0 1 9	2001.00202	4.202E-24	2.0	7 530E 95	0.0	0.00(11)1-04	0.00(20)E-02	0.0(00)10-00	2.00
731910	2501.50202	ለበማለው ዓደ	Q 1	7.009E-20 7.180E-25	97	7 5/(49) - 04	8 9(10) ₽ 09		1.25
1 1 1 5 5 0	2502.37030	4.074E-20 9 580F 95	0.1 9.2	9.10012-20 0.786F 95	-4.1 9.1	0.63(25)E.04	0.2(10)12-02 7 51(50) F 09	6 9(14)E 09	1.00
	2000.00100 2502 50004	1 030E 04	⊿.J ე_/	1 081E 94	-2.1 2.6	8 52(12)E 04	6 30 (30) E-02	0.2(19)12-02	1.02 9.91
440001	2503.32224	1.304E-24 1.794E-95	2.4 9.4	1.20112-24	-2.0 1 0	0.00(10) - 04 11 07(11) - 04	0.59(50)E-02		⊿.JI 1.00
14 2 12 14 3 11	2000.01124	1112412-20	2.4	5.640F 96	1.7	11.07(11)12-04			1.00
	2502.01124	5 1545 95	9 9	0.040E-20 1.769E-95	ንፍ	8 91 <i>(</i> 99 ነ ር በ 4	8 43 (85) E 00		1 60
0 0 9 9 1 8	2004.00044	0.104E-20	⊿.ə	1.109F-79	-2.0	0.21(20)E-04	0.40(00)E-02		1.00

Таблица В.3 – (продолжение)

JK_aK_c	$J'K'_{a}$	K'_c	$ u^{a)}$	Инт.(297.15) ^t	$^{(0)}\Delta^{Sc)}_{\nu}$	Инт.(297.15)	d) $\delta^{Se}_{\nu}^{(e)}$	$\Gamma_0^{f)}$	$\Delta_2^{f)}$	$\nu_{\rm VC}^{f)}$	$R^{g)}$
1	- u	2	3	4	5	6	7	8	9	10	11
9 1 9	9 2	8	2504.06544			3.527E-25					
633	74	4	2504.07898	8.155 E-25	2.3	8.439E-25	-3.5	8.65(18) E-04	$5.79(57) \pm 02$		1.60
$7 \ 4 \ 4$	83	5	2504.38305	$8.124 \text{E}{-}25$	2.3	8.012 E-25	1.3	12.43(30)E-04	13.77(93) E-02	12.6(25) E-02	1.77
$5 \ 3 \ 2$	64	3	2505.20800	4.961E-25	2.9	4.856 E-25	2.1	9.66(24)E-04	$7.34(84) \pm 02$	× /	1.42
7 2 5	83	6	2505.37628	5.843 E-25	2.8	5.947 E- 25	-1.8	10.37(30) E-04	$7.90(97) \pm 02$		1.23
11 1 10	11 2	9	2505.47531	4.590 E-25	2.6	1.504 E-25	1.7	8.17(38) E-04	2.9(13) E-02		1.03
$11 \ 2 \ 10$	11 3	9	2505.47531			3.007E-25		× /	× /		
$7 \ 3 \ 5$	8 2	6	2505.50108	1.206 E-24	2.5	1.189E-24	1.4	$9.73(11) ext{E-04}$	$5.97(41) ext{E-02}$		1.80
$7 \ 1 \ 6$	8 2	2 7	2506.36735	$2.576\mathrm{E}{-}24$	2.7	8.384E-25	2.3	17.37(28)E-04			1.00
$7 \ 2 \ 6$	8 1	. 7	2506.36735			1.677E-24					
7 0 7	8 1	. 8	2506.40089	3.584 E-24	2.9	1.177E-24	1.5	10.47(13) E-04	$9.05(35) ext{E-}02$	$5.16(80) ext{E-02}$	2.87
7 1 7	8 0	8	2506.40089			2.353E-24					
$4 \ 3 \ 1$	54	2	2507.40907	1.211E-24	3.1	1.237E-24	-2.2	$9.74(17) ext{E-04}$	2.33(40)E-02	$5.11(96) ext{E-02}$	1.15
$3\ 2\ 2$	4 3	1	2507.78059	6.284 E- 25	2.3	6.102 E- 25	2.9	10.46(14) E-04			1.00
$13 \ 2 \ 11$	13 3	10	2508.61323	$2.435 ext{E-} 25$	4.1	8.457E-26	-4.2	$4.8(10) ext{E-04}$			1.00
$13 3\ 11$	13 4	10	2508.61323			1.691E-25					
$6\ 2\ 4$	73	5	2509.01876	1.204 E-24	6.5	1.244E-24	-3.4	10.47(18) E-04	$3.00(41) ext{E-02}$	$8.03(97) ext{E-02}$	1.75
$6 \ 4 \ 3$	73	4	2509.17260	$3.558 ext{E-} 25$	3.5	$3.520 ext{E-} 25$	1.0	8.12(77) E-04	$3.0(15) ext{E-02}$		1.04
$6 \ 3 \ 4$	7 2	5	2509.55443	$6.398 ext{E-} 25$	2.3	6.155 E- 25	3.7	10.06(28) E-04	$7.97(80) ext{E-02}$	12.7(22) E-02	1.60
$3 \ 3 \ 1$	4 4	0	2510.57359	1.865 E-24	2.9	1.767E-24	5.2	13.87(42) E-04		$18.9(32) ext{E-02}$	1.28
$10 \ 1 \ 9$	10 2	8	2510.72763	$5.966\mathrm{E} ext{}25$	2.8	2.018E-25	-1.5	$9.58(25) ext{E-04}$	$5.86(88) ext{E-02}$		1.26
$10 \ 2 \ 9$	10 3	8	2510.72763			4.036 E-25					
6 1 5	72	6	2511.00878	$1.738 ext{E-}24$	2.8	1.769 E-24	-1.8	$9.28(10) ext{E-04}$	$5.54(16) ext{E-02}$		2.27
$6\ 2\ 5$	7 1	. 6	2511.03017	8.878 E-25	2.3	8.842 E- 25	0.3	$9.72(14) ext{E-04}$	$3.98(45) ext{E-02}$	6.5(12) E-02	2.56
$3 \ 3 \ 0$	4 4	1	2511.68547	8.854E-25	2.3	$9.170\mathrm{E}{-}25$	-3.6	$9.29(14) ext{E-04}$	$5.17(49) ext{E-02}$		1.60
$6 \ 0 \ 6$	7 1	. 7	2511.83542	$3.731\mathrm{E}\text{-}24$	2.4	$2.484\mathrm{E}\text{-}24$	0.1	$9.14(10) ext{E-04}$	4.53(23)E-02	$2.38(54) ext{E-02}$	2.34
$6 \ 1 \ 6$	7 0) 7	2511.83542			1.242E-24					
$17 \ 4 \ 14$	18 6	13	$2512.02045^{(\star)}$	$6.271 ext{E-} 25$	2.5	3.488 E-27	4.0	$10.81(27) ext{E-04}$	$5.18(87) ext{E-02}$		1.23
$17 3\ 14$	18 5	13	$2512.02045^{(\star)}$			$6.976 ext{E-} 27$					
$5\ 2\ 3$	63	4	2512.02045			$5.918 ext{E-} 25$					
$5 \ 3 \ 3$	6 2	4	2513.95732	1.173 E-24	3.7	$1.124\mathrm{E}\text{-}24$	4.1	$14.59(33) ext{E-04}$	$15.6(18) ext{E-02}$	14.1(31)E-02	3.93
$4\ 2\ 2$	53	3	2514.27394	$1.095 ext{E-} 24$	2.9	1.126E-24	-2.9	10.06(18) E-04	$6.37(39) ext{E-02}$	$5.84(94) ext{E-02}$	1.06
$2 \ 1 \ 2$	3 2	1	2514.53328	$1.245\mathrm{E}\text{-}25$	2.4	1.247 E- 25	-0.2	15.77(21)E-04			1.00
$5 \ 1 \ 4$	6 2	5	2515.48222	$8.671 \text{E}{-}25$	2.3	$8.783 ext{E-} 25$	-1.3	$9.16(17) ext{E-04}$	$5.35(58) ext{E-02}$		1.46
7 0 7	7 1	. 6	2515.56288	$7.888 \text{E}{-}25$	2.4	$2.534\mathrm{E}\text{-}25$	3.6	11.92(50) E-04			1.00
7 1 7	72	6	2515.56288			$5.069 ext{E-} 25$					
9 1 8	92	2 7	2515.86727	$7.600 ext{E-} 25$	2.3	2.512 E- 25	0.8	13.71(34)E-04	$15.2(19) ext{E-02}$		1.57
9 2 8	93	7	2515.86727			$5.024\mathrm{E}\text{-}25$					
$5 \ 4 \ 2$	63	3	2515.96838	$3.945\mathrm{E}\text{-}25$	3.0	4.123 E- 25	-4.6	$8.54(34) ext{E-04}$			1.00
$3\ 2\ 1$	4 3	2	2516.81906	$6.004\mathrm{E}\text{-}25$	2.7	5.877 E- 25	2.1	9.94(49)E-04	$9.4(14) ext{E-02}$		1.50
$5 \ 0 \ 5$	6 1	. 6	2517.13922	$3.856\mathrm{E}{-24}$	2.3	1.246 E-24	3.0	10.52(82) E-04			1.00
$5 \ 1 \ 5$	6 0	6	2517.13922			2.493E-24					
$11 \ 2 \ 9$	11 3	8	2517.91760	5.120 E-25	2.3	1.649 E- 25	3.4	$9.24(54) ext{E-04}$			1.00
$11 \ 3 \ 9$	11 4	8	2517.91760			3.297 E- 25					
4 3 2	5 2	3	2519.50680	3.879 E- 25	2.8	3.845 E- 25	0.8	11.74(11) E-04	$9.2(21) ext{E-02}$	15.7(63) E-02	1.43
4 1 3	$5 \ 2$	4	2519.65370	1.607 E-24	3.0	1.603 E- 24	0.2	10.33(10)E-04	4.60(28)E-02		1.97
$4\ 2\ 3$	$5 \ 1$. 4	2520.17348	$7.529 ext{E-} 25$	2.4	7.927E-25	-5.3	$9.56(49) ext{E-04}$			1.00

JK_aK_c J'K	$\kappa_a' K_a' = \nu^{a}$	Инт.(297.15) ^b	Δ^{Sc}	Инт.(297.15)	d) δ^{Se}_{ν}	$\Gamma_{0}^{f)}$	$\Delta_{2}^{f)}$	$\nu_{\rm VC}^{f)}$	$R^{g)}$
1	2 3	4	5	6	7	- 0	2 9	10	11
2 2 0 3	3 1 2520.86755	1.568E-24	3.8	1.503E-24	4.1	9.71(15)E-04	6.02(34)E-02	5.42(80)E-02	2.36
8 1 7 8	$2 \ 6 \ 2520.90584$	$6.261 E_{-}25$	2.7	6.403E-25	-2.3	8.41(24)E-04	8.03(71) E-02		1.71
$6 \ 1 \ 6 \ 6$	2 5 2521.11979	$2.940 ext{E-}25$	2.6	2.886 E- 25	1.8	$7.18(62) ext{E-04}$			1.00
$6 \ 0 \ 6 \ 6$	$1 \ 5 \ 2521.13301$	5.654 E- 25	2.7	5.772E-25	-2.1	$9.04(24) ext{E-04}$	$7.92(89) ext{E-}02$		1.25
$4 \ 0 \ 4 \ 5$	$1 \ 5 \ 2522.30377$	2.310 E-24	3.5	2.358E-24	-2.1	12.21(32)E-04	4.55(97) E-02	14.7(25) E-02	1.22
$4 \ 1 \ 4 \ 5$	0 5 2522.31641	1.125 E-24	6.5	1.179E-24	-4.8	8.98028) E-04	$7.46(12) ext{E-02}$		1.20
$10 \ 3 \ 8 \ 10$	4 7 2522.41465	2.210 E-25	4.2	2.141E-25	3.1	3.43(93) E-04			1.00
$10\ 2\ 8\ 10$	$3 \ 7 \ 2522.43125$	4.158E-25	3.0	4.282E-25	-3.0	$7.62(36) ext{E-04}$	5.21(89) E-02		1.23
$3\ 1\ 2\ 4$	2 3 2523.25098	$6.562 E_{-}25$	2.5	6.713E-25	-2.3	7.17(81)E-04	$6.87(27) ext{E-02}$		1.04
$3\ 2\ 2\ 4$	$1 \ 3 \ 2525.15469$	1.194 E-24	2.5	1.194E-24	0.0	$10.74(17) ext{E-04}$	7.02(45) E-02	$9.9(11) ext{E-02}$	2.19
$7 \ 2 \ 6 \ 7$	$3 \ 5 \ 2525.78523$	7.533 E-25	2.3	7.587E-25	-0.7	$10.33(23) ext{E-04}$	5.50(78) E-02		1.33
$5\ 1\ 5\ 5$	2 4 2526.53277	$6.748 ext{E-}25$	2.3	6.574E-25	2.5	8.09(20)E-04			1.00
$2 \ 1 \ 1 \ 3$	2 2 2526.56036	1.128E-24	2.7	1.124E-24	0.3	$9.33(13) ext{E-04}$	$5.26(44) ext{E-02}$		1.70
$5 \ 0 \ 5 \ 5$	$1 \ 4 \ 2526.60465$	3.400 E-25	2.4	3.289E-25	3.2	$9.0(31) ext{E-04}$			1.00
$9 \ 3 \ 7 \ 9$	4 6 2526.79910	$5.666 ext{E-} 25$	2.3	5.805 E-25	-2.5	7.98(68)E-04			1.00
$9\ 2\ 7\ 9$	$3 \ 6 \ 2526.87039$	$2.990 ext{E-} 25$	3.6	2.903E-25	2.9	7.97(88)E-04			1.00
$3 \ 3 \ 1 \ 4$	2 2 2527.00697	$2.920 ext{E-} 25$	3.0	2.874E-25	1.5	5.44(96) E-04			1.00
$1 \ 1 \ 1 \ 2$	2 0 2527.08838	7.591 E- 25	2.4	6.166E-25	-0.7	11.74(25) E-04			1.00
$16 \ 4 \ 13 \ 17$	6 12 2527.08838(*)		9.817E-26					
$16 \ 3 \ 13 \ 17$	5 12 2527.08838(*)		4.908E-26					
$3 \ 0 \ 3 \ 4$	$1 \ 4 \ 2527.30911$	$1.006\mathrm{E}$ - 24	3.0	1.030 E- 24	-2.4	$9.70(18) ext{E-04}$	6.12(42)E-02	$6.2(10) ext{E-02}$	2.09
$3\ 1\ 3\ 4$	0 4 2527.38507	2.055 E-24	2.7	2.057E-24	-0.1	$9.34(10) ext{E-04}$	$4.62(18) ext{E-02}$	$3.39(42) ext{E-02}$	3.13
$6\ 2\ 5\ 6$	3 4 2530.49149	4.341 E- 25	2.3	4.564 E- 25	-5.2	$8.59(44) ext{E-04}$	$3.67(14) ext{E-02}$		1.06
$6\ 1\ 5\ 6$	2 4 2530.81792	$1.506\mathrm{E} ext{-}24$	3.6	9.158E-25	1.9	12.42(15)E-04	$8.18(60) ext{E-02}$		1.78
$1 \ 1 \ 0 \ 2$	2 1 2530.81792			5.613 E-25					
8 3 6 8	4 5 2531.02327	$3.650\mathrm{E} ext{-}25$	2.7	3.587 E- 25	1.7	$12.67(57) ext{E-04}$	$14.7(25) ext{E-02}$	17.0(59) E-02	2.59
$8\ 2\ 6\ 8$	$3 \ 5 \ 2531.31593$	$7.166 ext{E-} 25$	2.3	7.202 E- 25	-0.5	$8.85(20) ext{E-04}$			1.00
$4 \ 1 \ 4 \ 4$	2 3 2531.72930	$3.575\mathrm{E}{-}25$	2.5	3.543 E- 25	0.9	$13.32(81) ext{E-04}$		$10.8(56) ext{E-02}$	1.03
$2 \ 0 \ 2 \ 3$	1 3 2532.05287	1.593 E-24	2.3	1.610 E-24	-1.1	$8.91(10) ext{E-04}$	$5.80(28) ext{E-02}$		1.94
$4 \ 0 \ 4 \ 4$	1 3 2532.06676	7.216 E-25	2.3	7.151E-25	0.9	$9.15(16) ext{E-04}$	$1.61(64) ext{E-02}$		1.94
$2 \ 1 \ 2 \ 3$	0 3 2532.44785	$7.960 ext{E-} 25$	2.3	7.888E-25	0.9	$10.41(30) ext{E-04}$	$6.21(83) ext{E-02}$	5.8(20) E-02	1.28
10 4 7 10	5 6 2533.23694	2.254 E- 25	3.5	2.229 E- 25	1.1	$6.50(86) ext{E-04}$			1.00
10 3 7 10	4 6 2533.49440	$4.376 ext{E-}25$	2.8	4.459 E- 25	-1.9	$7.19(46) ext{E-04}$	$7.2(18) ext{E-02}$		1.08
$5\ 2\ 4\ 5$	3 3 2534.81853	1.010 E-24	2.5	1.012E-24	-0.2	$9.84(21) ext{E-04}$	$6.10(59) ext{E-02}$	$7.0(14) ext{E-02}$	1.47
$7 \ 3 \ 5 \ 7$	4 4 2534.93816	$9.281 \text{E}{-}25$	2.4	9.149E-25	1.4	$10.68(40) ext{E-04}$	$5.9(13) ext{E-02}$	$9.07(23) ext{E-02}$	1.11
$7 \ 2 \ 5 \ 7$	$3 \ 4 \ 2535.96572$	4.766 E-25	2.9	4.634E-25	2.7	$9.98(41) ext{E-04}$			1.00
$5\ 1\ 4\ 5$	$2 \ 3 \ 2535.97643$	$5.292 ext{E-} 25$	2.7	$5.257 ext{E-} 25$	0.6	10.17(39) E-04	$3.2(14) ext{E-02}$		1.03
$1 \ 0 \ 1 \ 2$	$1 \ 2 \ 2536.41535$	$5.509 ext{E-} 25$	2.3	$5.502 ext{E-} 25$	0.1	10.31(29) E-04	$6.2(11) ext{E-02}$		1.15
$3\ 1\ 3\ 3$	2 2 2536.47711	7.421 E- 25	2.3	$7.374\mathrm{E}{-}25$	0.6	$9.34(17) ext{E-04}$	$5.04(61) ext{E-02}$		1.37
$9 \ 4 \ 6 \ 9$	5 5 2536.73543	5.812 E- 25	2.3	$5.746 ext{E-} 25$	1.1	$8.99(66) ext{E-04}$			1.00
$9 \ 3 \ 6 \ 9$	4 5 2537.61888	2.845 E- 25	2.6	$2.910 ext{E-} 25$	-2.3	$6.55(43) ext{E-04}$			1.00
$3 \ 0 \ 3 \ 3$	$1 \ 2 \ 2537.67522$	$4.097 ext{E} - 25$	2.9	$3.952 ext{E-} 25$	3.5	13.00(33) E-04	8.5(11)E-02	8.0(23) E-02	1.50
$1 \ 1 \ 1 \ 2$	0 2 2537.86288	8.714E-25	2.3	8.737E-25	-0.3	$9.38(19) ext{E-04}$	$6.23(68) ext{E-02}$		1.43
$6 \ 3 \ 4 \ 6$	4 3 2538.20901	5.412 E- 25	2.4	5.180 E- 25	4.2	$6.57(46) ext{E-04}$	$2.9(12) ext{E-02}$		1.03
$4\ 2\ 3\ 4$	3 2 2538.36916	5.116 E-25	2.9	5.321E-25	-4.1	$8.68(74) ext{E-04}$			1.00
8 4 5 8	5 4 2539.71037	$3.706\mathrm{E} ext{-}25$	2.8	$3.880 ext{E-} 25$	-4.7	4.7(17) E-04			1.00
$2 \ 1 \ 2 \ 2$	$2 \ 1 \ 2540.32486$	3.156 E-25	3.7	3.043E-25	3.5	$6.9(14) ext{E-04}$			1.00

	ν^{a}	Инт (297-15) ^b	$\Lambda^{Sc)}$	Инт (297-15)	d) δ^{Se}	$\Gamma^{f)}_{-}$	$\Lambda^{f)}_{-}$	$\mu_{VO}f)$	$R^{g)}$
1 2	3	4	- ν. 5	6	7	- 0	9	10	11
533542	2540 38972	- 1 112E-24	4 4	1 099E-24	11	11 76(28)E-04		10	1 00
3 2 2 3 3 1	2540 69559	7.839E-25	2.3	7 951E-25	-1.5	10.21(26) E - 04	4.51(60)E-02	7.3(15)E-02	1 41
624633	2540 91330	1 221E-24	6.7	1.161E-24	4.8	9.75(86)E-04	101(00)11 02	110(10)12 02	1.00
	2541 13839	$7.452E_{-25}$	23	7 797E-95	-3.7	6.8(10)E-04			1.00
4 1 3 4 9 9	2541.13835	1.452E-20	5.1	1.121E-20	2.2	$8.17(10) \ge 0.4$	6 35(31)E 09		2.10
4 3 2 4 4 1	2541.13410	3.818E-24	9.1 9.7	3.891E-24	-0.0	$10.89(70) \ge 0.4$	0.55(51)E-02		1 00
5 4 2 5 5 1	2542.06084	6 120E 25	2.1	6 315E 25	-0.1	$9.33(31) \ge 0.4$	1 34(62)E 02	5 1(16)E 02	1 19
8 2 5 8 4 4	2542.00084	1.008E.24	2.1	0.510E-20 0.112E-25	-5.1	$3.33(31) \pm 0.4$	1.34(02)E-02	5.1(10)E-02	1.12
	2542.14524	1.008E-24	2.0	0.113E-23	0.1	11.02(39)E-04			1.00
$15 \ 4 \ 12 \ 10 \ 0 \ 11$ $15 \ 2 \ 12 \ 16 \ 5 \ 11$	2542.14524			4.401E-20					
$13 \ 312 \ 10 \ 311$	2542.14524	4 570 - 95	.	0.902E-20	2.0	19 70(70) 〒 04	18 40(27) E 02		1 46
	2542.50502	4.579E-25	∠.o	4.707E-20	-3.9	$12.70(79) \pm 04$	$16.49(57) \pm 02$		1.40
	2542.91750	9.040E-20	∠.ə 2.0	9.713E-20	-1.0	$0.5(11) \pm 0.4$	$0.03(41) \pm 02$	6 1(41)E 09	1.97
	2543.32134	2.280E-25	3.8 9.4	2.300E-20	-3.8	$9.5(11) \pm 0.04$	4.4(17) E-02	6.1(41)E-02	1.10
	2544.19580	3.747E-25	2.4	3.338E-23	5.U E 0	11.05(39)E-04	12.37(15)E-02		1.41
651660	2544.40657	5.027E-25	2.9	5.319E-25	-5.9	9.09(23)E-04	$5.08(76) \pm 02$		1.29
955964	2544.63280	5.852E-25	2.3	5.823E-25	0.5	$9.98(54) \pm 04$	8.13(91)E-02		1.84
10 4 6 10 5 5	2544.90003	4.118E-25	2.5	4.237E-25	-2.9	9.27(88)E-04	$11.38(32) \pm 02$		1.09
	2544.94915	8.115E-25	2.3	8.250E-25	-1.7	$8.34(93) \pm 04$	$9.25(29) \pm 02$		2.90
5 2 3 5 3 2	2545.07251	7.668E-25	2.3	7.995E-25	-4.3	$6.97(31) \times 0.04$	8.7(12) E-02		1.29
854863	2545.32286	3.468 E- 25	2.6	3.311E-25	4.5	4.72(63)E-04	<i>.</i> .	<i>,</i> ,	1.00
$3 \ 2 \ 1 \ 3 \ 3 \ 0$	2545.56114	$6.091 ext{E} - 25$	2.7	6.098 E- 25	-0.2	$11.09(30) ext{E-04}$	$5.70(64) \pm 02$	8.7(16)E-02	1.66
$2 \ 1 \ 1 \ 2 \ 2 \ 0$	2546.06534	1.376 E-24	3.4	1.382E-24	-0.5	9.72(22)E-04	$4.97(56) ext{E-02}$	3.8(13)E-02	1.37
$1 \ 0 \ 1 \ 1 \ 1 \ 0$	2546.19203	$5.910 ext{E} - 25$	2.4	5.672 E- 25	4.0	14.06(74)E-04			1.00
$7 \ 3 \ 4 \ 7 \ 4 \ 3$	2546.46106	$5.715 \text{E}{-}25$	2.4	5.668 E- 25	0.8	10.25(37)E-04	$9.65(94) \pm 02$	6.7(22) E-02	1.61
4 2 2 4 3 1	2546.65834	1.874 E- 24	4.3	1.839E-24	1.9	9.59(12) E-04	$2.69(42) ext{E-02}$		1.16
$5 \ 3 \ 2 \ 5 \ 4 \ 1$	2547.78681	7.488 E- 25	2.3	7.765 E- 25	-3.7	8.97(18) E-04			1.00
$6 \ 4 \ 2 \ 6 \ 5 \ 1$	2548.33099	1.079 E- 24	2.6	1.100E-24	-2.0	$9.60(16) ext{E-04}$	$6.38(30) \pm 02$	1.15(69) E-02	2.70
752761	2548.69282	3.724 E- 25	2.4	3.616 E- 25	2.8	10.90(98) E-04	11.6(33)E-02	10.5(68) E-02	1.84
964973	2548.94808	$4.571 ext{E} - 25$	2.5	4.431E-25	3.0	$6.82(61) ext{E-04}$			1.00
$9 \ 4 \ 5 \ 9 \ 5 \ 4$	2549.11875	3.147E-25	2.7	3.268 E- 25	-3.9	$9.45(73) ext{E-04}$	$9.1(26) ext{E-02}$		1.07
8 6 2 8 7 1	2549.54374	$4.464 \text{E}{-}25$	2.4	4.627 E- 25	-3.7	$6.88(27) ext{E-04}$	2.60(92)E-02		1.05
973982	2550.25931	$3.296 ext{E} - 25$	2.5	3.360 E- 25	-2.0	$9.10(80) ext{E-04}$		$10.2(50) ext{E-02}$	1.07
982991	2550.95859	1.326 E-25	2.4	1.300 E- 25	1.9	$4.89(27) ext{E-04}$	$4.31(39) ext{E-02}$		1.80
$7 \ 4 \ 3 \ 7 \ 5 \ 2$	2551.52134	6.304 E - 25	2.3	$6.390 ext{E-} 25$	-1.4	$9.89(69) ext{E-04}$	$18.7(26) ext{E-02}$		1.44
8 4 4 8 5 3	2551.87021	1.003 E- 24	2.7	$9.776 ext{E-} 25$	2.5	$9.34(13) ext{E-04}$	$3.66(45) ext{E-02}$		1.33
8 5 3 8 6 2	2553.53027	8.283 E - 25	2.4	8.653 E- 25	-4.5	$8.40(13) ext{E-04}$	$7.32(48) ext{E-02}$		1.27
$2 \ 2 \ 0 \ 2 \ 1 \ 1$	2555.40295	1.315 E-24	4.7	1.258E-24	4.3	13.83(80) E-04			1.00
$10 \ 5 \ 5 \ 10 \ 6 \ 4$	2556.18278	$4.861 \text{E}{-}25$	2.3	4.874E-25	-0.3	8.96(32) E-04	2.05(62)E-02	$5.5(15) ext{E-02}$	1.17
$10 \ 7 \ 3 \ 10 \ 8 \ 2$	2556.46943	3.142 E- 25	2.6	3.146 E- 25	-0.2	9.90(88)E-04	19.08(44)E-02		1.41
954963	2556.49352	$3.630\mathrm{E}{-}25$	2.5	3.574E-25	1.5	$9.5(12) ext{E-04}$	$9.5(23) ext{E-02}$	$10.50(57) ext{E-02}$	1.23
$2 \ 1 \ 1 \ 2 \ 0 \ 2$	2556.83965	8.241E-25	2.3	$8.526 ext{E-} 25$	-3.5	$7.87(23) ext{E-04}$	$2.02(73) ext{E-} 02$		1.05
$3 \ 2 \ 1 \ 3 \ 1 \ 2$	2558.27945	7.047 E- 25	2.3	$7.240 ext{E-} 25$	-2.8	$7.52(29) ext{E-04}$	1.48(42) E-02		1.11
$10 \ 6 \ 4 \ 10 \ 7 \ 3$	2560.04691	$4.285 ext{E-} 25$	2.4	4.403 E- 25	-2.8	$9.78(64) ext{E-04}$			1.00
$2 \ 2 \ 1 \ 2 \ 1 \ 2$	2560.06792	2.504 E- 25	2.3	2.608 E- 25	-4.2	$6.3(12) ext{E-04}$	$9.8(33) ext{E-02}$		1.09
$2 \ 0 \ 2 \ 1 \ 1 \ 1$	2560.96240	8.219 E-25	2.3	8.411E-25	-2.4	$8.94(17) ext{E-04}$	$3.85(56) ext{E-02}$		1.26
2 1 2 1 0 1	2562.28438	$4.888 \text{E}{-}25$	2.4	$5.250 ext{E-} 25$	-7.5	$15.94(63) ext{E-04}$			1.00
3 1 2 3 0 3	2562.86340	3.038 E- 25	2.3	3.151E-25	-3.8	$9.13(73) ext{E-04}$			1.00

Таблица В.3 – (продолжение)

JK_aK_c $J'K'_aK'_c$	$\nu^{a)}$	Инт. $(297.15)^{b}$	$^{)}\Delta^{S}{}^{c)}_{\nu}$	Инт.(297.15)	$^{d)}$ $\delta^{Se}_{\nu}^{e)}$	$\Gamma_0^{f)}$	$\Delta_2^{f)}$	$\nu_{\mathrm{VC}}{}^{f)}$	$R^{g)}$
1 2	3	4	5	6	7	8	9	10	11
3 3 1 3 2 2	2563.94032	6.931 E- 25	2.4	6.674 E- 25	3.7	8.19(50) E-04			1.00
$4 \ 2 \ 2 \ 4 \ 1 \ 3$	2564.03268	$9.878 ext{E-}25$	2.3	1.033E-24	-4.6	$7.87(19) ext{E-04}$			1.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2564.36594	$5.955 ext{E-}25$	2.3	5.765 E-25	3.1	12.36(47) E-04			1.00
4 4 0 4 3 1	2566.00179	1.400 E-24	3.4	7.299E-25	1.4	$14.91(40) ext{E-04}$	$3.5(14) ext{E-02}$		1.04
5 4 1 5 3 2	2566.00179			6.498 E- 25					
3 0 3 2 1 2	2566.41188	$7.462 ext{E-} 25$	2.3	$7.586 ext{E-} 25$	-1.7	6.99(49) E-04			1.00
3 1 3 2 0 2	2566.75636	1.490 E-24	4.3	1.540 E- 24	-3.4	$8.50(11) \pm 04$	$5.24(38) ext{E-02}$		1.78
4 3 2 4 2 3	2567.66064	$4.055 \text{E}{-}25$	2.3	4.007 E-25	1.1	11.7(16) E-04	12.5(38)E-02	10.0(56) E-02	1.22
6 4 2 6 3 3	2568.91655	1.219E-24	2.5	1.234E-24	-1.2	8.76(96)E-04	6.75(43)E-02		1.80
4 2 3 4 1 4	2569.46348	2.602E-25	2.3	2.571E-25	1.1	11.22(93)E-04			1.00
2 2 1 1 1 0	2569.84468	4.601E-25	2.3	4.760E-25	-3.5	8.40(37)E-04			1.00
3 1 2 2 2 1	2570 74089	2 573E-25	2.0	2 427E-25	5.6	10.09(80)E-04			1.00
5 2 3 5 1 4	2571 13355	2.070E 20	2.4	2.12112 20 3.790E 25	33	$11.77(74) \ge 04$		10.5(41) = 0.2	1.16
404313	2571.15555	1.975E 24	2.0	1 082E 24	0.4	9.62(12) E 04	476(29)E02	$1.81(66) \ge 0.2$	1.10
4 1 4 3 0 3	2571.27852	0.474E-25	2.0 9.3	0.0265.25	-0.4	$9.02(12) \pm 04$ $9.75(15) \pm 04$	$4.70(23) \pm 0.02$	$1.01(00) \pm 0.02$	1.00
4 1 4 5 0 5 E 4 9 E 9 9	2571.34212	9.474E-25	⊿.J ე.ე	9.920E-20	-4.0	9.73(13) = 04	$3.83(32) \pm 0.02$	0.11(80)E-02	1.22
542555	2572.15095	7.094E-25	2.0	7.023E-23	-1.7	9.71(10) E-04	7.11(39) E-02		1.34
	2572.65193	7.257E-25	2.3	7.290E-25	-0.5	$9.86(26) \pm 04$	7.78(63) E-02	0.1(11) - 00	1.49
651642	2572.81672	8.500E-25	2.3	8.751E-25	-3.0	8.88(39)E-04	5.87(59) E-02	2.1(11) E-02	1.22
633624	2573.12510	8.102E-25	2.3	8.348E-25	-3.1	$9.06(23) \pm 0.04$	6.67(84)E-02		1.11
	2573.44785	4.921 E- 25	2.4	5.040 ± 25	-2.5	$8.43(26) \pm 04$	4.33(92)E-02		1.12
$5 \ 5 \ 0 \ 5 \ 4 \ 1$	2573.54625	2.405 E - 25	2.4	2.464E-25	-2.5	4.50(54)E-04			1.00
5 1 4 5 0 5	5 2574.71749	2.240 E - 25	2.4	2.155 E- 25	3.7	$9.60(91) ext{E-04}$			1.00
$5 \ 2 \ 4 \ 5 \ 1 \ 5$	2574.81432	$4.089 \text{E}{-}25$	2.3	4.303 E- 25	-5.3	$9.02(84) ext{E-04}$		$9.8(42) ext{E-02}$	1.08
$3 \ 2 \ 2 \ 2 \ 1 \ 1$	2575.23091	$9.134 \text{E}{-}25$	2.3	9.677 E-25	-6.0	$7.48(70) ext{E-04}$	6.6(24)E-02		1.04
7 4 3 7 3 4	2575.35998	4.227 E- 25	2.4	4.088 E- 25	3.2	$7.82(45) ext{E-04}$	$9.12(86) ext{E-02}$		1.18
$5 \ 5 \ 1 \ 5 \ 4 \ 2$	2575.49033	$4.801 \text{E}{-}25$	2.3	5.040 E- 25	-5.0	$6.61(26) ext{E-04}$	8.46(82)E-02		1.22
$5 \ 0 \ 5 \ 4 \ 1 \ 4$	2575.89469	1.108 E-24	3.1	1.135E-24	-2.5	$7.70(29) ext{E-04}$			1.00
5 1 5 4 0 4	2575.90481	2.275 E-24	2.5	2.271E-24	0.1	9.21(24)E-04	3.52(59)E-02	2.32(97)E-02	1.11
6 4 3 6 3 4	2576.73769	3.678 E- 25	2.3	$3.691\mathrm{E}$ - 25	-0.4	11.62(70) E-04	$4.4(17) ext{E-02}$	13.8(47) E-02	1.17
6 2 4 6 1 5	2577.87754	5.757 E- 25	2.3	$5.816 ext{E-} 25$	-1.1	10.62(48) E-04	8.5(12)E-02	9.9(29) E-02	1.26
4 1 3 3 2 2	2578.11800	1.102 E- 24	3.0	1.053E-24	4.4	$6.90(37) ext{E-04}$			1.00
$4 \ 2 \ 2 \ 3 \ 3 \ 1$	2579.57319	2.311E-25	2.4	2.385 E- 25	-3.2	$9.27(94) ext{E-04}$			1.00
$4 \ 2 \ 3 \ 3 \ 1 \ 2$	2579.82986	$5.976\mathrm{E} ext{-}25$	2.3	$5.751\mathrm{E}{-}25$	3.7	$10.10(45) ext{E-04}$	$9.8(13)\mathrm{E}{-}02$	6.2(29) E-02	1.33
$6 \ 1 \ 5 \ 6 \ 0 \ 6$	2580.11910	3.610 E-25	2.3	3.481 E- 25	3.5	8.68(25) E-04			1.00
$6 \ 1 \ 6 \ 5 \ 0 \ 5$	52580.35372	3.727 E-24	2.5	1.204E-24	3.0	13.08(21) E-04	12.48(83) E-02	$6.5(14) ext{E-02}$	2.93
$6 \ 0 \ 6 \ 5 \ 1 \ 5$	2580.35372			2.409E-24					
$8 \ 6 \ 2 \ 8 \ 5 \ 3$	2581.09777	$5.949 ext{E-} 25$	2.3	5.714E-25	3.9	11.03(47) E-04	$3.2(10) ext{E-02}$	$19.02(30) ext{E-02}$	1.70
$7 \ 6 \ 1 \ 7 \ 5 \ 2$	2581.33263	$2.789 ext{E-} 25$	2.7	2.732 E- 25	2.0	$9.33(39) ext{E-04}$			1.00
$6 \ 6 \ 0 \ 6 \ 5 \ 1$	2581.88921	3.099 E-25	2.7	3.233 E- 25	-4.4	5.15(40) E-04			1.00
753744	2581.89863	$6.245 ext{E-}25$	2.3	$6.214\mathrm{E}$ - 25	0.4	$9.54(24) ext{E-04}$			1.00
$7 \ 4 \ 4 \ 7 \ 3 \ 5$	2582.44015	$5.534\mathrm{E}{-}25$	2.3	$5.524\mathrm{E}{-}25$	0.1	$8.34(34) ext{E-04}$	$7.72(79) ext{E-02}$		1.42
3 3 1 2 2 0	2583.44527	1.150 E-24	2.8	1.125E-24	2.2	11.03(29)E-04	$9.05(63) ext{E-02}$	3.7(14) E-02	1.95
963954	2583.63956	$2.521 \text{E}{-}25$	2.7	2.541E-25	-0.9	7.43(48)E-04	. /		1.00
$7 \ 2 \ 5 \ 7 \ 1 \ 6$	2584.06941	2.225 E-25	2.8	2.255 E-25	-1.4	8.41(55)E-04			1.00
$5\ 1\ 4\ 4\ 2\ 3$	2584.13038	$7.566 ext{E-} 25$	2.3	6.949E-25	8.1	15.4(10)E-04	18.8(37) E-02	23.9(88) E-02	1.32
735726	2584.17582	4.393 E-25	2.3	4.509 E-25	-2.7	8.21(80)E-04	· · /	· /	1.00
524413	2584.57711	1.354E-24	2.5	1.406E-24	-3.9	8.97(10) E-04	5,49(29)E-02		1.82
0				_ _ I					

JKaKa J'K	K'_{-}	$\nu^{a)}$	Инт.(297.15) ^b	$\Delta^{Sc)}$	Инт.(297.15) ⁶	d) δ^{Se}_{u}	$\Gamma_{2}^{f)}$	$\Delta_2^{f)}$	$\nu_{\rm VVC}f)$	$R^{g)}$
1	2	3	4	- v - 5	6	7	- 0 8	-2 9	10	11
7 1 7 6	0 6	2584.67253	3.730E-24	3.2	2.398E-24	3.5	11.53(10)E-04			1.00
7 0 7 6	1 6	2584.67253			1.199E-24		()			
$7 \ 1 \ 6 \ 7$	0 7	2585.34580	4.308 E-25	2.3	1.372E-25	4.4	11.43(56)E-04			1.00
$7 \ 2 \ 6 \ 7$	1 7	2585.34580			2.744E-25		× ,			
$3 \ 3 \ 0 \ 2$	2 1	2585.59960	4.634 E-25	2.3	4.789 E-25	-3.4	11.76(44) E-04			1.00
$4 \ 3 \ 2 \ 3$	2 1	2589.35866	4.415 E-25	2.3	4.515E-25	-2.3	9.20(45) E-04			1.00
$6 \ 1 \ 5 \ 5$	2 4	2589.51191	1.499 E - 24	2.4	1.528E-24	-2.0	8.30(11)E-04	$3.81(38) \pm 02$		1.51
$6\ 2\ 5\ 5$	1 4	2589.60434	7.797 E-25	2.3	7.641 E- 25	2.0	12.50(26) E-04	~ /		1.00
8 1 7 8	0 8	2590.41956	3.239E-25	2.4	2.103E-25	2.6	$9.19(44) \ge -04$			1.00
8278	1 8	2590.41956			1.052E-25		· · · ·			
9 0 9 8	1 8	2592.90226	3.303 E-24	2.7	1.033E-24	6.1	11.30(11) E-04	$13.74(37) \pm 02$		2.45
$9 \ 1 \ 9 \ 8$	0 8	2592.90226			2.066 E-24		· · ·	~ /		
$5 \ 3 \ 3 \ 4$	$2 \ 2$	2594.18249	9.005 E-25	2.3	8.384E-25	6.8	10.71(21) E-04	8.76(63) E-02		1.48
$7 \ 2 \ 6 \ 6$	1 5	2594.64397	1.480 E - 24	3.3	1.548E-24	-4.7	8.79(32)E-04	5.18(73) E-02		1.17
$9\ 2\ 7\ 9$	1 8	2595.65607	$3.682 \text{E}{-}25$	2.3	1.217E-25	0.8	$6.53(58) \pm 04$	()		1.00
9379	2 8	2595.65607			2.434E-25		· · · ·			
$10 \ 5 \ 5 \ 10$	4 6	2596.23031	2.392E-25	3.8	2.340E-25	2.1	8.54(32) E-04	9.3(17) E-02		1.42
10 0 10 9	19	2596.81342	2.740E-24	4.2	1.806E-24	1.1	10.07(23) E-04	8.71(68)E-02	6.6(15) E-02	1.39
10 1 10 9	0 9	2596.81342			9.028E-25				()	
$6 \ 2 \ 4 \ 5$	3 3	2597.10203	8.688E-25	2.3	8.897E-25	-2.5	9.19(13) E-04	6.63(60)E-02		1.55
4 4 1 3	3 0	2597.85550	6.491E-25	2.3	6.013E-25	7.3	$10.53(14) \pm 04$	1.53(44)E-02		1.11
4 3 1 3	2 2	2598.13540	3.780E-25	2.3	3.888E-25	-2.9	9.07(25) E-04	()=		1.00
6345	2 3	2598.81581	4.955E-25	2.3	4.693E-25	5.2	11.58(12)E-04	10.42(24)E-02	10.30(49)E-02	1.25
4 4 0 3	3 1	2598 91813	1 175E-24	3.2	1 185E-24	-0.8	7.76(19)E-04	10112(21)202	10.00(10)12 02	1.00
8177	2 6	2599 58151	2 244E-24	2.5	1 456E-24	2.6	10.46(33)E-04	11.1(15)E-02		1.00
8277	1 6	2500.50151		2.0	7 280E-25	210	10110(00)2 01	1111(10)12 02		1.20
	1 10	2600.58922	2.319E-24	2.7	7.598E-25	1.7	8.66(10)E-04	6.38(29)E-02	2.06(62)E-02	2.15
$11 \ 0 \ 11 \ 10$	0 10	2600 58922	21010121		1.520E-24		0.000(10)2.01	0.00(20)2 02	2100(02)2 02	2.10
10 2 8 10	1 9	2601 19304	2 577E-25	2.7	1.643E-25	4 4	8.05(84)E-04			1.00
10 3 8 10	29	2601 19304			8 213E-26		0.000(01)2.01			1.00
$10 \ 3 \ 7 \ 10$	28	2601 25331	2.051E-25	2.8	1 999E-25	4.3	8.33(92)E-04			1.00
7256	3 4	2603 53057	4 861E-25	2.3	4 791E-25	1.4	8.23(78)E-04	8 46(89)E-02		1.00
12 0 12 11	1 1 1	2603.00001	$1.842E_{-}24$	2.0	1.237E-24	-0.7	7.89(10)E-04	6.15(29)E-02		2 59
$12 \ 0 \ 12 \ 11$ $12 \ 1 \ 12 \ 11$	0.11	2604.22551	1.01212 24	2.0	6 185E-25	0.1	1.05(10)1.04	0.10(23)11 02		2.00
9 1 8 8	2 7	2604 39758	2.054E-24	27	6.562E-25	4 1	13 4(19)E-04		12.30(15)E-02	1 24
9288	1 7	2604 39758		2.1	1.312E-24	111	1011(10)12 01		12.00(10)12.02	1.21
5 4 2 4	3 1	2604 54150	8 015E-25	23	8 382E-25	-4.6	7.37(39)E-04	$4.9(15)E_{-}02$		1.04
13 0 13 12	1 1 2	2607 73568	1 533E-24	4.3	4 870E-25	4.6	$16 \ 16(47) E-04$	22.5(29)E-02	24 2(54)E-02	2 20
$13 \ 0 \ 13 \ 12$ $13 \ 1 \ 13 \ 12$	0.12	2607 73568	1100011 21	110	9 741E-25	110	10110(11)2 01	2210(20)11 02	2112(01)12 02	2.20
10 1 9 9	2 8	2609 08167	$1.673E_{-}24$	24	1 191E-94	-0.6	$9.95(16)E_04$	7.72(38)E-02	5.36(90)E-02	2.02
10 2 9 9	1 8	2609.08167	101010-24	2.1	5 605E-25	010	0100(10)10-04	2(00)12-02	0.00(00)12-02	2.02
8967	3 5	2609.37995	8 9031 25	23	9.399E-25	-4.8	6 30(26)E 04	5 64(82)E 02		1 37
8367	2 5	2609.47488	$4.941E_{-25}$	2.3 2.3	4 670E-25	5.4	$12.61(42)E_04$	$11.3(57)E_{02}$		2 71
5514	<u> </u>	2612 85041	1 104E 94	3.6	1 139E 94	-2.6	9 08(38)E 04	4 45(59)E 02	3.8(16)E.02	1 1 1
11 1 10 10	1 U 9 Q	2613 63557	1 440E 94	9.0 9.0	4 639E 95	3.5	9 29(11)E 04	1.44(36) = 02	0.0(10)10-02	1 11
11 9 10 10	1 9	2613 63557	1,11010-24	4.0	9.264E-25	0.0	0.20(11)12-04	1.11(00)12-02		1,11
7 1 1 6	3 3	2614 22420	5 871 - 95	9 2	5.950F 95	-1.6	8 78(94)F 04			1 00
0	5 0	201 100 100	5.0111-20	2.0	0.0001-20	1.0	5115(24)15-04			1.00

Таблица В.3 – (продолжение)

JK_aK_c $J'K'_aK'_c$	$ u^{a)}$	Инт.(297.15) ^b	$\Delta^{Sc}_{\nu}^{c)}$	Инт.(297.15)	^{l)} $\delta^{Se}_{\nu}^{e)}$	$\Gamma_0^{f)}$	$\Delta_2^{f)}$	$\nu_{\mathrm{VC}}{}^{f)}$	$R^{g)}$
1 2	3	4	5	6	7	8	9	10	11
15 0 15 14 1 14	2614.34298	8.476 E - 25	2.3	$2.750 ext{E-} 25$	2.7	$7.64(39) ext{E-04}$			1.00
$15 \ 1 \ 15 \ 14 \ 0 \ 14$	2614.34298			$5.501\mathrm{E}{-}25$					
9 2 7 8 3 6	2614.95884	4.011 E-25	2.3	$4.130 ext{E}-25$	-3.0	$9.30(48) ext{E-04}$	$7.4(18) ext{E-02}$		1.12
9 3 7 8 2 6	2614.97991	7.982 E- 25	2.3	$8.259 ext{E}-25$	-3.5	$8.53(15) ext{E-04}$	$5.13(42) ext{E-02}$		1.84
8 3 5 7 4 4	2617.69190	5.324E-25	2.3	$5.506\mathrm{E}$ - 25	-3.5	$3.99(43) ext{E-04}$	$6.6(10) ext{E-02}$		1.39
$10 \ 2 \ 8 \ 9 \ 3 \ 7$	2620.38709	$1.088 \mathrm{E}$ -24	3.8	$7.069 ext{E} - 25$	2.5	$8.65(81) ext{E-04}$			1.17
$10 \ 3 \ 8 \ 9 \ 2 \ 7$	2620.38709			$3.535\mathrm{E}{-}25$					
$6\ 5\ 2\ 5\ 4\ 1$	2620.50182	$3.849 \mathrm{E}{-}25$	2.4	$3.760 ext{E-} 25$	2.3	$9.95(49) ext{E-04}$			1.00
$13 \ 1 \ 12 \ 12 \ 2 \ 11$	2622.35629	8.278 E- 25	2.3	2.808 E- 25	-1.8	4.83(88)E-04			1.00
13 2 12 12 1 11	2622.35629			$5.616\mathrm{E}$ - 25					
$6\ 5\ 1\ 5\ 4\ 2$	2623.71122	6.067 E-25	2.3	6.118E-25	-0.9	$7.28(22) ext{E-04}$	$6.48(64) ext{E-02}$		1.21
$9 \ 3 \ 6 \ 8 \ 4 \ 5$	2624.48164	2.613 E - 25	2.5	2.607 E- 25	0.2	$8.21(87) ext{E-04}$			1.00
7 5 3 6 4 2	2626.48253	$4.556\mathrm{E}{-}25$	2.5	4.377 E- 25	3.9	$11.29(50) ext{E-04}$	$7.7(21) ext{E-02}$		1.05
$14 \ 1 \ 13 \ 13 \ 2 \ 12$	2626.52553	$6.036 ext{E-} 25$	2.3	4.143 E- 25	-3.0	8.57(21) E-04	$2.20(65) ext{E-02}$		1.09
$14\ \ 2\ 13\ \ 13\ \ 1\ 12$	2626.52553			$2.071\mathrm{E}\text{-}25$					
$6\ 2\ 5\ 7\ 5\ 2$	2628.56716	9.637 E - 25	2.3	$9.893 ext{E-} 25$	-2.7	$8.98(27) ext{E-04}$	$6.20(55) ext{E-02}$	$3.4(13) ext{E-02}$	1.79
$15 \ 1 \ 14 \ 14 \ 2 \ 13$	2630.56868	4.287 E - 25	2.3	$1.484\mathrm{E}\text{-}25$	-3.8	$9.59(84) ext{E-04}$			1.00
$15\ 2\ 14\ 14\ 1\ 13$	2630.56868			$2.967\mathrm{E}\text{-}25$					
$10 \ 3 \ 7 \ 9 \ 4 \ 6$	2630.74971	$4.259\mathrm{E}{-}25$	2.3	$4.336\mathrm{E}{\text{-}}25$	-1.9	$9.53(14) ext{E-04}$	$6.38(94) ext{E-02}$		1.20
$12 \ 2 \ 10 \ 11 \ 3 \ 9$	2630.84270	$6.593 ext{E-} 25$	2.3	$2.204\mathrm{E}\text{-}25$	-0.4	$9.35(96) ext{E-04}$	$17.1(56) ext{E-02}$		1.14
$12 \ 3 \ 10 \ 11 \ 2 \ 9$	2630.84270			$4.408\mathrm{E}{\text{-}}25$					
$9 \ 5 \ 5 \ 8 \ 4 \ 4$	2635.75685	$3.016\mathrm{E}$ - 25	2.4	$2.920 ext{E-} 25$	3.1	$10.9(15) ext{E-}04$			1.00
$13 \ 2 \ 11 \ 12 \ 3 \ 10$	2635.87997	$4.729\mathrm{E}{-}25$	2.3	3.247 E- 25	-3.0	7.34(31)E-04	$7.82(88) ext{E-02}$		1.46
$13 \ \ 3 \ 11 \ \ 12 \ \ 2 \ 10$	2635.87997			$1.623 ext{E-} 25$					
$7 \ 6 \ 2 \ 6 \ 5 \ 1$	2636.93193	$6.505 ext{E-} 25$	2.3	$6.224\mathrm{E}\text{-}25$	4.2	$12.1(10) ext{E-04}$			1.00
$18 \ 2 \ 16 \ 18 \ 3 \ 15$	2658.32125	8.168 E- 25	2.3	8.362 E-25	-2.4	$9.01(35) ext{E-04}$			1.00
9 8 2 8 7 1	2670.84884	3.074 E- 25	2.5	3.035 E- 25	1.2	4.28(75)E-04			1.00

a) Экспериментальные положения линий (в см⁻¹). Линии, помеченные ^(*) в колонке 3, принадлежат полосе $\nu_2 + \nu_3$.

^{b)} Интенсивности, полученные из фиттинга экспериментальных форм линий с использованием модели профиля Армана - Тран (qSDVP) (в см⁻¹/мол·см⁻²).

 $^{c)}$ Δ_{ν}^{S} - экспериментальная неопределенность в определении интенсивности линии (в процентах).

^{d)} Интенсивности, рассчитанные на основе параметров из таблицы ??.

е) б^S_ν - разница (в процентах) между интенсивностями эспериментальных линий и линий, рассчитанных на основе параметров из таблицы ??.

f) Параметры, рассчитанные путем фиттинга экспериментальных форм линий с использованием профиля Армана - Тран (qSDVP). Значения в скобках (1σ) представляют собой статистические доверительные интервалы. Значение параметра отсутствует в случае, когда соответствующий параметр не использовался в процедуре варьирования и предполагался равным нулю.
g) Здесь R = d_{rms}(qSDVP)/d_{rms}(qSDRP); d_{rms}(qSDVP) и d_{rms}(qSDRP) получены из подгонки форм линий.

Параметр	(110)	(030)	(011)
1	2	3	4
E	2738.331526(52)	2544.720	2749.743942(47)
A	5.5307007(71)	5.8803	5.4988226(62)
В	4.5393982(41)	4.7462	4.5611541(40)
C	2.3871433(53)	2.3690	2.3965643(17)
$\Delta_K \times 10^3$	1.10307(53)	1.52222	1.09570(29)
$\Delta_{JK} \times 10^3$	-0.63290(43)	-0.83425	-0.63892(22)
$\Delta_J \times 10^3$	0.176242(60)	0.220831	0.180346(82)
$\delta_K \times 10^3$	-0.000736	0.057601	-0.000736
$\delta_J \times 10^3$	0.079993(33)	0.102704	0.082201(20)
$H_K \times 10^6$	0.3253(21)	0.7305	0.2975(21)
$H_{KJ}\times 10^6$	0.07914	-0.0132	0.08310
$H_{JK} \times 10^6$	-0.1958(15)	-0.2599	-0.1677(14)
$H_J \times 10^6$	0.03946(21)	0.06388	0.04050(22)
$h_K \times 10^6$	0.23718	0.4821	0.2587(13)
$h_{JK} \times 10^6$	-0.067383	-0.08477	-0.05361(68)
$h_J \times 10^6$	0.019406	0.031993	0.021161
$L_K \times 10^9$	-0.5650	-1.932	-0.6451
$L_{KKJ} \times 10^9$	0.732	1.943	0.773
$L_{JK} \times 10^9$	-0.3306	-0.706	-0.3326
$L_{JJK} \times 10^9$	0.0651	-0.0183	0.0651
$L_J \times 10^9$	-0.01327		-0.012824
$l_K \times 10^9$	-0.2256	-0.646	-0.2256
$l_{KJ} \times 10^9$	-0.0358		-0.0358
$l_{JK} \times 10^9$	0.01342		0.01342
$l_J \times 10^9$	-0.006844		-0.006387
$P_K \times 10^{12}$	1.1082	10.25	1.0963
$P_{KKJ} \times 10^{12}$	-1.6335	-10.42	-1.5292
$P_{KJ} \times 10^{12}$	0.551	2.96	0.551
$p_K \times 10^{12}$	0.2337		0.2231

Таблица В.4 – Спектроскопические параметры колебательных состояний второй триады ${\rm D}_2^{34}{ m S}$

 $({\rm B} \ {\rm cm}^{-1})^{a})$

а) Значения в скобках – статистические доверительные интервалы 1σ. Когда значения в круглых скобках отсутствуют, это означает, что указанная величина фиксировалась параметрами основного состояния и не менялись в процессе варьирования.

Параметр	Значение	Параметр	Значение	Параметр	Значение
$^{12}F_{KK}\times 10^{4}$	0.3036(87)	$^{12}F_{JK} \times 10^4$	-0.827(58)	$^{12}F_{JJ} \times 10^4$	-0.87(16)
$^{12}F_{xy}\times 10^{2}$	-0.718(82)	$^{12}F_{Kxy} \times 10^4$	0.174(16)	$^{12}F_{Jxy} \times 10^4$	-0.210(19)
$^{13}C^1 \times 10$	0.416	${}^{13}C_{K}^{1} \times 10^{3}$	0.2654(93)	$^{13}C_J^1\times 10^3$	-0.1635(79)
$^{13}C^1_{KK}\times 10^6$	-0.504(66)	$^{13}C^1_{JK}\times 10^6$	0.231(17)	$^{13}C^1_{JJ}\times 10^7$	-0.403(26)
$^{13}C^1_{KKJ}\times 10^9$	0.423	$^{13}C^2 \times 10$	-0.6022(14)	$^{13}C_K^2\times 10^4$	0.1012(33)
$^{13}C_{JK}^2\times 10^7$	-0.305(31)	$^{13}C_{JJ}^2\times 10^8$	0.949(23)	$^{13}C^2_{KJJ} \times 10^{10}$	0.699
$^{23}C^2 \times 10$	-0.3247(65)	$^{23}C_K^2\times 10^4$	0.376(33)	$^{23}C_J^2 \times 10^4$	0.699(18)
$^{23}C_{JK}^{2} \times 10^{7}$	-0.623(13)				

Таблица В.5 – Параметры резонансного взаимодействия колебательных состояний второй триады молекулы $D_2^{34}S~(B~cm^{-1})^{a)}$

а) Значения в скобках – статистические доверительные интервалы 1σ. Когда значения в круглых скобках отсутствуют, это означает, что указанная величина фиксировалась параметрами основного состояния и не менялись в процессе варьирования.

J	K_a	K_c	J'	K'_a	K_c'	$ u,$ cm $^{-1}$	$S_{\nu}^{Na)}$	Спектр	Полоса
3	0	3	3	1	2	2726.28854	$1.880 ext{E-} 23$	II	$ u_1+ u_2 $
4	0	4	5	1	5	2710.85663	$1.780 ext{E-} 22$	Ι	$ u_1+ u_2$
1	1	1	2	2	0	2716.09714	$3.649\mathrm{E} ext{-}23$	II	$ u_1 + u_2 $
2	1	1	2	2	0	2734.24786	$1.044 ext{E-} 22$	II	$ u_1 + u_2$
3	1	3	2	0	2	2755.30337	$1.278\mathrm{E}\text{-}22$	II	$ u_1 + u_2 $
2	2	0	2	1	1	2742.79249	$2.325\mathrm{E}\text{-}22$	II	$ u_1 + u_2 $
3	2	2	4	3	1	2694.94167	$2.745\mathrm{E}\text{-}23$	II	$ u_1 + u_2 $
6	2	4	5	3	3	2779.78431	$1.691\mathrm{E}\text{-}22$	Ι	$ u_1 + u_2 $
7	2	6	8	1	7	2691.04534	$2.260\mathrm{E}\text{-}22$	II	$ u_1\!+\!\nu_2$
3	3	0	4	2	3	2724.08487	$1.736\mathrm{E}\text{-}23$	II	$ u_1\!+\!\nu_2$
4	3	2	4	4	1	2726.29623	$3.355\mathrm{E} ext{-}23$	Π	$ u_1 + u_2 $
5	3	2	5	4	1	2731.01774	$6.376\mathrm{E}{-23}$	II	$ u_1 + u_2$
5	4	2	4	3	1	2786.13038	$1.026\mathrm{E}\text{-}22$	II	$ u_1 + u_2$
6	4	2	5	3	3	2805.24094	$5.343\mathrm{E}{-23}$	II	$ u_1 + u_2$
7	4	4	6	1	5	2830.01441	$1.299\mathrm{E}\text{-}23$	II	$ u_1 + u_2 $
5	5	1	6	2	4	2729.08088	$2.108 ext{E-} 22$	II	$ u_1 + u_2$
6	5	2	5	4	1	2798.35186	$1.723\mathrm{E}\text{-}22$	II	$ u_1 + u_2 $
7	5	2	6	4	3	2813.79671	$3.376\mathrm{E} ext{-}23$	II	$ u_1 + u_2$
6	6	1	7	5	2	2701.65278	$1.920\mathrm{E}\text{-}22$	II	$ u_1 + u_2$
7	6	1	8	5	4	2700.21074	$6.076\mathrm{E} ext{-}23$	II	$ u_1 + u_2 $
8	6	3	7	5	2	2818.64683	$1.102\mathrm{E}\text{-}22$	II	$ u_1 + u_2 $
9	7	3	8	6	2	2829.96034	$1.998\mathrm{E}\text{-}22$	II	$ u_1 + u_2 $
8	7	1	9	8	2	2650.08014	$3.199 ext{E-} 23$	II	$ u_1 + u_2 $
10	8	2	11	9	3	2633.42560	$3.042\mathrm{E} ext{-}23$	II	$ u_1 + u_2 $
0	0	0	1	0	1	2742.79249	$2.325\mathrm{E} ext{-}22$	II	$ u_2 + u_3 $
2	0	2	3	0	3	2732.45318	$9.933 ext{E-} 23$	Ι	$ u_2 + u_3 $
2	1	2	2	1	1	2743.52540	$2.600\mathrm{E} ext{-}23$	II	$ u_2 + u_3 $
4	1	3	3	1	2	2777.35771	$1.249 ext{E-} 22$	Ι	$ u_2 + u_3 $
2	1	1	3	1	2	2727.46133	$9.791\mathrm{E}{-23}$	Ι	$ u_2 + u_3 $
3	2	1	3	2	2	2755.22780	$1.296 \operatorname{E-} 22$	II	$ u_2 + u_3 $
4	2	3	5	2	4	2718.09159	2.131 E- 22	Ι	$ u_2 + u_3 $
5	2	4	5	0	5	2772.11061	$7.266 \operatorname{E-} 22$	Ι	$ u_2 + u_3 $
3	3	0	4	3	1	2717.99901	$1.321 ext{E-} 22$	II	$ u_2 + u_3 $
4	3	1	3	3	0	2783.01050	$1.103 \mathrm{E}{-}22$	II	$ u_2 + u_3 $
5	4	2	4	4	1	2788.19311	$4.520 ext{E-} 23$	II	$ u_2 + u_3 $
5	5	0	5	5	1	2751.10509	$3.883 ext{E-} 22$	II	$ u_2 + u_3 $
6	5	1	6	5	2	2752.26299	$1.301 ext{E-} 22$	II	$ u_2 + u_3 $
7	6	2	8	6	3	2690.34649	$4.079 ext{E-} 23$	II	$ u_2 + u_3 $
8	6	2	7	6	1	2815.10660	4.351 E-23	II	$ u_2 + u_3 $
11	7	5	10	7	4	2836.28421	1.888 E-23	II	$ u_2 + u_3 $
8	7	1	9	5	4	2709.98075	$1.910 ext{E-} 23$	II	$ u_2 + u_3 $
7	7	0	7	7	1	2752.00200	$3.581 ext{E-} 22$	II	$ u_2 + u_3 $
9	8	2	9	8	1	2752.66663	$6.681 \mathrm{E}{-23}$	II	$ u_2 + u_3 $

Таблица В.6 – Часть экспериментальных переходов полос $\nu_1 + \nu_2$ и $\nu_2 + \nu_3$ молекулы $D_2^{34}S$

^{*a*)} Значения абсолютных интенсивностей (в см/мол·см²) приведены для температуры 24 ^{*o*}C с учетом коэффициента парциальности.

Параметр	$D_2^{32}S^{b})$	$D_2^{33}S^{c)}$	$D_2^{34}S^{b}$
1	2	3	4
Δ	E 40167897	E 4749E7(71)	E AEEGORA
A	0.49107007	5.474257(71)	0.4000204
В	4.512610865	4.01200	4.0120872
C	2.444178310	2.4403992(81)	2.4309448
$\Delta_K \times 10^3$	0.9699746	0.9668	0.96369
$\Delta_{JK} \times 10^3$	-0.5623655	-0.5627	-0.56306
$\Delta_J \times 10^3$	0.1601221	0.160173(54)	0.160415
$\delta_K \times 10^3$	-0.0226215	-0.0234	-0.024155
$\delta_J \times 10^3$	0.07195620	0.0721	0.07217
$H_K \times 10^6$	0.20828	0.2083	0.20828
$H_{KJ} \times 10^6$	0.13616	0.1361	0.13616
$H_{JK} \times 10^6$	-0.181561	-0.1816	-0.181561
$H_J \times 10^6$	0.032592	0.03227(12)	0.032592
$h_K \times 10^6$	0.15913	0.1591	0.15913
$h_{JK} \times 10^6$	-0.054548	-0.0545	-0.054548
$h_J \times 10^6$	0.0162408	0.0162	0.0162408
$L_K \times 10^9$	-0.3303	-0.3303	-0.3303
$L_{KKJ} \times 10^9$	0.4266	0.4266	0.4266
$L_{JK} \times 10^9$	-0.2663	-0.2663	-0.2663
$L_{JJK} \times 10^9$	0.08144	0.0814	0.08144
$L_J \times 10^9$	-0.009532	-0.0095	-0.009532
$l_K \times 10^9$	-0.1378	-0.1378	-0.1378
$l_{KJ} \times 10^9$	-0.03430	-0.0343	-0.03430
$l_{JK} \times 10^9$	0.02723	0.0272	0.02723
$l_J \times 10^9$	-0.004783	-0.0048	-0.004783
$P_K \times 10^{12}$	0.559	0.559	0.559
$P_{KKKJ} \times 10^{12}$	-0.873	-0.873	-0.873
$P_{KKJ} \times 10^{12}$	0.353	0.353	0.353
$p_K \times 10^{12}$	0.2049	0.205	0.2049

Таблица В.7 – Параметры основного состояния молекул ${}^{M}\mathrm{D}_{2}\mathrm{S}$ ($M=32,\,33,\,34$), в см $^{-1}$ ${}^{a)}$

 $^{a)}$ Значения в скобках – 1σ доверительные интервалы.

^{b)} Воспроизведено из работы [161].

^{с)} Данная работа.

Параметр	(110)	(030)	(011)
1	2	3	4
E	2740.43393(91)	2546.8970	2752.026970(30)
A	5.549128	5.89816	5.516560
В	4.53805(43)	4.74622	4.56149(62)
C	2.39039(13)	2.37257	2.40013(57)
$\Delta_K \times 10^3$	1.10897	1.52222	1.10392
$\Delta_{JK} \times 10^3$	-0.63418	-0.83425	-0.64388
$\Delta_J \times 10^3$	0.17603	0.22083	0.18079
$\delta_K \times 10^3$	-0.00074	0.05760	-0.00074
$\delta_J \times 10^3$	0.08006	0.10270	0.08215
$H_K \times 10^6$	0.3272	0.7305	0.3143
$H_{KJ}\times 10^6$	0.0791	-0.0132	0.0831
$H_{JK} \times 10^6$	-0.1937	-0.2599	-0.1839
$H_J \times 10^6$	0.0389	0.0639	0.0416
$h_K \times 10^6$	0.2372	0.4821	0.2372
$h_{JK} \times 10^6$	-0.0674	-0.0848	-0.0565
$h_J \times 10^6$	0.0194	0.0320	0.0211
$L_K \times 10^9$	-0.5650	-1.932	-0.6450
$L_{KKJ} \times 10^9$	0.7320	1.943	0.7730
$L_{JK} \times 10^9$	-0.3310	-0.706	-0.3330
$L_{JJK} \times 10^9$	0.0651	-0.0183	0.0651
$L_J \times 10^9$	-0.0133		-0.0128
$l_K \times 10^9$	-0.2260	-0.646	-0.2260
$l_{KJ} \times 10^9$	-0.0358		-0.0358
$l_{JK} \times 10^9$	0.0134		0.0134
$l_J \times 10^9$	-0.0069		-0.0064
$P_K \times 10^{12}$	1.108	10.25	1.096
$P_{KKJ}\times 10^{12}$	-1.634	-10.42	-1.529
$P_{KJ}\times 10^{12}$	0.551	2.96	0.551
$p_K \times 10^{12}$	0.234		0.223

Таблица В.8 – Спектроскопические параметры колебательных состояний второй триады ${\rm D}_2^{33}{ m S}$

 $({\rm B} \ {\rm cm}^{-1})^{a}).$

а) Значения в скобках – статистические доверительные интервалы 1σ. Когда значения в круглых скобках отсутствуют, это означает, что указанная величина фиксировалась параметрами основного состояния и не менялись в процессе варьирования..

Приложение С

$\mathrm{A}^{e)}_{12}$		11	L.009E-04	1.009E-04	l.499E-04	l.499E-04	L.172E-04	L.172E-04			L.306E-04	L.306E-04	l.112E-04	L.112E-04	5.712E-05	3.982E-05	3.983E-05	1.211E-04	L.315E-04	l.314E-04		l.242E-04		8.526E-05		
$\mathrm{A}_{12}^{d)}$		10	1.928E-04	1.928E-04	1.969E-04	1.969E-04	2.008E-04	2.008E-04	1.867E-04	1.867E-04	1.873E-04	1.873E-04	2.046E-04	2.046E-04	8.847E-05	1.871E-04 8	1.871E-04 8	1.607E-04	2.081E-04	2.081E-04	1.858E-04	1.858E-04	2.047E-04	1.756E-04	1.756E-04	2.526E-04
$\mathrm{A}_{12}^{c)}$		6	1.210E-04	1.210E-04	1.224E-04	1.224E-04	1.236E-04	1.236E-04	1.177E-04	1.177E-04	1.170E-04	1.169E-04	1.247E-04	1.247E-04	5.405E-05	1.157E-04	1.157E-04	9.938E-05	1.256E-04	1.256E-04	1.138E-04	1.138E-04	1.262E-04	1.101E-04	1.100E-04	1.460E-04
$M_{\mathrm{HT.}}e)$		8	1.841E-26	6.138E-27	4.174 E-26	1.392 E-26	1.570 E-26	4.710 E-26			2.302 E-26	7.674E-27	6.078E-26	2.025 E-26	3.069 E-26	7.993E-27	2.398 E - 26	2.795 E-26	3.056E-26	9.164 E-26		4.731E-26		1.003 E-26		
$M_{\mathrm{HT.}}^{d)}$		7	3.498E-26	1.166E-26	5.455E-26	1.818E-26	2.675E-26	8.026E-26	2.043E-26	6.223E-27	3.284E-26	1.095E-26	1.112E-25	3.706E-26	4.727E-26	1.656E-26	4.968E-26	3.690E-26	4.810E-26	1.443E-25	2.347E-26	7.041E-26	2.561E-26	2.055E-26	6.849E-27	2.780E-26
$M_{\rm HT.}(296)^{c)}$		9	2.196E-26	7.318E-27	3.390 E-26	1.130E-26	1.647E-26	4.940E-26	1.288E-26	4.293E-27	2.051E-26	6.835E-27	6.777E-26	2.259E-26	2.888E-26	1.024E-26	3.072E-26	2.282E-26	2.904E-26	8.713E-26	1.438E-26	4.314E-26	1.579E-26	1.288E-26	4.292E-27	1.607E-26
$\delta_{\nu}^{Sb)}$		5	3.3		-2.6		1.3		3.8		1.6		-2.1		-0.1	0.4		4.8	-2.9		3.4		4.2	-1.4		-2.3
$M_{\rm HT}(293.25)^{a)}$		4	3.136(29) E-26		4.585(18) E-26		6.976(30) E-26		1.737(36) E-26		2.878(25) E-26		9.286(29) E - 26		3.042(28) E-26	4.283(20) E-26		2.500(33) E-26	1.189(32) E-25		6.230(31) E-26		1.706(20) E-26	1.748(20) E-26		1.646(29) E-26
ν , эксп.	$_{\rm CM}^{-1}$	3	5674.90929		5688.27027		5701.08216		5701.92298		5711.26621		5713.33685		5719.46361	5720.11634		5720.86957	5725.02554		5728.44825		5728.65037	5728.91417		5731.14578
1	K_c'		11	11	10	10	6	6	10	10	6	6	×	×	1	×	×	1	7	7	7	7	2	×	×	0
ίΗ.														0	4	2		9	1	0	-	2	2	ŝ	2	9
치	K_a'	2	0	-	-	0	-	0	Г	2	2		_	_												
Ниж	$J' K'_a$	2	11 0	11 1	10 1	10 0	9 1	9 0	11 1	11 2	10 2	10 1	8	×	ъ	6	6	7	2	7	×	8	8	10	10	9
<u>. Ниж</u>	K_c J' K'_a	2	10 11 0	10 11 1	9 10 1	9 10 0	8 9 1	8 9 0	9 11 1	9 11 2	8 10 2	8 10 1	7 8 1	7 8	2 5	7 9	7 9	2 7	6 7	6 7	6 8	6 8	1 8	7 10	7 10	1 6
Ния	$K_a K_c J' K'_a$	1 2	1 10 11 0	0 10 11 1	0 9 10 1	1 9 10 0	0 8 9 1	$1 \ 8 \ 9 \ 0$	$2 ext{ } 9 ext{ } 11 ext{ } 1$	1 9 11 2	1 8 10 2	2 8 10 1	0 7 8 1	1 7 8	3 2 5	1 7 9	2 7 9	5 2 7	0 6 7	1 6 7	2 6 8	1 6 8	6 1 8	2 7 10	3 7 10	5 1 6

Таблица С.1 – Список переходов полосы $5\nu_2$ молекулы
 ${\rm H}_2{\rm S}$

Bepxi	H.		<u>Hn</u>	КН.		ν , эксп.	$M_{ m HT.}(293.25)^{a)}$	$\delta_{\nu}^{Sb)}$	$M_{\rm HT}(296)^{c)}$	$M_{\mathrm{HT.}}^{d)}$	$M_{ m HT.}e)$	$\mathrm{A}_{12}^{c)}$	$\mathrm{A}_{12}^{d)}$	$\mathrm{A}^{e)}_{12}$
, J	K_a .	K_c	J'	K_a'	K_c'	$_{\rm CM}^{-1}$								
	-			2		ç	4	5	9	2	8	6	10	11
2	5	0	9	9	1	5731.93566	5.276(26) E-26	2.8	4.895E-26	8.461E-26	5.889 E-26	1.481E-04	2.560E-04	1.772E-04
4	4	Η	2	S	0	5732.24291	6.940(28) E-26	1.6	6.484E-26	1.116E-25	7.865E-26	1.339E-04	2.305E-04	1.615E-04
9	9	H	7	7	0	5733.26292	3.112(20) E-26	-3.1	3.081E-26	5.379 E-26		1.562E-04	2.727E-04	
4	4	0	5	5	Г	5733.97487	2.411(30) E-26	2.0	2.243E-26	3.857E-26		1.387E-04	2.384E-04	
×	2	9	6	ŝ	7	5734.10741	7.233(54) E-27	5.6	6.581E-27	1.059E-26		1.062E-04	1.709E-04	
×	ç	9	6	2	7	5734.14886	2.149(36) E-26	4.7	1.974E-26	3.176E-26	2.714E-26	1.062E-04	1.709E-04	1.453E-04
5	1	2	9	0	9	5736.13755	1.493(02) E-25	1.5	3.477E-26	5.814E-26	3.812 E - 26	1.264E-04	2.113E-04	1.378E-04
S	0	5	9	Η	9				1.043E-25	1.744E-25	1.144 E-25	1.263E-04	2.113E-04	1.378E-04
4	ç		5	4	2	5736.20356	1.693(30) E-26	1.8	1.577E-26	2.583E-26		8.640E-05	1.415E-04	
9	1	2	7	2	9	5736.23164	2.055(44)E-26	3.9	1.880E-26	3.098E-26	1.588E-26	1.111E-04	1.831E-04	9.335E-05
9	2	2	7	T	9	5736.26118	5.699(25) E-26	-3.9	5.640E-26	9.294E-26	5.405 E - 26	1.111E-04	1.831E-04	1.059E-04
ŝ	ŝ	1	4	4	0	5736.67185	2.526(24) E-26	9.0-	2.403E-26	4.135E-26	$2.779 ext{E-26}$	1.180E-04	2.030E-04	1.357E-04
5	ç	2	9	4	ŝ	5737.56438	3.311(20) E-26	6.0-	3.180E-26	5.075E-26	3.562 E-26	7.300E-05	1.165 E-04	8.133E-05
7	4	33	×	5	4	5737.98861	1.309(18) E-26	-1.2	1.276E-26	1.966E-26	1.035 E-26	7.290E-05	1.123E-04	5.882E-05
7	7	0	×	×	1	5738.51339	$1.705(15) \pm 26$	-5.0	1.732E-26	3.065 E-26		1.658E-04	2.934E-04	
7	2	5	×	ŝ	9	5738.69550	$2.888(19) \pm 26$	-1.7	2.817E-26	4.572E-26	$3.364 \mathrm{E}{-26}$	1.012E-04	1.643E-04	1.202E-04
ŝ	ŝ	0	4	4	1	5740.15307	8.443(27) E-26	0.5	7.940E-26	1.364E-25	8.397 E-26	1.294E-04	2.23E-04	1.361E-04
7	ŝ	4	×	4	2	5743.12687	$1.863(19) \pm 26$	-3.5	1.853E-26	2.963E-26		8.612E-05	1.377E-04	
9	ŝ	4	7	2	2	5743.20279	3.709(25) E-26	-4.2	3.688E-26	6.059E-26	4.275 E - 26	9.429 E - 05	1.549E-04	1.087E-04
5	П	4	9	2	2	5743.40113	7.045(22)E-26	-1.6	6.793E-26	1.130E-25	5.606 E-26	1.071E-04	1.781E-04	8.789E-05
2	2	4	9	1	2	5743.55698	2.414(24) E-26	1.2	2.263E-26	3.768E-26	2.650 E - 26	1.070E-04	1.782E-04	1.246E-04
×	4	5	6	ŝ	9	5743.74423	1.293(12) E-26	-3.5	1.293E-26	2.075E-26		9.440E-05	1.515E-04	
5	2	°	9	ŝ	4	5744.85030	4.724(30)E-26	2.0	4.399 E-26	7.214E-26	$5.243 \mathrm{E}{-26}$	8.573E-05	1.406E-04	1.016E-04
4	2	2	5	ŝ	ŝ	5745.34771	1.777(31)E-26	4.3	1.610E-26	2.646E-26	1.892 E-26	7.771E-05	1.277E-04	9.083E-05
ŝ	2	1	4	ŝ	2	5746.06984	5.977(22)E-26	-1.1	5.704E-26	9.508E-26	5.312 E-26	8.381E-05	1.397E-04	7.763E-05
4	0	4	5	Т	2	5746.65871	3.946(42)E-26	-3.1	3.838E-26	6.476E-26	3.515 E - 26	1.268E-04	2.140E-04	1.155E-04
4	Н	4	5	0	2	5746.67664	1.280(04) E-25	4.7	1.151E-25	1.944E-25	1.055 E-25	1.268E-04	2.141E-04	1.156E-04
5	ŝ	ŝ	9	2	4	5747.60870	$1.550(30) ext{E-26}$	2.9	1.431E-26	2.386E-26		8.365 E-05	1.395E-04	
9	4	ŝ	7	ŝ	4	5748.35379	2.422(36) E-26	3.9	2.227E-26	3.698E-26	2.666 ± 26	7.009 E-05	1.164E-04	8.346E-05
4	Η	ŝ	S	2	4	5749.74163	2.547(16) E-26	-2.4	2.466E-26	4.134E-26	3.997E-26	1.010E-04	1.693E-04	1.628E-04

(продолжение)
la C.1 –
Таблип

$ \begin{array}{ $				-04	-04	-05	-05	-05	-04	-05	-04	-05		-05	-04		-05	-04	-04	-05	-05	-04	-05		-05		-05	-05	-04	-04	-05	101
$ \begin{array}{ $	$\mathrm{A}_{12}^{e)}$		11	1.216E	1.902E	7.792E	3.725E	3.521E	1.065E	9.878E	1.181E	6.593E		4.686E	1.725E		4.908E	1.832E	1.047E	5.697E	6.000E	1.314E	7.345E		6.187E		7.272E	6.581E	1.055E	1.194E	5.632E	1 6 0 2 1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\mathrm{A}_{12}^{d)}$		10	1.692E-04	2.147E-04	1.085E-04	5.526E-05	5.534E-05	1.563E-04	2.160E-04	2.160E-04	1.497E-04	1.584E-04	6.374E-05	2.399 E-04	8.432E-05	8.443E-05	2.169E-04	2.154E-04	9.558E-05	9.149 E-05	2.292E-04	8.001E-05	1.955E-04	1.003E-04	4.644E-04	8.209E-05	1.224E-04	1.075E-04	1.272E-04	9.451E-05	O OFOTO O
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\mathrm{A}_{12}^{c)}$		6	1.005E-04	1.245E-04	6.347E-05	3.188E-05	3.196E-05	9.274E-05	1.268E-04	1.267E-04	8.752E-05	9.319E-05	3.653E-05	1.380E-04	5.004E-05	5.015E-05	1.263E-04	1.250E-04	5.464E-05	5.381E-05	1.324E-04	4.602E-05	1.120E-04	5.829 E-05	2.646E-04	4.592E-05	7.026E-05	6.128E-05	7.496E-05	5.242E-05	, ,
Horizon Harridon k_{α}	$M_{\mathrm{HT.}}e^{)}$		8	8.954E-26	4.114E-26	4.880 E - 26	1.116E-26	3.166E-26	8.228 E-26	9.006E-26	3.590 E - 26	1.698E-26		4.638E-26	8.954E-26		2.210E-26	4.880 E-26	8.361E-26	4.057E-26	3.622 E-26	7.381E-26	7.300E-26		1.556E-26		6.252E-26	1.921E-26	9.155 E - 26	3.509 E-26	1.682 E-26	
Beporti. Hurr.(293.5) ⁴) \int_{0}^{3} Mirr.(296) ⁴) J K_{a} K_{a	$M_{\mathrm{HT.}}{}^{d)}$		7	1.239E-25	4.619E-26	6.759E-26	1.647E-26	4.949E-26	1.201E-25	1.959E-25	6.529 E - 26	3.835E-26	3.726E-26	6.274E-26	1.238E-25	1.258E-26	3.781E-26	5.745E-26	1.712E-25	6.770E-26	5.493E-26	1.280E-25	7.909E-26	3.642E-26	2.509E-26	3.217E-26	7.020E-26	3.554E-26	9.275E-26	3.719E-26	2.807E-26	
Hepteri. Harxii. ν_{γ} secti. Hirr(233.25) ⁽⁴⁾ δ_{γ}^{S} (b) J K_c J' K'_a K'_a K'_a K'_a K'_a K'_a K_a J' K'_a	$M_{ m HT}(296)^{c)}$		9	7.359E-26	2.678E-26	3.954E-26	9.502E-27	2.858E-26	7.125E-26	1.150E-25	3.831E-26	2.242E-26	2.192E-26	3.596E-26	7.123E-26	7.468E-27	2.246E-26	3.345E-26	9.935E-26	3.870E-26	3.231E-26	7.398E-26	4.549E-26	2.086E-26	1.458E-26	1.833E-26	3.927E-26	2.040E-26	5.287E-26	2.192E-26	1.557E-26	
Haxtati ν_{γ} sectr. Hirr.(293.25) ⁴) J K _c J' K' _a K _s matrix J K _s J' K' _a K _s matrix 1 I 2 J K' _s matrix matrix 1 2 3 1 5750.48564 7.577(30)E-26 2 2 3 1 5750.48564 7.577(30)E-26 2 2 3 5750.48514 3.980(26)E-26 3 1 5 5 5.650.66 4.286(34)E-26 3 1 4 1 4 5750.45946 2.389(25)E-26 3 1 2 4 1 3 5750.65966 4.286(34)E-26 3 1 1 3 5750.65966 4.286(34)E-26 5766(34)E-26 3 2 4 1 3 5766.49166 2.389(25)E-26 4 1 3 5766.48167 7.389(27)E-26	$\delta_{\nu}^{Sb)}$		5	-2.7	-6.0	-4.9	-4.3	2.4	-2.3	-0.2	5.1	4.7	1.2	-2.1	4.1	-2.0	3.9	-0.4	-6.4	-3.6	-3.0	-2.4	-2.2	3.3	-3.5	4.0	4.6	-0.7	-1.8	3.4	-6.2	
Heptxn. Hmxtn. v , swen. J K_c J' K_c J' K_c σ^{-1} 1 2 3 5 V' K_c σ^{-1} 4 2 3 5 U 5750.485641 5 1 5 U 5753.45814 5 1 5 5753.45814 5 0 3 5753.45814 5 5 5 5753.45814 5 5 5 5753.45814 6 7 3 5753.45814 3 2 2 4 1 4 1 4 1 4 5 565.46466 5756.54986 1 1 1 2756.54586 2 1 2 5756.54586 1 1 2 5756.54586 1 1 2 5766.552525	$M_{\rm HT}(293.25)^{a})$		4	7.577(30)E-26	2.682(24) E-26	3.980(26) E-26	9.635(48) E-27	3.095(27) E-26	7.389(27) E-26	1.219(03)E-25	4.286(34)E-26	2.496(10)E-26	2.358(34)E-26	3.736(28) E-26	7.908(20) E-26	7.669(47) E-27	2.448(47) E - 26	3.545(31)E-26	9.941(23)E-26	3.970(18) E-26	3.301(18) E-26	7.703(43)E-26	4.732(22)E-26	2.300(31) E-26	1.488(22) E-26	2.038(41)E-26	4.384(28)E-26	2.159(23)E-26	5.503(29) E-26	2.404(28)E-26	1.557(20)E-26	
Hotole Harktt. J K_c J' K'_c K'_c 1 2 J' K'_c K'_c 4 2 3 5 1 4 5 1 5 5 1 4 5 1 5 5 1 4 5 1 5 5 1 4 5 1 5 5 1 4 3 1 5 5 1 4 4 1 4 1 4 5 3 3 1 2 4 1 4 3 4 1 4 1 3 5 3 4 1 3 2 3 5 3 5 1 3 3 5 5 5 4 1 3 4 5 5 5 <tr< td=""><td>u, эксп.</td><td>$c_{\rm M}^{-1}$</td><td>3</td><td>5750.48564</td><td>5750.58121</td><td>5753.45814</td><td>5753.81875</td><td>5753.86415</td><td>5754.70075</td><td>5756.54988</td><td>5756.65966</td><td>5757.67443</td><td>5758.64749</td><td>5764.60298</td><td>5764.81167</td><td>5765.42575</td><td>5765.46466</td><td>5765.62854</td><td>5766.25202</td><td>5766.81630</td><td>5773.46718</td><td>5773.58542</td><td>5775.67131</td><td>5776.15767</td><td>5780.75838</td><td>5782.14442</td><td>5782.51406</td><td>5785.95256</td><td>5786.73517</td><td>5789.67202</td><td>5790.47523</td><td></td></tr<>	u, эксп.	$c_{\rm M}^{-1}$	3	5750.48564	5750.58121	5753.45814	5753.81875	5753.86415	5754.70075	5756.54988	5756.65966	5757.67443	5758.64749	5764.60298	5764.81167	5765.42575	5765.46466	5765.62854	5766.25202	5766.81630	5773.46718	5773.58542	5775.67131	5776.15767	5780.75838	5782.14442	5782.51406	5785.95256	5786.73517	5789.67202	5790.47523	
Harkt. Harkt. J K_c J' K'_c 1 . J' K'_c 1 . J' K'_c 4 2 3 5 1 5 1 5 5 1 5 1 5 1 2 5 1 5 5 1 6 2 5 5 1 3 1 5 1 2 4 1 5 5 1 3 1 2 5 1 4 1 2 2 2 5 1 2 4 1 6 2 3 2 2 7 1 3 4 2 6 2 2 3 2 7 2 3 3 3 1 1 1		K_c'		4	1	ŝ	4	4	ŝ	4	4	ŝ	2	33	Η	ъ	ъ	ŝ	c,	2	4	2	2	2	°	Н	Η	H	2	2	H	
Bepxh. Har J K_a K_c J' 1 1 1 1 1 1 5 J' J' 4 2 3 5 J' 5 1 5 J' J' 5 1 5 J' J' 5 1 5 J' J'' J'' J' J'' J'' J''' J'''	KH.	K_a'	2	-	ŝ	2	2	1	2	1	0	1	2	2	2	ŝ	2	1	0	Н	က	1	1	0	ŝ	Н	2	1	ę	2	33	
Bepxit. J K_a K_c 1 1 1 1 5 3 5 1 5 5 1 5 3 1 5 4 2 3 5 1 5 4 1 4 1 1 2 3 1 2 4 1 4 1 1 2 2 2 2 2 3 1 2 2 4 1 1 1 1 1 2 2 5 2 2 2 5 2 2 3 6 2 2 4 1 1 1 2 5 2 2 3 6 2 2 3 7 2	Них	J'		5	ŝ	5	S	5	4	4	4	4	ŝ	4	2	2	7	ŝ	ŝ	ŝ	9	2	ŝ	2	5	1	2	2	4	4	ŝ	
Bepxh.J K_a J K_a J K_a 1155515151411111223141112222304111112230111111223011112230414141	I	K_c		3	0	2	ъ	ъ	2	ŝ	33	2	1	4	0	9	9	2	2	Н	2	1	ŝ	1	4	0	2	2	က	က	2	
Bepxil J J Bepxil J J Bepxil J <thj< th=""> J J <!--</td--><td>H</td><td>K_a</td><td>1</td><td>2</td><td>2</td><td>°.</td><td>П</td><td>0</td><td>1</td><td>0</td><td>1</td><td>2</td><td>1</td><td>П</td><td>1</td><td>2</td><td>1</td><td>0</td><td>П</td><td>2</td><td>2</td><td>0</td><td>0</td><td>1</td><td>2</td><td>0</td><td>1</td><td>0</td><td>2</td><td>1</td><td>2</td><td></td></thj<>	H	K_a	1	2	2	°.	П	0	1	0	1	2	1	П	1	2	1	0	П	2	2	0	0	1	2	0	1	0	2	1	2	
	Bepxi	J		4	2	4	S	5	ŝ	က	ŝ	က	2	4	Η	2	7	2	2	2	9	1	33	1	5	0	2	2	4	4	33	

одолжение)	
.1 – (mo	
Таблица С	

Bepx	.H.		H	ижн.		u, эксп.	$M_{\rm HT.}(293.25)^{a)}$	$\delta_{\nu}^{Sb)}$	$M_{ m HT}(296)^c)$	$M_{\mathrm{HT.}}^{d)}$	$M_{\mathrm{HT.}}e)$	$\mathrm{A}_{12}^{c)}$	$\mathrm{A}_{12}^{d)}$	$\mathrm{A}^{e)}_{12}$
J	K_a	K_{c}	J'	K_a'	K_c'	$_{\rm CM}$ -1								
	-			2		e	4	5	6	7	8	6	10	11
2	5	ы	2	с.	4	5796.11210	2.947(25) E-26	5.6	2.662E-26	4.367E-26	5.445 E-26	7.383E-05	1.211E-04	1.502E-04
2	1	Η	2	2	0	5796.67107	3.280(24) E-26	-5.4	3.246E-26	5.722E-26		1.162E-04	2.049E-04	
9	က	4	9	4	33	5799.31436	4.000(33) E-26	2.8	3.701E-26	6.283E-26	4.598E-26	7.345E-05	1.247E-04	9.076E-05
4	ŝ	2	4	4	1	5801.13948	4.146(34)E-26	0.1	3.912E-26	7.151E-26	3.803 E-26	5.064E-05	9.256E-05	4.896E-05
ъ	ŝ	ŝ	S	4	2	5801.42135	1.527(34) E-26	-5.5	1.528E-26	2.676E-26		7.006E-05	1.227E-04	
9	2	4	9	ŝ	3	5801.47548	1.456(29) E-26	-2.3	1.418E-26	2.323E-26		8.332E-05	1.365 E-04	
3	2	1	ŝ	ŝ	0	5802.64492	8.901(28) E-26	1.9	8.225E-26	1.449E-25	7.667E-26	9.361E-05	1.649 E - 04	8.679E-05
1	1	0	1	0	1	5806.22738	8.807(27) E-26	3.4	7.969E-26	1.407E-25	6.336 E-26	1.280E-04	2.260E-04	1.013E-04
ъ	2	ŝ	S	ŝ	2	5806.25749	7.036(29) E-26	-4.9	6.997E-26	1.152E-25	1.069 E-25	1.033E-04	1.701E-04	1.570E-04
4	2	2	4	33	1	5807.09121	3.750(34) E-26	3.9	3.403E-26	5.757E-26	4.558E-26	1.243E-04	2.103E-04	1.656E-04
4	ŝ	1	4	4	0	5810.50846	1.859(24) E-26	-4.9	1.842E-26	3.270 E - 26		7.216E-05	1.281E-04	
1	1	Η	0	0	0	5814.17348	2.103(43)E-26	4.0	1.891E-26	3.375E-26		8.549E-05	1.526E-04	
2	2	0	2	Η	Т	5814.78237	3.433(27) E-26	5.3	3.053E-26	5.376E-26	4.356E-26	1.062E-04	1.870E-04	1.507E-04
2	1	1	2	0	2	5817.02522	2.005(31)E-26	2.0	1.843E-26	3.202E-26		6.020E-05	1.046E-04	
9	4	ŝ	9	ъ	2	5818.34728	3.442(33)E-26	2.9	3.185E-26	5.600E-26	3.299 E-26	7.308E-05	1.285 E-04	7.529E-05
8	4	Ŋ	8	ų	4	5819.50843	1.799(24) E-26	4.0	1.664E-26	2.704E-26		8.629 E-05	1.402E-04	
5	င	2	S	4	Η	5819.59283	8.408(31) E-26	-0.1	7.979E-26	1.333E-25	6.243E-26	1.265 E-04	2.113E-04	9.843E-05
ъ	4	Т	ъ	ъ	0	5820.86208	3.625(35) E-26	5.9	3.239 E-26	5.872E-26		5.643E-05	1.023E-04	
2	0	2	1	1	Т	5822.00188	2.419(23)E-26	3.3	2.193E-26	3.970E-26	2.023E-26	6.418E-05	1.162E-04	5.889E-05
2	2	Η	2	Η	2	5823.57477	3.829(33) E-26	-3.4	3.716E-26	6.616E-26	4.396E-26	4.060E-05	7.229 E-05	4.778E-05
7	က	4	2	4	3	5823.77343	3.332(39) E-26	-6.0	3.381E-26	5.292E-26	3.330 E-26	1.092E-04	1.709 E-04	1.070E-04
2	1	2	1	0	Т	5823.92929	8.748(44) E-26	2.2	8.017E-26	1.436E-25	9.599 E - 26	7.776E-05	1.393E-04	9.260E-05
9	က	ŝ	9	4	2	5824.29398	1.168(26) E-26	1.9	1.090E-26	3.208E-26		7.077E-05	2.083E-04	
°	1	2	က	0	ŝ	5831.69413	4.372(46)E-26	3.1	3.979E-26	6.858E-26	5.405 E - 26	3.658E-05	6.305E-05	4.943E-05
°	1	ŝ	2	0	2	5832.81680	3.921(23) E-26	-3.5	3.807E-26	6.898E-26	3.949 E - 26	8.930E-05	1.618E-04	9.213E-05
9	4	2	9	S	Т	5833.23831	1.815(28)E-26	5.1	1.642E-26	2.727E-26	1.500E-26	1.158E-04	1.924E-04	1.053E-04
4	က	Η	4	2	2	5836.97482	2.862(12) E-26	-5.7	2.855E-26	4.804E-26		9.924E-05	1.670E-04	
4	0	4	ŝ	1	°	5841.53893	4.635(20)E-26	-4.8	4.563E-26	8.347E-26	4.687E-26	9.824E-05	1.797E-04	1.004E-04
4	1	4	ŝ	0	3	5841.59719	1.610(20) E-25	-2.5	1.372E-25	2.509E-25	1.254 E-25	9.844E-05	1.800E-04	8.949E-05
4	2	2	4	Η	3				1.792E-26	3.010E-26	1.541E-26	5.601E-05	9.406E-05	4.790E-05

Таблица С.1 – (продолжение)

ļ,			:				11 (000 001 0)	CCb)	TT (00010)	()	("	• c)	(1)	(e)
Bepx	н.	1	Ни.	жн.		ν , эксп.	$MHT.(293.25)^{a}$	$\int d^{2} d \theta$	$MHT.(296)^{c}$	$M_{\rm HT.}{}^{a)}$	NHT. ^{e)}	A_{12}°	A_{12}^{2}	A_{12}°
J	K_a	${K_c}$	J'	K_a'	K_c'	$_{ m CM}$ -1								
	-			2		÷	4	ъ	9	2	8	6	10	11
~	2	4	×	9	3	5842.29908	1.562(18) E-26	2.9	1.464E-26	2.438E-26		9.103E-05	1.516E-04	
2	2	-	П	Н	0	5842.49575	7.849(25) E-26	-1.2	7.444E-26	1.335E-25	6.546E-26	7.468E-05	1.339E-04	6.531E-05
7	4	33	7	ъ	2	5842.95568	4.302(31)E-26	-1.5	4.183E-26	6.486E-26	2.422E-26	1.488E-04	2.307E-04	8.568E-05
4	2	ŝ	4	Н	4	5846.52524	3.317(22)E-26	-0.2	3.130E-26	5.382E-26	3.884E-26	2.769 E-05	4.762 E-05	3.418E-05
4	4	0	4	ŝ	1	5847.43138	1.568(27) E-26	-2.4	1.516E-26	2.690 E - 26		5.615E-05	$9.964 E_{-05}$	
ъ	1	S	4	0	4	5849.90577	2.166(03) E-25	5.7	4.810E-26	8.868E-26	4.485 E - 26	1.046E-04	1.928E-04	9.698E-05
S	0	S	4	1	4				1.443E-25	2.660E-25	1.345 E-25	1.046E-04	1.928E-04	9.695E-05
ъ	4	-	ъ	3	2	5853.80212	6.710(23) E-26	0.2	6.346E-26	1.052E-25		9.527E-05	1.579E-04	
ŝ	2	2	2	1	1	5854.67627	2.377(25) E-26	-8.0	2.410E-26	4.291E-26	2.698E-26	6.071E-05	1.081E-04	6.760E-05
4	4	Η	4	3	2	5854.95358	3.812(27) E-26	3.7	3.464E-26	6.307E-26	3.123 E-26	4.110E-05	7.484E-05	3.686E-05
9	0	9	S	-	ŋ	5857.65138	1.990(02) E-25	2.5	4.579E-26	8.507E-26	4.452E-26	1.088E-04	2.022E-04	1.053E-04
9	Η	9	S	0	S				1.374E-25	2.552E-25	1.335 E-25	1.089E-04	2.022E-04	1.052E-04
ъ	Η	4	S	0	ŋ	5858.65939	2.474(31)E-26	-3.3	2.411E-26	4.078E-26	2.585 E - 26	2.258E-05	3.820E-05	2.408E-05
5	2	ŝ	S	Т	4	5859.77803	3.838(18) E-26	-3.0	3.737E-26	6.222E-26	4.880E-26	4.334E-05	7.216E-05	5.629E-05
4	Η	ĉ	က	2	2	5863.61356	2.572(25) E-26	-2.9	2.489E-26	4.549E-26	2.682 E-26	6.095 E-05	1.114E-04	6.532E-05
ъ	ъ	0	S	4	1	5871.17452	$2.853(36) \pm 26$	5.6	2.554E-26	4.621E-26	2.502 E - 26	4.121E-05	7.456E-05	4.015E-05
3	ŝ	Η	2	2	0	5875.10610	2.927(30)E-26	-2.0	2.804E-26	5.047E-26	3.231E-26	7.367E-05	1.326E-04	8.443E-05
ъ	Η	4	4	2	က	5876.58494	9.175(39) E-26	-1.6	8.789 E-26	1.603E-25	7.647E-26	7.592E-05	1.385E-04	6.570E-05
5	2	4	4	Τ	33	5877.01021	3.233(26) E-26	2.2	2.981E-26	5.413E-26	2.586E-26	7.716E-05	1.401E-04	6.657E-05
9	ŝ	4	9	2	ъ	5877.07812	2.905(27) E-26	5.2	2.613E-26	4.316E-26	2.456E-26	$3.649 \text{E}{-}05$	6.028E-05	3.412E-05
9	4	°	9	°	4	5881.08631	3.034(31)E-26	-2.8	2.964E-26	4.919E-26	3.000 E - 26	5.122E-05	8.501E-05	5.157E-05
10	0	10	6	Τ	6	5882.73358	7.115(32)E-26	-6.3	1.810E-26	3.467E-26	1.415E-26	1.171E-04	2.243E-04	9.105E-05
10	Η	10	6	0	6				5.429E- 26	1.040E-25	4.244 E - 26	1.171E-04	2.243E-04	9.103E-05
7	ъ	2	7	4	က	5887.80185	3.099(44) E-26	0.2	2.961E-26	4.469E-26		9.773E-05	1.475E-04	
9	5	2	9	4	33	5888.15908	2.653(29)E-26	-2.0	2.577E-26	4.464E-26	2.396E-26	5.272E-05	9.132E-05	4.875E-05
7	4	ŝ	7	3	4	5890.83106	2.485(33) E-26	1.6	2.340E-26	3.529E-26	2.908E-26	6.703E-05	1.011E-04	8.286E-05
12	Η	12	11	0	11	5891.82872	3.446(28) E-26	4.9	2.375E-26	4.617E-26	3.322 E-26	1.185E-04	2.304E-04	1.649E-04
12	0	12	11	Н	11				7.915E-27	1.539E-26	1.107E-26	1.185E-04	2.304E-04	1.648E-04
5	2	°	4	°	2	5896.02892	4.469(30)E-26	1.6	4.153E-26	7.673E-26	4.437E-26	4.089E-05	7.554E-05	4.345E-05
7	T	9	9	2	ъ	5899.34082	1.042(06) E-25	-1.3	7.503E-26	1.377E-25	8.748E-26	9.151E-05	1.679 E-04	1.061E-04

\frown
e.
Ζ
H
S.
Ŕ
Б
O,
- Ħ
õ
-9-
₹₽,
\sim
T
C.1 -
LC.1 –
la C.1 – 1
ща С.1 – -
ища C.1 – –
лица С.1 – _–
аблица С.1 –
Габлица С.1 –

Верхн.			Ниж	ζΗ.		ν , эксп.	$M_{ m HT}(293.25)^{a)}$	$\delta_{\nu}^{Sb)}$	$\mathrm{M}_{\mathrm{HT.}}(296)^{c)}$	$M_{\mathrm{HT.}}^{d)}$	$M_{\mathrm{HT.}}e)$	$\mathrm{A}_{12}^{c)}$	$\mathrm{A}_{12}^{d)}$	$\mathrm{A}^{e)}_{12}$
J K	ζ_a	K_c	J'	K_a'	K_c'	$_{\rm CM}^{-1}$								
	-			2		3	4	5	9	7	8	6	10	11
7	2	9	9	-	2				2.502E-26	4.589E-26		9.154E-05	1.679E-04	
8	2	7	7	Τ	9	5909.77990	8.674(31)E-26	2.6	6.034E-26	1.110E-25	5.460 E-26	9.649 E - 05	1.775E-04	8.684E-05
8	1	7	2	2	9				2.011E-26	3.698E-26	1.820 ± 26	9.647E-05	1.774E-04	8.684E-05
4	4	Т	က	ŝ	0	5911.52852	9.143(28)E-26	2.9	8.359 E-26	1.510E-25	8.833 E-26	7.680E-05	1.387E-04	8.072E-05
4	4	0	က	ŝ	Т	5914.73823	$3.023(26) \mathrm{E}{-26}$	6.3	2.666 E-26	4.817E-26		7.283E-05	1.316E-04	
8	4	ъ	8	ŝ	9	5914.93761	1.314(28)E-26	2.6	1.227E-26	1.896E-26		4.134E-05	6.388E-05	
9	ŝ	4	5	2	3	5915.33721	5.976(46) E-26	4.8	5.388E-26	9.610E-26	6.131E-26	6.330 E-05	1.129 E-04	7.164E-05
6	Т	×	×	2	7	5919.67046	6.139(36) E-26	-2.5	4.514E-26	8.320E-26	5.142E-26	1.004E-04	1.851E-04	1.138E-04
6	2	8	8	Τ	7				1.505E-26	2.773E-26	1.715 E-26	1.005E-04	1.851E-04	1.139E-04
ß	4	2	4	ŝ	Г	5928.05601	1.931(33) E-26	4.7	1.738E-26	3.009 E - 26		5.413E-05	9.372E-05	
7	2	ъ	9	ŝ	4	5928.84504	4.894(29)E-26	0.3	4.639 E - 26	8.369E-26	3.713E-26	7.061E-05	1.274E-04	5.621E-05
10	Т	6	6	2	8	5929.03670	4.231(30)E-26	-3.8	1.055E-26	1.946E-26		1.037E-04	1.912E-04	
10	2	6	6	Т	8				3.164E-26	5.837E-26		1.036E-04	1.912E-04	
7	ŝ	5	9	2	4	5929.24317	4.318(28)E-26	1.7	4.017E-26	2.819E-26		1.833E-04	1.286E-04	
6	4	5	6	ŝ	9	5937.84997	7.041(44) E-27	-4.6	7.493E-27	1.028E-26		5.231E-05	7.139E-05	
11	H	10	10	2	6	5937.89622	2.827(36) E-26	-2.0	2.087E-26	3.853E-26		1.063E-04	1.962E-04	
11	2	10	10	H	6				7.117E-27	1.284E-26		1.087E-04	1.962E-04	
9	4	°	5	ŝ	2	5942.49352	3.885(33) E-26	-2.0	3.757E-26	6.410E-26	3.005 E - 26	4.918E-05	8.391E-05	3.913E-05
×	3	9	7	2	5	5943.08427	3.808(34) E-26	-3.5	3.760E-26	6.749 E-26	$3.250 ext{E-} 26$	7.872E-05	1.413E-04	6.767E-05
2	4	Ţ	4	ŝ	2	5943.57242	4.016(35) E-26	4.0	3.639 E-26	6.237E-26		3.641E-05	6.240E-05	
2	5	1	4	4	0	5951.18834	2.454(17) E-26	-3.2	2.394E-26	4.333E-26		8.049 E - 05	1.457E-04	
5	5	0	4	4	Н	5952.84926	7.149(22)E-26	-6.0	7.159E-26	1.297E-25	3.924 E-26	7.983E-05	1.446E-04	4.352E-05
6	2	7	×	ŝ	9	5956.47106	2.812(38) E - 26	-2.6	2.766E-26	4.953E-26	2.404 E - 26	8.455E-05	1.514E-04	7.309E-05
6	°	2	×	2	9	5956.49876	9.590(92) E-27	-0.4	9.227E-27	1.651E-26		8.461E-05	1.514E-04	
10	ŝ	×	6	2	7	5969.38026	$2.536(23) \mathrm{E}{-26}$	-3.5	1.897E-26	3.377E-26		8.955E-05	1.594E-04	
10	2	×	6	ŝ	7				6.321E-27	1.126E-26		8.952E-05	1.594E-04	
9	5	2	5	4	Н	5970.18872	4.232(57) E-26	-1.0	4.053E-26	6.888E-26	3.480 E - 26	5.721E-05	9.724E-05	4.886E-05
×	4	5	7	ŝ	4	5972.35335	2.523(28) E-26	1.7	2.371E-26	4.126E-26		6.160E-05	1.072E-04	
6	3	9	×	4	5	5988.19751	1.858(30) E-26	4.7	1.702E-26	2.968E-26		6.789 E-05	1.184E-04	
9	9	-	5	S	0	5993.61465	5.678(31) E-26	1.7	5.301E-26	9.603E-26		8.285E-05	1.501E-04	

Таблица	C.1 - ((продолжение)	ł
---------	---------	---------------	---

Bep	охн.		H	ажн.		ν , эксп.	Инт. $(293.25)^{a)}$	$\delta_{\nu}^{Sb)}$	Инт.(296) ^{с)}	$И$ нт. $^{d)}$	Инт. ^{е)}	$A_{12}^{c)}$	$A_{12}^{d)}$	$A_{12}^{e)}$
J	K_a	K_c	J'	K_a'	K_c'	${}_{\rm CM}^{-1}$								
	1			2		3	4	5	6	7	8	9	10	11
8	5	4	7	4	3	6001.52427	1.661(40)E-26	-0.8	1.603E-26	2.624E-26		4.851 E-05	$7.939 ext{E-} 05$	
7	7	0	6	6	1	6038.80125	$3.554(51) ext{E-26}$	-0.1	3.397E-26	6.135E-26		$8.366 ext{E-05}$	1.511E-04	

a) Интенсивность линии, определенная по подгонке экспериментальной формы линии с профилем Артмана-Трана (в см⁻¹/мол. см⁻²) в нашей работе.

Значение в скобках - экспериментальная неопределенность интенсивности линии.

^{b)} Разница между экспериментальной и расчетной силой линии (в %, см. уравнение (3.2.12)).

^{c)} Интенсивность перехода из колонки 4, пересчитытанная для температуры 296 К и умноженная на естественное содержание

изотополога H₂³²S (то есть S^N_ν(HIT) в колонке 6) и соответствующий коэффициент Эйнштейна перехода (столбец 9).

d) Коэффициент Эйнштейна (колонка 10) и соответствующая интенсивность S_{ν}^{N} (колонка 7) перехода из [171] – [172].

e) Коэффициент Эйнштейна (колонка 11) и соответствующая интенсивность $S_{\nu}^{N}({
m HIT})$ (колонка 8) перехода из HITRAN [173].

Таблица С.2 – Список отсутствующих в HITRAN2016

переходов полосы $5\nu_2$ молекулы $\rm H_2S$

ν	Bep	хн.			Η	ижн.		Инт.(296)	A_{12}
$_{\rm CM}^{-1}$	J	K_a	K_c		J'	K'_a	K'_c	$\mathrm{cm}^{-1}/\mathrm{mon.cm}^{-2}$	
1		2				3	-	4	5
5646.57922	12	0	12	-	13	1	13	$2.604 ext{E-27}$	1.179E-04
5646.57922	12	1	12	-	13	0	13	$7.812 ext{E-} 27$	1.179E-04
5661.00868	11	0	11	-	12	1	12	$1.345\mathrm{E} ext{-}26$	1.195E-04
5661.00868	11	1	11	-	12	0	12	$4.485 ext{E-27}$	1.195E-04
5681.83061	12	2	11	-	13	1	12	$4.290\mathrm{E}\text{-}27$	1.182E-04
5681.83061	12	1	11	-	13	2	12	$1.430 ext{E-27}$	1.182E-04
5691.08465	10	0	10	-	10	1	9	1.434 E-27	2.204 E-05
5692.10565	11	1	10	-	12	2	11	$7.642 ext{E-} 27$	1.181E-04
5701.92425	10	2	9	-	11	1	10	$1.288 ext{E-26}$	1.177E-04
5701.92418	10	1	9	-	11	2	10	4.294E-27	1.177 E-04
5715.01002	8	6	3	-	9	7	2	$5.713 ext{E-} 27$	$8.067 ext{E-05}$
5718.81610	5	4	2	-	6	5	1	$9.559\mathrm{E} ext{-}27$	$7.661 ext{E-05}$
5723.20036	10	3	8	-	11	2	9	$7.871\mathrm{E}$ - 27	1.130E-04
5727.06704	6	5	1	-	7	6	2	$8.559\mathrm{E}$ -27	1.108 E-04
5728.45338	7	2	6	-	8	1	7	1.438 E-26	1.138E-04
5728.58303	7	5	2	-	8	6	3	$1.258 ext{E-}26$	$8.523 ext{E-05}$
5728.64963	7	6	1	-	8	7	2	$1.579\mathrm{E} ext{-}26$	$1.262 ext{E-04}$
5728.92681	9	3	7	-	10	2	8	$4.292 ext{E-} 27$	$1.100 ext{E-04}$
5729.65530	5	4	1	-	6	5	2	$3.670\mathrm{E}$ - 26	$9.651 ext{E-05}$
5731.14571	5	5	1	-	6	6	0	$1.607 ext{E-} 26$	$1.460 ext{E-04}$
5732.50125	8	7	2	-	9	8	1	$8.293 ext{E-} 27$	$1.380 ext{E-04}$
5733.26219	6	6	1	-	7	7	0	$3.081\mathrm{E}$ -26	$1.562 ext{E-04}$
5733.60722	6	6	0	-	7	7	1	$1.033\mathrm{E}$ -26	$1.570 ext{E-04}$
5733.97517	4	4	0	-	5	5	1	$2.243 ext{E-26}$	1.387 E-04
5734.10741	8	2	6	-	9	3	7	$6.581\mathrm{E} ext{-}27$	1.062 E-04
5736.20417	4	3	1	-	5	4	2	$1.577 ext{E-26}$	$8.640 ext{E-05}$
5738.19865	10	2	9	-	10	3	8	$5.582 ext{E-27}$	$4.330\mathrm{E}{-}05$
5738.36319	7	7	1	-	8	8	0	$5.758 ext{E-} 27$	1.654 E-04
5738.51148	7	7	0	-	8	8	1	$1.732 ext{E-26}$	1.658 E-04
5738.87212	7	3	5	-	8	2	6	$9.386\mathrm{E}{-27}$	1.012 E-04
5740.15339	3	3	0	-	4	4	1	$7.940\mathrm{E}$ -26	1.294 E-04
5741.05336	6	3	3	-	7	4	4	$8.100 ext{E}-27$	$7.658 ext{E-05}$
5742.46815	6	2	4	-	7	3	5	1.233 E-26	9.457E-05
5743.74285	8	4	5	-	9	3	6	1.293 E-26	9.440 ± 0.05
5745.58809	7	4	4	-	8	3	5	$6.099 ext{E-} 27$	8.504 E-05
5746.14571	8	8	1	-	9	9	0	$8.602 ext{E-} 27$	$1.742 ext{E-04}$
5746.65931^{\star}	4	0	4	-	5	1	5	3.838 E-26	$1.268 ext{E-04}$
5746.67724^{\star}	4	1	4	-	5	0	5	1.151E-25	$1.268 ext{E-04}$
5747.60957	5	3	3	-	6	2	4	1.431E-26	$8.365 ext{E-05}$
5748.54260	9	4	5	-	10	5	6	$5.484 \text{E}{-27}$	$9.005 ext{E-05}$
5750.89854	8	5	4	-	9	4	5	8.177 E-27	7.682E-05
5754.18858	5	4	2	-	6	3	3	$6.458 ext{E-27}$	4.412E-05
5755.80469	1	1	1	-	2	2	0	1.142 E-26	6.719E-05
5756.83425^{\star}	8	2	7	-	8	3	6	1.477 E-26	$4.713 ext{E-05}$

ν	Bep	хн.		Нижн.				Инт.(296)	A ₁₂
${}_{\mathrm{CM}}^{-1}$	J	K_a	K_c		J'	K'_a	K'_c	$\mathrm{cm}^{-1}/\mathrm{mon.cm}^{-2}$	
1		2				3		4	5
5756.84145*	8	1	7	-	8	2	6	$4.927 ext{E-} 27$	4.717E-05
5758.64784	2	1	1	-	3	2	2	2.192 E-26	$9.319 ext{E-05}$
5765.42576	7	2	6	-	7	3	5	$7.468 ext{E-27}$	5.004 E- 05
5776.15746	1	1	1	-	2	0	2	$2.086\mathrm{E}$ - 26	$1.120\mathrm{E}{-}04$
5779.33006	10	3	8	-	10	4	7	$5.704\mathrm{E}$ - 27	6.357 E-05
5782.14416	0	0	0	-	1	1	1	1.833 E-26	$2.646 ext{E-04}$
5790.82501	8	2	6	-	8	3	5	$5.508 ext{E-} 27$	$6.883 ext{E-05}$
5795.49204	7	3	5	-	7	4	4	$8.536\mathrm{E}{-27}$	$7.128 ext{E-05}$
5796.67145	2	1	1	-	2	2	0	$3.246 \mathrm{E}{-26}$	1.162 E-04
5801.42143	5	3	3	-	5	4	2	1.528 E-26	7.006 E-05
5801.47500	6	2	4	-	6	3	3	1.418 E-26	$8.332 ext{E-05}$
5810.50807	4	3	1	-	4	4	0	1.842 E-26	7.216 E-05
5814.17353	1	1	1	-	0	0	0	1.891E-26	8.549 E-05
5814.59932	5	4	2	-	5	5	1	8.907 E-27	$4.632 \text{E}{-}05$
5817.02422	2	1	1	_	2	0	2	1.843 E-26	6.020 E-05
5818.20647	9	3	6	_	9	4	5	1.015 E-26	8.733 E-05
5819.50702	8	4	5	_	8	5	4	$1.664 \text{E}{-}26$	8.629 E-05
5820.86248	5	4	1	_	5	5	0	3.239 E-26	5.643 E-05
5820.99871	8	3	5	_	8	6	2	$6.135 ext{E-27}$	1.185 E-04
5824.29112	6	3	3	_	6	4	2	2.011E-26	1.306E-04
5834.56539	6	5	1	_	6	6	0	5.772 E-27	4.600 E - 05
5836.97440	4	3	1	_	4	2	2	2.855E-26	9.924E-05
5837.47374	7	5	3	_	7	-	2	6.201E-27	7.229E-05
5842.29987	8	5	4	_	8	6	3	1.464E-26	9.103E-05
5847.43098	4	4	0	_	4	3	1	1.516E-26	5.615E-05
5847.52226	8	4	4	_	8	5	3	7.893E-27	1.398E-04
5847.95140	9	4	5	_	9	5	4	1.147E-26	1.202E-04
5848.38901	7	5	2	_	7	6	1	2.529 E-26	$9.975 E_{-}05$
5852.08449	7	6	1	_	7	7	0	8.468E-27	3.876E-05
5853.80104	5	4	1	_	5	3	2	6.346E-26	9.527E-05
5858.81692	8	6	3	_	8	7	2	9.357E-27	6.902E-05
5862.01868	8	5	3	_	8	4	4	7.787E-27	1.216E-04
5862.26265	5	3	3	_	5	2	4	1.218E-26	4.242E-05
5866.31117	5	4	2	_	5	-	3	1.284E-26	5.287E-05
5871.61772	9	5	4	_	9	6	3	1.416E-26	1.689E-04
5874.80408	6	3	3	_	6	2	4	1.062E-26	5.488E-05
5875 98075	6	5	1	_	6	4	2	1 215E-26	8.029E-05
5876 39553	6	2	4	_	6	1	5	8.740E-27	3.661E-05
5876 88589	5	5	1	_	5	4	2	7 596E-27	3 574E-05
5881 69400	q	6	3	_	q	7	2	1.071E-26	1 433E-04
5887 80710	7	5	ე		7	' Д	2	2.961E-26	9 773E 05
5895 53894	י 1 פ	n	 1२	-	19	ч 1	19	1.447F 26	1 188E 04
5895 53804	12	1	12	-	12 12	т П	±∠ 19	4.894E 97	1 188 - 04
5808 70459	14	т П	14	-	12	1	12 12	9.789F 97	1 188F 04
5808 70450	14	1	14	-	19	L L	10 19	2.1071-21 8.268F 97	1 1885 04
5800 25914	14 7	า ก	1-H	-	с1 С1	1	10 10	9 509E-27	0 15/F 05
0000.00014	1	4	U	-	U	T	J	0.00-20	0.10412-00

ν	Bep	хн.		Нижн.				Инт. (296)	A_{12}
cm^{-1}	J	K_a	K_c		J'	K'_a	K_c'	$\mathrm{cm}^{-1}/\mathrm{mon.cm}^{-2}$	
1		2				3		4	5
5902.19165	5	3	3	-	4	2	2	$1.895 ext{E-26}$	5.510 E-05
5902.40762	6	6	1	-	6	5	2	1.287 E-26	3.039 E-05
5903.14969	7	5	3	-	7	4	4	$6.495 ext{E-27}$	$5.627 ext{E-05}$
5903.35825	7	6	1	-	7	5	2	$1.761 ext{E-} 26$	6.394 E-05
5912.11575	8	6	2	-	8	5	3	$5.199 ext{E-27}$	$9.412 ext{E-05}$
5913.59759	6	2	4	-	5	3	3	$1.675 ext{E-} 26$	$5.930 ext{E-05}$
5914.73888	4	4	0	-	3	3	1	2.666 E-26	$7.283 ext{E-05}$
5914.93400	8	4	5	-	8	3	6	1.227 E-26	4.134E-05
5920.87769	8	5	4	-	8	4	5	1.227 E-26	$5.348 ext{E-05}$
5928.05514	5	4	2	-	4	3	1	$1.738 ext{E-26}$	$5.413 ext{E-05}$
5928.55792	8	6	3	-	8	5	4	1.083 E-26	$5.828 ext{E-05}$
5928.61594	6	3	3	-	5	4	2	$6.163 ext{E-27}$	2.497 E-05
5928.72524	7	7	0	-	7	6	1	$6.486\mathrm{E}$ -27	$2.629 ext{E-05}$
5929.03707	10	1	9	-	9	2	8	$1.055\mathrm{E} ext{-}26$	1.037 E-04
5929.03718	10	2	9	-	9	1	8	$3.164\mathrm{E}$ - 26	$1.036\mathrm{E}$ - 04
5929.24276	7	3	5	-	6	2	4	$1.570\mathrm{E}\text{-}26$	$7.163 ext{E-05}$
5929.58905	9	6	3	-	9	5	4	$8.869 ext{E-27}$	$9.557 ext{E-05}$
5931.65453	9	3	6	-	9	2	7	$7.239\mathrm{E}{-}27$	$3.729 ext{E-05}$
5935.04203	9	5	4	-	9	4	5	$7.300\mathrm{E}{-}27$	$6.535 ext{E-05}$
5937.89665	11	1	10	-	10	2	9	2.087 E-26	1.063 E-04
5937.89667	11	2	10	-	10	1	9	$6.957 ext{E-} 27$	1.063 E-04
5941.85131	9	7	2	-	9	6	3	$6.699 ext{E-27}$	8.182 E-05
5942.80029	8	7	2	-	8	6	3	$7.057 ext{E-} 27$	$4.540\mathrm{E}{\text{-}}05$
5942.99966	8	2	6	-	7	3	5	$1.249\mathrm{E}$ - 26	$7.846\mathrm{E}{-}05$
5943.57273	5	4	1	-	4	3	2	$3.639\mathrm{E}$ - 26	$3.641\mathrm{E}$ - 05
5946.26366	12	2	11	-	11	1	10	$1.299 ext{E-26}$	1.084E-04
5951.18979	5	5	1	-	4	4	0	2.394E-26	8.049 E-05
5954.14929	13	2	12	-	12	3	9	2.551 E-27	$2.795 ext{E-04}$
5954.14929	13	1	12	-	12	2	11	$7.654 ext{E-27}$	1.103 E-04
5956.49024	9	3	7	-	8	2	6	$9.227 ext{E-} 27$	8.461 E-05
5956.76959	7	4	4	-	6	3	3	1.007 E-26	$5.407 ext{E-05}$
5969.37847	10	2	8	-	9	3	7	$6.321 ext{E-} 27$	$8.952 ext{E-05}$
5969.38249	10	3	8	-	9	2	7	1.897 E-26	8.955 E-05
5970.89532	8	3	5	-	7	4	4	$7.486 ext{E-27}$	$5.854\mathrm{E}$ - 05
5972.35147	8	4	5	-	7	3	4	2.371E-26	$6.160 \text{E}{-}05$
5980.30558	6	5	1	-	5	4	2	1.213 E-26	$5.001 \text{E}{-}05$
5988.18562	9	3	6	-	8	4	5	$1.702 ext{E-26}$	$6.789 ext{E-05}$
5993.61481	6	6	1	-	5	5	0	$5.301\mathrm{E}$ -26	8.285 E-05
5994.40969	6	6	0	-	5	5	1	1.771 E- 26	$8.283 \text{E}{-}05$
6001.52403	8	5	4	-	7	4	3	1.603 E-26	$4.851 \text{E}{-}05$
6004.54959	10	4	7	-	9	3	6	1.163 E-26	$7.512 ext{E-05}$
6015.24929	7	6	2	-	6	5	1	$9.611\mathrm{E}$ -27	$6.249 ext{E-05}$
6015.67613	7	5	2	-	6	4	3	$1.475 ext{E-26}$	2.730 E-05
6021.22992	7	6	1	-	6	5	2	$2.858\mathrm{E}$ -26	$6.087 ext{E-05}$
6033.52555	8	6	3	-	7	5	2	1.482 E- 26	$4.959 \text{E}{-}05$
6035.56822	10	5	6	-	9	4	5	7.273 E- 27	$6.092 ext{E-05}$

ν	Bep	хн.	Нижн.				Инт.(296)	A_{12}	
cm^{-1}	J	K_a	K_c		J'	K_a'	K_c'	$\mathrm{cm}^{-1}/\mathrm{moj.cm}^{-2}$	
1		2				3		4	5
6038.43936	7	7	1	-	6	6	0	1.130 E-26	8.359E-05
6038.80290	7	7	0	-	6	6	1	3.397 E-26	8.366 E-05
6062.60628	8	7	2	-	7	6	1	1.824E-26	$6.822 ext{E-05}$
6065.85061	8	7	1	-	7	6	2	6.154 E-27	6.835 E-05

Таблица С.2 – (продолжение)

Приложение D

Таблица D.1 – Анализ полосы $\nu_1 + 3\nu_6$ (A_1) молекулы CH₃D в спектре II

E	E'	ν	Int	J	K	J'	K'	$2T^{a)}$
6431.9430	7.7602	6424.1828	1.034E-23	0	0	1	0	6.12
6439.4649	0.0000	6439.4649	$1.225\mathrm{E} ext{}23$	1	0	0	0	-7.29
6439.4648	23.2793	6416.1855	$1.585 ext{E-23}$	1	0	2	0	16.50
6454.4881	7.7602	6446.7279	$2.163 ext{E-}23$	2	0	1	0	3.11
6454.4881	46.5548	6407.9333	$1.585 ext{E-23}$	2	0	3	0	40.52
6476.9841	23.2793	6453.7048	$2.587 ext{E-} 23$	3	0	2	0	18.60
6476.9839	77.5828	6399.4011	1.194 E-23	3	0	4	0	79.99
6506.9360	46.5548	6460.3812	$2.362 ext{E-} 23$	4	0	3	0	44.49
6506.9357	116.3585	6390.5772	$7.504 ext{E-} 24$	4	0	5	0	118.81
6544.3530	77.5828	6466.7702	$1.827 \mathrm{E}{-}23$	5	0	4	0	79.66
6544.3531	162.8754	6381.4777	$4.159\mathrm{E}{-24}$	5	0	6	0	167.05
6589.2610	116.3585	6472.9025	$1.231\mathrm{E}{-23}$	6	0	5	0	114.53
6589.2610	217.1260	6372.1350	$1.963 ext{E-} 24$	6	0	7	0	225.77
6641.6856	162.8754	6478.8102	$6.607 \mathrm{E}{-24}$	7	0	6	0	170.64
6641.6854	279.1016	6362.5838	$7.623 ext{E-}25$	7	0	8	0	291.36
6701.6478	217.1260	6484.5218	$2.959 ext{E-} 24$	8	0	7	0	222.80
6701.6475	348.7921	6352.8554	$2.614 ext{E-} 25$	8	0	9	0	362.02
6769.1739	279.1016	6490.0723	$1.063 \mathrm{E}{-}24$	9	0	8	0	288.83
6769.1729	426.1863	6342.9866	$1.174 ext{E-}25$	9	0	10	0	406.20
6843.2758	348.7921	6494.4837	$3.044 ext{E-} 25$	10	0	9	0	360.76
6843.2752	511.2718	6332.0034	$7.759 ext{E-} 26$	10	0	11	0	408.68
6421.9727	9.1306	6412.8421	$5.826\mathrm{E} ext{}25$	1	1	1	1	
6421.9726	24.6492	6397.3234	$3.975 ext{E-} 25$	1	1	2	1	
6437.0596	9.1306	6427.9290	$7.041 ext{E-} 25$	2	1	1	1	
6437.0594	24.6492	6412.4102	$2.174 ext{E-} 25$	2	1	2	1	38.29
6437.0590	47.9239	6389.1351	$3.983 ext{E-} 25$	2	1	3	1	58.60
6459.6766	24.6492	6435.0274	$1.048 \mathrm{E}{\text{-}}24$	3	1	2	1	41.66
6459.6756	47.9239	6411.7517	$1.315\mathrm{E}{-}25$	3	1	3	1	
6459.6768	78.9510	6380.7258	$2.989 ext{E-} 25$	3	1	4	1	158.39
6489.8092	47.9239	6441.8853	$9.384\mathrm{E}$ - 25	4	1	3	1	
6489.8089	117.7254	6372.0835	$1.369 ext{E-} 25$	4	1	5	1	145.06
6527.4480	78.9510	6448.4970	$6.937 ext{E-} 25$	5	1	4	1	77.06
6527.4482	164.2408	6363.2074	$4.245\mathrm{E} ext{}26$	5	1	6	1	
6572.6072	117.7254	6454.8818	$4.333 ext{E-} 25$	6	1	5	1	120.31
6572.6073	218.4897	6354.1176	$1.023\mathrm{E}\text{-}26$	6	1	7	1	
6625.3608	164.2408	6461.1200	$1.812 ext{E-} 25$	7	1	6	1	195.53
6625.3610	280.4633	6344.8977	6.147E-27	7	1	8	1	
6423.2025	28.7600	6394.4425	$3.752 ext{E-} 25$	2	2	2	2	
6423.2024	52.0325	6371.1699	$1.010 \mathrm{E}{-}25$	2	2	3	2	54.63
6445.7974	28.7600	6417.0374	1.434E-25	3	2	2	2	274.79
6445.7977	52.0325	6393.7652	$2.012 ext{E-} 25$	3	2	3	2	
6445.7962	83.0565	6362.7397	1.284E-25	3	2	4	2	
6475.9222	52.0325	6423.8897	1.413E-25	4	2	3	2	88.25

Таблица D.1 – (продолжение)

E	E'	ν	Int	J	K	J'	K'	2T
6475.9222	83.0565	6392.8657	1.110E-25	4	2	4	2	
6475.9215	121.8271	6354.0944	$7.581 ext{E-26}$	4	2	5	2	223.53
6513.5455	83.0565	6430.4890	$9.863 \mathrm{E}{-26}$	5	2	4	2	89.23
6513.5453	121.8271	6391.7182	$6.187 ext{E-26}$	5	2	5	2	120.39
6513.5455	168.3380	6345.2075	$4.122{ m E}{ m -}26$	5	2	6	2	199.33
6558.7183	121.8271	6436.8912	$6.198 ext{E-}26$	6	2	5	2	
6558.7189	168.3380	6390.3809	$6.585 ext{E-26}$	6	2	6	2	
6558.7189	222.5816	6336.1373	$1.762 ext{E-}26$	6	2	7	2	246.12
6611.4219	168.3380	6443.0839	$4.061 ext{E-26}$	7	2	6	2	
6611.4221	284.5492	6326.8729	$7.780 ext{E-} 27$	7	2	8	2	
6435.2955	58.8831	6376.4124	$2.644 ext{E-}25$	3	3	3	3	56.30
6435.2947	89.9021	6345.3925	$6.483 \mathrm{E}{-26}$	3	3	4	3	
6465.5899	58.8831	6406.7068	$5.905 ext{E-} 26$	4	3	3	3	
6465.5901	89.9021	6375.6879	$1.206\mathrm{E} ext{-}25$	4	3	4	3	116.89
6465.5909	128.6665	6336.9244	$4.274 ext{E-}26$	4	3	5	3	
6503.2665	89.9021	6413.3643	$3.019 \mathrm{E}{-}26$	5	3	4	3	
6503.2666	128.6665	6374.6001	$2.596\mathrm{E} ext{}26$	5	3	5	3	
6503.2658	175.1698	6328.0960	$1.035\mathrm{E} ext{-}26$	5	3	6	3	
6538.7061	184.7409	6353.9651	$4.028\mathrm{E} ext{}26$	6	4	6	4	182.95
6488.6179	150.5788	6338.0391	$2.871\mathrm{E}{-}25$	5	5	5	5	160.77
6488.6172	197.0580	6291.5592	$2.770\mathrm{E} ext{}26$	5	5	6	5	271.84
6533.9946	197.0580	6336.9366	$9.391\mathrm{E} ext{-}26$	6	5	6	5	225.37
6533.9945	150.5788	6383.4157	$8.175 \mathrm{E}{-26}$	6	5	5	5	
6532.6575	212.1295	6320.5280	$8.704 ext{E-} 25$	6	6	6	6	219.44
6532.6583	266.3169	6266.3414	$5.593 ext{E-26}$	6	6	7	6	300.65
6585.4607	212.1295	6373.3312	1.088 E-25	7	6	6	6	217.49
6585.4602	266.3169	6319.1433	$1.298 ext{E-} 25$	7	6	7	6	256.28
6585.4610	328.2204	6257.2406	$3.471 ext{E-26}$	7	6	8	6	342.87
6585.4745	212.1295	6373.3450	$4.041 ext{E-26}$	7	6	6	6	
6585.4745	266.3169	6319.1576	7.101 ± 26	7	6	7	6	256.47
6585.4733	328.2204	6257.2529	$2.275 \mathrm{E}{-}25$	7	6	8	6	279.64
6645.8095	266.3169	6379.4926	$8.482 ext{E-26}$	8	6	7	6	
6645.8096	328.2204	6317.5892	$6.372 ext{E-26}$	8	6	8	6	347.54
6645.8095	397.8301	6247.9794	$1.502 ext{E-26}$	8	6	9	6	404.75
6713.3545	328.2204	6385.1341	8.482E-26	9	6	8	6	
6713.3546	397.8301	6315.5245	$8.346 \mathrm{E}{-}26$	9	6	9	6	
6713.3546	475.1348	6238.2198	$1.049 \mathrm{E}{-26}$	9	6	10	6	

a) Значение нижних уровней энергии для указанных переходов, рассчитанные методом "двух темеператур"
 b) E', J' и K' - энергия и квантовые числа нижних уровней

Приложение Е

Таблица Е.1 – Спектроскопические параметры $Y_{v\gamma,v'\gamma'}^{\Omega(K,n\Gamma)}$ для набора взаимодействующих состояний (0100)/(0001) и (1000)/(0010) молекулы SiD₄ (в см⁻¹)^{a)}

(v,γ)	(v',γ')	$\Omega(K,n\Gamma)$	$^{28}\mathrm{SiD}_4{}^{b)}$	$^{29}\mathrm{SiD}_4$	$^{30}{ m SiD}_4$
1	2	3	4	5	6
$(0000, A_1)$	$(0000, A_1)$	$2(0, A_1)$	1.435023507	1.435036051(44)	1.435048705(47)
	$(0000, A_1)$	$4(0, A_1)10^5$	-0.912211	-0.912211	-0.912211
	$(0000, A_1)$	$4(4, A_1)10^6$	-0.4243309	-0.4243309	-0.4243309
	$(0000, A_1)$	$6(0, A_1)10^9$	0.157994	0.157994	0.157994
	$(0000, A_1)$	$6(4, A_1)10^{11}$	-0.69505	-0.69505	-0.69505
	$(0000, A_1)$	$6(6, A_1)10^{11}$	-0.156444^{c}	-0.156444^{c}	-0.156444^c
(0100, E)	(0100, E)	$0(0, A_1)$	689.8732108	689.8867897(74)	689.8995006(80)
	(0100, E)	$2(0, A_1)10^3$	0.499917	0.471102(14)	0.444109(16)
	(0100, E)	$2(2, E)10^2$	-0.2996611	-0.3021143(20)	-0.3043944(23)
	(0100, E)	$3(3, A_2)10^5$	0.632710	0.632710	0.632710
	(0100, E)	$4(2, E)10^7$	-0.68717	-0.68717	-0.68717
	(0100, E)	$4(4, A_1)10^7$	-0.164	-0.164	-0.164
	(0100, E)	$5(3, A_2)10^9$	0.232	0.232	0.232
	(0100, E)	$6(2, E)10^{11}$	-0.124	-0.124	-0.124
(0100, E)	$(0001, F_2)$	$1(1, F_1)$	-2.66442754	-2.65624969(78)	-2.64857966(90)
	$(0001, F_2)$	$2(2, F_2)10^2$	-0.7643753	-0.7659702(21)	-0.7674349(22)
	$(0001, F_2)$	$3(1, F_1)10^4$	-0.3100749	-0.3107712(52)	-0.3111442(64)
	$(0001, F_2)$	$3(3, F_2)10^5$	0.225209	0.228183(46)	0.232701(50)
	$(0001, F_2)$	$4(4, F_1)10^7$	-0.13656	-0.13656	-0.13656
	$(0001, F_2)$	$4(4, F_2)10^7$	-0.25553	-0.25553	-0.25553
	$(0001, F_2)$	$5(1, F_1)10^9$	-0.36804	-0.36804	-0.36804
	$(0001, F_2)$	$5(3, F_1)10^9$	0.10222	0.10222	0.10222
	$(0001, F_2)$	$5(5, F_2)10^9$	-0.099	-0.099	-0.099
$(0001, F_2)$	$(0001, F_2)$	$0(0, A_1)$	674.5313504	672.9338415(46)	671.4322740(51)
	$(0001, F_2)$	$1(1, F_1)$	2.65700318	2.68057598(88)	2.70264200(92)
	$(0001, F_2)$	$2(0, A_1)10^3$	0.140	0.140	0.140
	$(0001, F_2)$	$2(2, E)10^2$	-0.1042923	-0.1045317(26)	-0.1046633(28)
	$(0001, F_2)$	$2(2, F_2)10^2$	-0.4742084	-0.4718821(24)	-0.4696996(26)
	$(0001, F_2)$	$3(1, F_1)10^4$	0.1442411	0.1454303(89)	0.1469171(95)
	$(0001, F_2)$	$3(3, F_1)10^4$	-0.1399878	-0.1397671(56)	-0.1393144(54)
	$(0001, F_2)$	$4(0, A_1)10^6$	-0.130833	-0.130833	-0.130833
	$(0001, F_2)$	$4(2, E)10^7$	-0.46797	-0.46797	-0.46797
	$(0001, F_2)$	$4(2, F_2)10^8$	0.4582	0.4582	0.4582
	$(0001, F_2)$	$4(4, A_1)10^8$	0.47072	0.47072	0.47072
	$(0001, F_2)$	$4(4, E)10^7$	0.46858	0.46858	0.46858
	$(0001, F_2)$	$4(4, F_2)10^7$	0.36026	0.36026	0.36026
	$(0001, F_2)$	$5(3, F_1)10^9$	-0.50578	-0.50578	-0.50578
	$(0001, F_2)$	$5(5, F_1)10^{10}$	0.1767	0.1767	0.1767
	$(0001, F_2)$	$6(0, A_1)10^{11}$	0.482	0.482	0.482

(v, γ)	(v',γ')	$\Omega(K,n\Gamma)$	$^{28}\mathrm{SiD}_4{}^{b)}$	$^{29}{ m SiD}_4$	$^{30}\mathrm{SiD}_4$
1	2	3	4	5	6
$(1000, A_1)$	$(1000, A_1)$	$0(0, A_1)$	1563.2	1563.2	1563.2
	$(1000, A_1)$	$2(0, A_1)10^2$	-0.63	-0.63	-0.63
	$(1000, A_1)$	$4(0, A_1)10^6$	0.051	0.051	0.051
	$(1000, A_1)$	$4(4, A_1)10^7$	-0.031	-0.031	-0.031
$(1000, A_1)$	$(0010, F_2)$	$2(2, F_2)10^2$	0.382080	0.378724(14)	0.375760(14)
	$(0010, F_2)$	$3(3, F_2)10^5$	0.08965	0.08965	0.08965
	$(0010, F_2)$	$4(2, F_2)10^7$	0.22267	0.22267	0.22267
	$(0010, F_2)$	$4(4, F_2)10^6$	0.021357	0.021357	0.021357
	$(0010, F_2)$	$5(3, F_2)10^9$	0.043	0.043	0.043
$(0010, F_2)$	$(0010, F_2)$	$0(0, A_1)$	1598.4781907	1596.2137718(42)	1594.1059090(45)
	$(0010, F_2)$	$1(1, F_1)$	0.41080585	0.38795075(61)	0.36658361(67)
	$(0010, F_2)$	$2(0, A_1)$	-0.005544384	-0.0055181525(92)	-0.005493793(10)
	$(0010, F_2)$	$2(2, E)10^2$	0.1615357	0.15712106(99)	0.15296615(97)
	$(0010, F_2)$	$2(2, F_2)10^2$	-0.1799984	-0.1802560(17)	-0.1805351(16)
	$(0010, F_2)$	$3(1, F_1)10^5$	0.245756	0.232568(32)	0.220953(38)
	$(0010, F_2)$	$3(3, F_1)10^5$	-0.135588	-0.136522(22)	-0.136863(24)
	$(0010, F_2)$	$4(2, E)10^{6}$	0.025161	0.025161	0.025161
	$(0010, F_2)$	$4(2, F_2)10^7$	-0.08627	-0.08627	-0.08627
	$(0010, F_2)$	$4(4, A_1)10^7$	0.055998	0.055998	0.055998
	$(0010, F_2)$	$4(4, E)10^{7}$	0.12159	0.12159	0.12159
	$(0010, F_2)$	$4(4, F_2)10^6$	-0.023221	-0.023221	-0.023221
	$(0010, F_2)$	$5(1, F_1)10^9$	0.00889	0.00889	0.00889
	$(0010, F_2)$	$5(3, F_1)10^{10}$	-0.3867	-0.3867	-0.3867
	$(0010, F_2)$	$6(0, A_1)10^{11}$	0.1272	0.1272	0.1272

Таблица Е.1 – (продолжение)

^{a)} Значения в скобках – статистические доверительные интервалы 1σ . Если параметры ²⁹SiD₄ и ³⁰SiD₄ из колонов 5 и 6 представлены без доверительных интервалов, это означает, что указанная величина фиксировалась параметрами из колонки 4 и не менялись в процессе варьирования.

^{b)} Воспроизведено из работ [192] - [193].

^{c)} В работах [55] - [56], [192] - [193] присутствуют опечатки в значениях параметров.