УДК 661.965:330.15

ТЕХНИКО-ЭКОНОМИЧЕСКАЯ МОДЕЛЬ АВТОНОМНОГО КОМПЛЕКСА ПО ПРОИЗВОДСТВУ «ЗЕЛЁНОГО» ВОДОРОДА И ЕЁ АПРОБАЦИЯ НА ПРИМЕРЕ МОНГОЛИИ И ЯПОНИИ

Попов Сергей Петрович1,

popovsp@isem.irk.ru

Шакиров Владислав Альбертович¹,

shakirov@isem.irk.ru

Колосницын Антон Васильевич¹, kolosnitsyn@isem.irk.ru

Максакова Дарья Владимировна¹,

maksakova@isem.irk.ru

Балдынов Олег Александрович¹,

oabaldynov@isem.irk.ru

¹ Институт систем энергетики им. Л.А. Мелентьева СО РАН, Россия, 664033, г. Иркутск, пр. Лермонтова, 130.

Актуальность. Представлена технико-экономическая модель комплекса по производству сжиженного водорода с энергоснабжением исключительно от возобновляемых источников энергии. Модель позволяет проводить сравнение техникоэкономических показателей производства «зелёного» сжиженного водорода в различных локациях, учитывая их природноклиматические и технико-экономические условия. Особенностью предлагаемой модели является рассмотрение основных технологических процессов производства, преобразования и хранения водорода с учетом годового почасового профиля возможной генерации энергии возобновляемыми источниками и графика отгрузки сжиженного водорода в качестве товарной продукции. Использование модели актуально на стадии предпроектных исследований по созданию водородных производств в регионах, имеющих высокий потенциал ВИЭ, но при этом удаленных от электроэнергетической инфраструктуры; позволит повысить обоснованность оценок для принятия инвестиционных решений.

Цель: разработать технико-экономическую модель такого комплекса и осуществить проверку её работоспособности на примере оценки нормированной стоимости производства «зелёного» сжиженного водорода для выбранных локаций в Монголии и Японии.

Объекты: автономный комплекс по производству «зелёного» водорода.

Методы. Основу модели составляет оптимизационная задача математического программирования, решение которой позволяет определить уровень и структуру затрат на производство сжиженного водорода с использованием солнечной и ветровой энергии.

Результаты. Для проверки работоспособности модели были получены сравнительные оценки нормированной стоимости производства товарной продукции – 10 тыс. т/год сжиженного «зелёного» водорода для локаций в Монголии (восточное побережье оз. Хубсугул) и Японии (прибрежные районы префектуры Ямагата), составляющие соответственно 10,8 и 13,4 \$/кг.

Ключевые слова:

Возобновляемые источники энергии, водородные технологии, сжиженный водород, технико-экономическая модель, стоимостные оценки.

Введение

Увеличение доли возобновляемых источников энергии (ВИЭ) в конечном энергопотреблении является одним из ключевых направлений трансформации систем энергоснабжения [1, 2]. Производимый методом электролиза воды при использовании исключительно энергии ВИЭ так называемый *«зелёный»* водород позволяет решать ряд проблем, возникающих вследствие стохастического режима генерации солнечными и ветровыми электростанциями (соответственно СЭС, ВЭС). Это обусловливает актуальность исследований широкого спектра технологий, связанных с применением водорода в качестве энергоносителя.

В зависимости от природно-климатических условий выработка ВИЭ для различных локаций существенно отличается, что оказывает влияние на конечную стоимость производимого товарного продукта – «зелёного» водорода. При проведении предпроектных исследований по размещению автономных комплексов по производству «зелёного» водорода (КПЗВ) возникает задача оценки стоимости продукции таких производств для изолированных от энергосистемы локаций.

Возможности создания крупных КПЗВ связаны с коммерциализацией технологий производства и транспортировки сжиженного водорода (LH₂, от англ. liquefied hydrogen). Сжижение водорода используется для увеличения плотности водородоносителя (предлагается английский эквивалент этого термина *hyder*, от hydrogen carrier), что позволяет повысить эффективность его хранения и транспортировки. Данные технологии достаточно отработаны [3, 4] и применяются преимущественно в ракетно-космической отрасли. Дополнительным преимуществом сжиженного водорода является возможность его непосредственного использования потребителями, например, в транс-

портном секторе. Недостатки LH₂ как водородоносителя включают значительную потребность в энергии для его сжижения, необходимость поддержания сверхнизких криогенных температур (20 °K), потери при длительном хранении и транспортировке, наличие рисков утечки и возгорания.

К настоящему времени выполнено множество исследований, посвящённых внедрению ВИЭ в системы энергоснабжения потребителей с производством водорода методом электролиза воды. Согласно базе данных научных исследований «Science Direct» в период с января 2020 г. по октябрь 2021 г. было опубликовано около 4700 работ, касающихся темы производства водорода на основе ВИЭ. Анализируются технологические решения в области производства, хранения и транспортировки водорода, рассматривается развитие и функционирование электро-водородных систем.

В то же время тематика производства «зелёного» сжиженного водорода охвачена в меньшей степени. В статье [5] представлена сравнительная стоимостная и экологическая оценка производства сжиженного водорода и аммиака с их последующей транспортировкой из Норвегии до мест потребления в Роттердаме и Токио. Рассмотрение производства водорода методом электролиза воды ограничено укрупненной оценкой потребляемой электроэнергии и необходимых затрат без детального рассмотрения процесса производства сжиженного водорода. В работе [6] предложена многопродуктовая модель производства сжиженного водорода, диоксида углерода и кислорода. Проведена эксергетическая и экономическая оценка данной системы. В качестве её недостатков названы дефицит генерируемой мощности солнечной электростанцией в пасмурный зимний сезон и необходимость наличия резервуаров большого объема для хранения сжиженного водорода.

В работах [7, 8] представлена финансовая и экологическая оценка различных способов производства и доставки водорода. В обоих исследованиях авторы отмечают, что, несмотря на высокий объем капитальных и операционных затрат, производство «зелёного» сжиженного водорода на основе солнечной энергии обладает энергетической и экологической эффективностью.

В исследовании [9] предложена новая система хранения сжиженного водорода, которая может быть использована при его транспортировке в авто- и железнодорожных цистернах и морскими судами (танкерах LH₂). В работе [10] на основе анализа цепочки создания стоимости водорода дается оценка его конкурентоспособности в различных сегментах транспортного сектора. Сделан вывод о перспективе использования водорода в продукции военнотехнического назначения, для которой критерий экономической эффективности не является определяющим.

Имеется ряд исследований в области функционирования и оптимизации состава оборудования комплексов по производству водорода на основе ВИЭ, в том числе с почасовой детализацией. Однако в большинстве рассмотренных работ [11–18] водород позиционируется не как самостоятельный энергоноситель, а как инструмент обеспечения баланса между генерацией и потреблением электрической и тепловой энергии. Таким образом, предполагается, что энергоснабжение потребителей осуществляется на незначительном удалении от ВИЭ.

На наш взгляд, расширить границы исследований в области автономных КПЗВ можно за счёт методологического подхода, предусматривающего описание совместного функционирования трёх основных техсистем комплекса нологических физико-_ химической (производство водорода методом электролиза воды), теплофизической (производство водородоносителя LH₂) и электроэнергетической на основе ВИЭ, полностью обеспечивающей энергопотребление комплекса. Такая постановка задачи оптимизационного моделирования будет востребована на стадии предпроектных исследований по созданию водородных производств в регионах, имеющих высокий потенциал ВИЭ, но при этом удаленных от электроэнергетической инфраструктуры. Назначение технико-экономических моделей для рассматриваемых технологий производства водородоносителей (в данном случае - сжиженного водорода) и технологий генерации электроэнергии ВИЭ состоит в обосновании затрат на получение товарной продукции в течение календарного года. Использование доступной многолетней природно-климатической информации для расчёта почасового годового профиля, характеризующего потенциал использования ВИЭ, позволяет повышать обоснованность оценок для принятия инвестиционных решений.

Таким образом, в данной работе на укрупнённом технико-экономическом уровне моделирования автономного КПЗВ описываются взаимосвязи элементов системы генерации электроэнергии ВИЭ и водородных технологий вплоть до заключительного этапа выполнения заданной производственной программы – отгрузки сжиженного водорода. Под водородными технологиями понимаются низкотемпературные (PEM, от англ. Proton exchange membrane, характеризующиеся высокой энергетической эффективностью) электролизёры и топливные элементы (ТЭ), установки по производству и хранению компримированного и сжиженного водорода.

Концептуальная модель комплекса по производству «зелёного» сжиженного водорода

Концептуальная модель автономного КПЗВ на основе ВИЭ приведена на рис. 1. В общем случае продолжительность временного интервала, определяющего изменение состояния элементов и подсистем комплекса, может быть различной. При этом он должен быть достаточным для отражения наблюдаемых изменений параметров природной среды и физических процессов моделируемого комплекса. В рамках проводимых для апробации модели расчётов в качестве единицы временной дискретности принят один час. Соответственно, далее при описании техникоэкономической модели КПЗВ константа т, означающая количество изменений состояния системы за один час, приравнивается к единице.

Для достижения цели исследования в среде разработки AIMMS был создан оригинальный инструментарий, в основе которого лежит оптимизационная задача математического программирования. Модель КПЗВ описывает следующие технологические подсистемы (рис. 1):

- Электростанции на основе ВИЭ (1.). Рассматривается два вида объектов ВИЭ СЭС и ВЭС с раздельным учётом их почасовой генерации x_t^{sol} и x_t^{vet}, соответственно, где t ∈ [1, T] номер периода моделирования, T=8760. Для обеспечения совместности задачи вводится дополнительная фиктивная переменная x_t^{fict}. Установленная мощность основных элементов комплекса подбирается таким образом, чтобы фиктивная переменная была равна нулю. Используется допущение об отсутствии ограничений на пропускную способность ЛЭП, соединяющих СЭС и ВЭС с КПЗВ.
- РЕМ-электролизёры (2.) потребляют электроэнергию x^{el}_t и производят некомпримированный водород y^{ev}_t. Данная подсистема в будущем будет расширена за счёт выделения процесса подготовки технологической воды для электролиза (обозначен пунктирными линиями).
- *РЕМ-топливные элементы* (7.) могут использовать некомпримированный водород y_t^{fc} для генерации электроэнергии x_t^{fc} и обеспечения баланса электроэнергии КПЗВ (8.) при недостаточном уровне генерации ВИЭ.
- Компрессорная подсистема (3.) обеспечивает подачу произведённого в течении *t*-го часа некомпримированного водорода y_t^{prk} в накопитель компримированного водорода U_t^{kv} (4.), из которого часть водорода может отбираться для сжижения y_t^{kz} либо для производства электроэнергии на ТЭ y_t^{gkv} .

- Установка по производству сжиженного водороda LH₂ (5.) обеспечивается некомпримированным водородом от PEM-электролизёров y_t^{prz} либо от накопителя компримированного водорода y_t^{kz}.
- Накопитель сжиженного водорода U^{zv}_t (6.) служит для обеспечения асинхронного от работы КПЗВ процесса отгрузки товарной продукции (10.) для внешних потребителей, а также для длительного хранения LH₂.

Электроэнергия, производимая на основе ВИЭ, обеспечивает полный цикл производства LH2, включая подготовку технологической воды (в данной версии модели в отдельный блок не выделяется) и производство водорода методом электролиза воды РЕМэлектролизёрами, компримирование и хранение компримированного водорода, производство, хранение и отгрузку товарной продукции – LH2. В случае недостаточной генерации электроэнергии от ВИЭ (8.), накопленный компримированный либо сжиженный водород используется в качестве топлива для ТЭ и производства электроэнергии для обеспечения технологических процессов комплекса. Баланс некомпримированного водорода (9.) обеспечивает выполнение закона сохранения массы вещества при функционировании водородной подсистемы рассматриваемого комплекса. При этом производство некомпримированного водорода в течение часа t (электролизёрами, дросселированием компримированного или регазификацией сжиженного водорода) в точности соответствует его суммарному потреблению в целях производства компримированного водорода, сжиженного водорода (прямой отбор), а также обеспечения потребления ТЭ для производства электроэнергии.

Вместо РЕМ-электролизёров (2.) и РЕМ-топливных элементов (7.) могут быть использованы аналогичные технологические установки. Блоки (5.) и (6.) могут быть заменены другими установками и комплексами, обеспечивающими производство и хранение водородоносителей или синтетических топлив, объединяемых технологиями PtX (Power to any fuel energy carrier, e-fuels).

Рис. 1. Концептуальная модель КПЗВ: 1) ВЭС и СЭС; 2) РЕМ-электролизеры; 3) компрессорная подсистема; 4) накопитель компримированного водорода; 5) производство сжиженного водорода; 6) накопитель сжиженного водорода; 7) топливные элементы; 8) электрическая система КПЗВ (красные линии, включая пунктирные); 9) система водородных трубопроводов КПЗВ (синие линии); 10) система отгрузки сжиженного водорода

Fig. 1. Conceptual model of an autonomous complex for production of «green» hydrogen: 1) wind (WPP) and solar power plant (SPP); 2) PEM-electrolyzers; 3) compressor subsystem; 4) storage of compressed hydrogen; 5) production of liquid hydrogen; 6) storage of liquid hydrogen; 7) fuel cells; 8) electrical system of the autonomous complex (red lines, including dotted lines); 9) hydrogen pipelines system of the autonomous complex (blue lines); 10) liquid hydrogen shipment system

Математическая модель КПЗВ

Модель оптимизирует функционирование КПЗВ с заданным составом оборудования в течение календарного года, используя оценки нормированной стоимости выполнения всех технологических операций комплекса: генерация электроэнергии ВИЭ и топливными элементами, производство водорода методом электролиза воды, компримирование водорода, производство LH₂, хранение компримированного, хранение и отпуск сжиженного водорода. Параметры и переменные модели приведены соответственно в табл. 1, 2.

tonne

MBт∙ч MWh

Таблица 1. 1	Тараметры модели КПЗВ*		
Table I. F	Parameters of model of the autonomous complex for production of «g	reen» hydrogen	
Обозначе-	Описание	Размерность	Значение
Designation	Description	Dimension	Value Mongolia/Japan**
<u>U^{kv}</u>	Нижняя граница – «технический» объём водорода в накопителе компримированного водорода Lower limit – «technical» volume of hydrogen in the compressed hydro- gen storage tank		12
Ukv	Верхняя граница – максимальный объём водорода в накопителе компримированного водорода Upper limit – maximum volume of hydrogen in the compressed hydrogen storage tank	T tonne	60
$\overline{U^{zv}}$	Верхняя граница – максимальный объём водорода в накопителе LH_2 Upper limit – maximum volume of hydrogen in the liquid hydrogen storage tank		100
N ^{sol}	Установленная мощность солнечной генерации Installed solar generation capacity		500/50
N^{vet}	Установленная мощность ветровой генерации Installed wind generation capacity	МВт	30/600
N ^{el}	Установленная мощность электролизёров Installed capacity of the electrolysers	MW	200
N^{fc}	Установленная мощность топливных элементов Installed capacity of the fuel cells		5
α _{el}	Удельное производство некомпримированного водорода электроли- зёром на единицу электроэнергии Specific production of uncompressed hydrogen by electrolyzer per electric energy unit	$T \cdot MBT^{-1} \cdot T^{-1}$ tonnes per MWh	0,02
α_{fc}	Удельная генерация электроэнергии ТЭ на тонну водорода Specific electricity generation by fuel cells per tonne of hydrogen		20,0
φ^{prk}	Удельное потребление электроэнергии на компримирование водорода Specific electricity consumption for hydrogen compression		2,0/1,96
φ^{prz}	Удельное потребление электроэнергии на производство сжиженного водорода (включая энергоснабжение внешних циклов и возмещение потерь на орто-пара конверсию) Specific electricity consumption for production of liquefied hydrogen (including energy demand for external cycles and recovery of ortho- to parahydrogen conversion losses)	MBr. u. s ⁻¹	12,0
$arphi^{kv}$	Удельное потребление электроэнергии на хранение компримиро- ванного водорода (в течение 1 часа) Specific electricity consumption for storage of inquid hydrogen (for 1 hour)	MWh per tonne	13,0.10-5
φ^{zv}	Удельное потребление электроэнергии на хранение жидкого водо- рода (в течение 1 часа) Specific electricity consumption for storage of compressed hydrogen (for 1 hour)		4,2.10-4
φ^{ozv}	Удельное потребление электроэнергии для отгрузки жидкого водо- рода (в течение 1 часа) Specific electricity consumption for shipment of liquid hydrogen (for 1 hour)		0,12
β^{comp}	Потери водорода при его хранении в накопителе компримированно- го водорода в течение 1 часа Hydrogen losses in the compressed hydrogen storage tank for 1 hour		0,002
β^{liq}	Потери водорода при его хранении в накопителе жидкого водорода в течение 1 часа Hydrogen losses in the liquid hydrogen storage tank for 1 hour	%·t ⁻¹ percent per	0,063

Потери водорода при его компримировании в течение 1 часа

Hydrogen losses during compression for 1 hour Потери водорода при его сжижении в течение 1 часа

Hydrogen losses during liquefaction for 1 hour Максимальная генерация СЭС в час t

Maximum solar plant generation in hour t

Максимальная генерация ВЭС в час t

Maximum wind plant generation in hour t

 γ^{comp}

 δ^{prz}

 x_t^{sol}

 $\overline{x_t^{vet}}$

0,3 / 0,25

0,5

630/47,5

26/528

V_t^{ozv}	Отгрузка жидкого водорода в час t Liquid hydrogen shipment per hour t	T tonne	{0;6,3}/{0;5,6}
C ^{sol}	Стоимость генерации солнечной энергии (LCOE) Levelised cost of solar power generation (LCOE)		58,1/137,5
C ^{vet}	Стоимость генерации ветровой энергии (LCOE) Levelised cost of wind power generation (LCOE)		160,2/111,6
C ^{fict}	Стоимость генерации фиктивной энергии Fictitious energy generation cost	\$·MBт ⁻¹ ·ч ⁻¹ \$ per MWh	218290000/249050000
C ^{el}	Стоимость электролиза воды для производства водорода Cost of water electrolysis for hydrogen production		96,7/97,5
Cfc	Стоимость генерации электроэнергии топливными элементами Cost of fuel cells' power generation		915,0/820,9
C ^{compr}	Стоимость компрессии водорода Hydrogen compression costs		26,4/23,6
C^{liq}	Стоимость сжижения водорода Hydrogen liquefaction costs	\$·T ^{−1}	897,7/890,2
Cakv	Стоимость хранения компримированного водорода Cost of storing compressed hydrogen	s per tonne	33,9/31,9
C ^{azv}	Стоимость хранения сжиженного водорода Cost of storing liquefied hydrogen		2,6/2,4

*Здесь и далее все стоимостные показатели приводятся в ценах 2020 г./Here and further all cost indicators are given in 2020 prices.

**Нормированная стоимость производственного процесса определяется по формуле (16) на основе капитальных и эксплуатационных затрат и представляет собой минимальный тариф, при котором производственный процесс становится коммерчески эффективным/The levelized cost of production is determined by formula (16) on the basis of capital and operational costs and represents the minimum rate at which production becomes commercially viable.

Таблица 2. Переменные в модели КПЗВ

Table 2.	Variables of model	of the autonomous	<i>complex for the</i>	production of «gi	reen» hydrogen
----------	--------------------	-------------------	------------------------	-------------------	----------------

Переменная Variable	Описание Description	Размерность Dimension
$\frac{x_t^{sol}}{x_t^{vet}}$	Генерация солнечной электроэнергии за час t /Solar electricity generation per hour t Генерация ветровой электроэнергии за час t /Wind electricity generation per hour t	
x_t^{fict}	Фиктивная генерация электроэнергии ВИЭ за час t Fictitious renewable electricity generation per hour t	МВт ч
x_t^{el}	Потребление электроэнергии для электролиза воды при производстве водорода за час t Electricity consumption for water electrolysis in hydrogen production per hour t	MWh
x_t^{fc}	Генерация электроэнергии при работе топливных элементов за час t Fuel cells electricity generation per hour t	
y_t^{ev}	Производство некомпримированного водорода при работе электролизеров за час t Production of uncompensated hydrogen by electrolysers per hour t	
\mathcal{Y}_{t}^{prk}	Потребление некомпримированного водорода для производства компримированного водорода за час t Non-compressed hydrogen consumption for compressed hydrogen production per hour t	
y_t^{fc}	Потребление некомпримированного водорода топливными элементами для производства электро- энергии за час t Non-combustible hydrogen consumption by fuel cells for electricity generation per hour t	
\mathcal{Y}_t^{gkv}	Отборы из накопителя компримированного водорода для производства электроэнергии топливными элементами за час t Compressed hydrogen storage tank withdrawals for fuel cells' electricity generation per hour t	
y_t^{gzv}	Отборы из накопителя сжиженного водорода для производства электроэнергии топливными элемен- тами за час t Hydrogen liquids storage tank withdrawals for fuel cell electricity generation per hour t	T tonne
\mathcal{Y}_{t}^{prz}	Потребление некомпримированного водорода для производства сжиженного водорода за час t Non-compressed hydrogen consumption for liquefied hydrogen production per hour t	
\mathcal{Y}_t^{kz}	Отбор из накопителя компримированного водорода для производства сжиженного водорода за час t Withdrawal from the compressed hydrogen storage tank for production of liquefied hydrogen per hour t	
U_t^{kv}	Среднее количество хранения компримированного водорода в соответствующем накопителе в тече- ние часа t Average quantity of compressed hydrogen in the corresponding storage tank in hour t	
U_t^{zv}	Среднее количество хранения сжиженного водорода в соответствующем накопителе в течение часа t Average quantity of liquefied hydrogen in the respective storage tank in hour t	

Определение полного электропотребления КПЗВ осуществляется через параметры модели – удельные коэффициенты потребления электроэнергии на различные технологические процессы: ϕ^{prk} , ϕ^{prz} , ϕ^{kv} ,

 $\varphi^{zv}, \varphi^{ozv}$. Потери водорода при его компримировании и сжижении определяются коэффициентами γ^{comp} и δ^{prz} , соответственно. Потери при хранении компримированного и сжиженного водорода оцени-

ваются соответствующими коэффициентами β^{comp} , β^{liq} . В модели принято допущение, что в течение часа может быть осуществлена совокупность следующих процессов: генерация электроэнергии СЭС и ВЭС, компримирование водорода, сжижение водорода, отбор/закачка водорода в накопитель компримированного или сжиженного водорода, генерация электроэнергии топливными элементами. В каждый час *t* в интервале $t \in [1, T]$, где T=8760, требуется выполнение следующих условий:

 Обеспечение баланса электроэнергии, который формируется потреблением электролизёра, компрессора, установки по производству сжиженного водорода и его отгрузке, а также потреблением накопителей компримированного и сжиженного водорода с одной стороны, и генерацией электроэнергии ВИЭ, топливными элементами, либо «фиктивным» источником электроэнергии, с другой стороны. На потребность КПЗВ в электроэнергии также влияет почасовой график отгрузки товарной продукции с производственной площадки, который определяется количеством сжиженного водорода, изымаемого из накопителя сжиженного водорода V_c^{2v}:

$$\begin{aligned} x_t^{sol} + x_t^{vet} + x_t^{fict} + x_t^{fc} - x_t^{el} - (\varphi^{prk} y_t^{prk} + \varphi^{prz} (y_t^{prz} + y_t^{kz}) + (1) \\ + 0.5\varphi^{kv} (U_{t-1}^{kv} + U_t^{kv}) + 0.5\varphi^{zv} (U_{t-1}^{zv} + U_t^{zv}) + \varphi^{ozv} Y_t^{ozv}) &= 0. \end{aligned}$$

2. Ограничения на использование энергии ВИЭ, определяемые техническим потенциалом солнечной и ветровой энергии для данной локации:

$$x_t^{sol} \le \overline{x_t^{sol}};\tag{2}$$

$$x_t^{vet} \le \overline{x_t^{vet}}.$$
 (3)

3. Обеспечение баланса производства и потребления некомпримированного водорода. Его потребление возможно для производства компримированного и/или сжиженного водорода, генерации электроэнергии ТЭ. Производство некомпримированного водорода обеспечивается либо работой электролизёра, либо декомпрессией водорода при отборе из накопителя компримированного водорода, либо регазификацией сжиженного водорода:

$$-y_t^{prk} - y_t^{prz} - y_t^{fc} + y_t^{ev} + y_t^{gkv} + y_t^{gzv} = 0.$$
(4)

 Обеспечение энергетического баланса производства некомпримированного водорода и потребления электроэнергии электролизёрами с учётом КПД электролизёра:

$$y_t^{ev} - \alpha_{el} x_t^{el} = 0.$$
 (5)

5. Обеспечение энергетического баланса производства электроэнергии ТЭ с потреблением водорода с учётом КПД топливного элемента:

$$x_t^{fc} - \alpha_{fc} y_t^{fc} = 0. \tag{6}$$

6. Потребление электроэнергии для электролиза воды при производстве водорода и генерация электроэнергии при работе топливных элементов в течение часа *t* ограничены установленной мощностью электролизёров и топливных элементов:

$$x_t^{el} \le N^{el} \Delta t ; \tag{7}$$

$$x_t^{fc} \le N^{fc} \Delta t \,, \tag{8}$$

где $\Delta t = 1/t$, Δt приравнивается к одному часу.

7. Изменение состояния накопителя компримированного водорода определяется его состоянием в конце предыдущего часа, поступлением и выдачей компримированного водорода с целью производства сжиженного и некомпримированного водорода. При этом учитываются утечки водорода, а также предполагается равномерная работа всех технологических установок в течение часа:

$$U_{t}^{kv} = (1 - \beta^{comp})U_{t-1}^{kv} + (1 - \gamma^{comp}) \times (1 - 0.5\beta^{comp})y_{t}^{prk} - (1 + 0.5\beta^{comp})(y_{t}^{gkv} + y_{t}^{kz}).$$
(9)

8. Изменение состояния накопителя сжиженного водорода определяется его состоянием в конце предыдущего часа, поступлением и выдачей сжиженного водорода для регазификации и/или отгрузки. При этом учитываются потери вскипевшего водорода, а также предполагается равномерная работа всех технологических установок в течение часа:

$$U_{t}^{zv} = (1 - \beta^{liq})U_{t-1}^{zv} + (1 - \delta^{prz})(1 - 0, 5\beta^{liq}) \times (y_{t}^{prz} + y_{t}^{kz}) - (1 + 0, 5\beta^{liq})(V_{t}^{ozv} + y_{t}^{gzv}).$$
(10)

 Ограничения на состояние накопителей водорода, не допускающие превышения максимального количества хранимого водорода для соответствующих накопителей, а также снижения запаса компримированного водорода ниже заданного технологического минимума для накопителя компримированного водорода:

$$U^{kv} \le U^{kv}_t \le \overline{U^{kv}}; \tag{11}$$

$$U_t^{zv} \le \overline{U}^{zv}.$$
 (12)

 Условия равенства начального и конечного состояний накопителей водорода, которые обеспечивают для соответствующего накопителя нулевое изменение запасов за календарный год:

$$U_0^{kv} = U_T^{kv}; (13)$$

$$U_0^{zv} = U_T^{zv}.$$
 (14)

При выполнении ограничений (1)-(14) необходимо найти минимальное значение следующей функции:

$$\sum_{t=1}^{T} \left(\frac{1}{\tau} \left(C^{sol} x_{t}^{sol} + C^{vet} x_{t}^{vet} + C^{flct} x_{t}^{flct} + C^{el} x_{t}^{el} + C^{fc} x_{t}^{fc} \right) + \\ + C^{compr} y_{t}^{prk} + C^{liq} (y_{t}^{prz} + y_{t}^{kz}) + C^{akv} U_{t}^{kv} + C^{azv} U_{t}^{zv}) \right).$$
(15)

Стоимостные показатели функции (15) оцениваются на основе широко используемой формулы расчёта нормированной стоимости (Levelized Cost) производства продукции либо предоставления технологических услуг для соответствующих установок:

$$C^{smth} = \frac{\sum_{l=1}^{L} (Capital_{l} + OM_{l})(1+r)^{1-l}}{\sum_{l=1}^{L} \rho_{l}(1+r)^{1-l}},$$
 (16)

где L – срок жизни проекта; $Capital_l$ – капитальные затраты в году l; OM_l – эксплуатационные затраты в году l; r – ставка дисконтирования; ρ_l – объем производства в году l.

Большое влияние на результаты моделирования оказывают коэффициенты модели. Их оценка была выполнена на основе обзора литературы и информационных источников с целью учёта современного состояние технологий производства, преобразования и хранения водорода. Основная часть энергетических затрат при производстве LH₂ из газообразного водорода приходится на компрессоры и теплообменники [19]. Энергопотребление при производстве LH₂ по технологии компании «Linde» составляет 12,5-15 кВт^ч/кг LH₂ [20-22], а при дальнейшем совершенствовании этой технологии позволит достигнуть уровней 7,5-9 кВт^ч/кг LH₂ [20, 23]. В поисках наиболее эффективных технологий массового производства LH₂ предлагаются новые многокомпонентные теплоносители для циклов охлаждения водорода. Так, в [24] рассматривается технология производства LH₂, которая может обеспечить удельное энергопотребление процесса сжижения водорода на уровне 7,7 кВт[•]ч/кг LH₂.

Модели оценки часовой выработки электроэнергии и её стоимости для СЭС и ВЭС

Модель КПЗВ использует результаты расчёта возможной почасовой выработки и стоимости электроэнергии СЭС и ВЭС. Такой расчёт проводится для локаций, выбираемых из условий высокого потенциала ВИЭ и близости к объектам транспортной инфраструктуры.

Предварительный выбор нескольких локаций с высоким ветро- и гелиоэнергетическим потенциалом проводится с использованием геоинформационных систем Global wind atlas [25], Global solar atlas [26], которые дают возможность визуально оценить распределение возобновляемых энергоресурсов по территории. Эти геоинформационные системы предоставляют оценки среднегодовых значений скорости ветра за 2008–2017 гг. и суммарной солнечной радиации за 1994–2020 гг., полученные с использованием расчетных моделей по данным спутниковых наблюдений с высоким пространственным разрешением.

Окончательный выбор локаций размещения СЭС и ВЭС проводится на основе оценок базы данных реанализа ERA5 Европейского центра среднесрочного прогноза погоды и базы данных на основе спутниковых наблюдений CERES-SYN1deg, разработанной в рамках исследовательской программы НАСА (США). База данных ERA5 предоставляет достаточно точные оценки скорости ветра [27] с часовым разрешением и глобальным пространственным покрытием. Важным преимуществом ERA5, в сравнении с другими базами данных, является предоставление оценок скорости ветра на высотах 10 и 100 м, что позволяет наиболее точно оценить выработку крупных ВЭС. Данные о температуре с достаточно высокой точностью также могут быть получены из ERA5 [28] или более детализированной базы ERA5-land [29].

База данных реанализа ERA5 уступает в точности оценки потока солнечной радиации базам данных на основе спутниковых наблюдений. Поэтому для расчёта выработки электроэнергии СЭС используется база CERES-SYN1deg, которая характеризуется высокой точностью, часовым разрешением данных и глобальным пространственным покрытием [30].

Сравнение намеченных локаций по ветроэнергетическому потенциалу проводится по оценкам средней за рассматриваемый многолетний период скорости ветра и коэффициенту вариации скорости ветра. Сравнение локаций по гелиоэнергетическому потенциалу проводится по одному показателю – среднему за рассматриваемый многолетний период потоку суммарной солнечной радиации на горизонтальную поверхность.

Выработка электроэнергии ВЭС установленной мощностью *N_{vet}* в *t*-й час в выбранной локации оценивается по формуле:

$$\overline{x_t^{vet}} = N_{vet} \frac{P(V_{ht})}{P_r} k_{el} k_{al}, \qquad (17)$$

где $P(V_{ht})$ – мощность одной ветроэнергетической установки (ВЭУ) в час t, определяемая по мощностной характеристике в зависимости от скорости ветра V_{ht} (уравнения (18), (19)) на высоте ротора h, кВт; P_r – номинальная мощность ВЭУ, кВт; k_{el} – коэффициент, учитывающий потери мощности в преобразователях и проводниках, принимается 0,97 [31]; k_{al} – коэффициент, учитывающий потери мощности из-за взаимного аэродинамического затенения ВЭУ, принимается 0,9 [32].

Для определения скорости ветра V_{ht} на высоте ротора ВЭУ *h* используется степенной закон и почасовые оценки базы данных ERA5 о скорости ветра на высоте 10 и 100 м [33]:

$$V_{ht} = V_{100t} \left(\frac{h}{100}\right)^{mt},$$
 (18)

где V_{100t} – скорость ветра в *t*-й час на высоте 100 м, м/с; mt – степенной коэффициент.

Степенной коэффициент в уравнении (18) в *t*-й час определяется:

$$mt = \frac{\ln(V_{100t} / V_{10t})}{\ln(100 / 10)},$$
(19)

где V_{10t} – скорость ветра в *t*-й час на высоте 10 м, м/с.

Выбор наземного или офшорного размещения ВЭС, уточнение модели ВЭУ в составе электростанции осуществляется сопоставлением нормированной стоимости электроэнергии (16) и коэффициента использования установленной мощности (КИУМ) альтернативных вариантов:

$$KHYM = \frac{\sum_{t=1}^{T} \overline{x_t^{vet}}}{TN^{vet}}.$$
(20)

Выработка электроэнергии СЭС установленной мощностью N_{sol} в *t*-й час в выбранной локации оценивается по выражению:

$$\overline{x_t^{sol}} = N_{sol} \left(\frac{I_{gt}}{I_{ref}} \right) k_{pl} (1 - k_{temp} (T_{ct} - 25)), \quad (21)$$

где I_{gt} – интенсивность потока суммарной солнечной радиации на наклонную поверхность ФЭМ в *t*-й час, кВт/м²; I_{ref} – интенсивность потока суммарной солнечной радиации, соответствующая стандартным тестовым условиям (1 кВт/м²); k_{pl} – коэффициент, учитывающий потери мощности в инверторах и проводниках, а также потери из-за загрязнения и деградации ФЭМ, принимается 0,93 [34]; k_{temp} – температурный коэффициент изменения КПД фотоэлектрических преобразователей (ФЭП), о.е./°С; T_{ct} – температура ФЭП в *t*-й час, °С (рассчитывается по формуле (23)).

Интенсивность потока суммарной солнечной радиации *I*_{gt} на наклонную поверхность оценивается по трём составляющим – прямой, рассеянной и отраженной:

$$I_{gt} = I_{bh} \frac{\cos\theta}{\sin\alpha} + I_{dh} \left(\frac{I_{bh}}{I_{0h}} \cdot \frac{\cos\theta}{\sin\alpha} + \left(1 - \frac{I_{bh}}{I_{0h}} \right) \frac{1 + \cos\beta}{2} \right) + I_{gh} A_k \left(\frac{1 - \cos\beta}{2} \right),$$
(22)

где I_{bh} , I_{dh} , I_{gh} , I_{0h} – интенсивность потока прямой, рассеянной, суммарной и внеатмосферной солнечной радиации на горизонтальную поверхность в *t*-й час, кВт/м²; θ – угол падения прямого солнечного излучения на поверхность в *t*-й час, рад; α – высота Солнца в *t*-й час, рад; β – угол наклона ФЭМ, рад; A_k – альбедо земной поверхности в *t*-й час, о.е.

Интенсивность потока рассеянной солнечной радиации на наклонную поверхность рассчитывается в выражении (22) с использованием анизотропной модели Хэя-Дэвиса, показавшей высокую точность в ряде исследований [35, 36].

Для расчёта температуры ФЭП в *t*-й час выбрана модель национальной лаборатории Сандиа (США), которая имеет высокую адекватность и точность в сравнении с другими моделями согласно исследованиям [37, 38]:

$$T_{ct} = T_{at} + I_{gt} e^{a+bV_t} + \frac{I_{gt}}{I_{ref}} \Delta T_{ref}, \qquad (23)$$

где T_{at} – температура воздуха в *t*-ый час, °С; *a*, *b* – эмпирические коэффициенты, зависящие от исполнения и способа установки ФЭМ; V_t – скорость ветра в *t*-й час, м/с; ΔT_{ref} – разница температуры ФЭП и ФЭМ при стандартных тестовых условиях (принимается равной 3 °С для солнечных панелей, монтируемых в открытой наклонной раме [38]).

Выбор угла наклона β ФЭМ проводится из условия максимума суммы часовых значений выработки электроэнергии СЭС (21) за рассматриваемый многолетний период.

Нормированная стоимость выработки электроэнергии на СЭС определяется в соответствии с формулой (16).

Апробирование модели КПЗВ для локаций в Монголии и Японии

Основанием для создания описанной укрупнённой технико-экономической модели автономного КПЗВ является утвержденная Распоряжением Правительства России от 5 августа 2021 г. № 2162-р Концепция развития водородной энергетики в Российской Федерации. В качестве приоритетного направления развития она предусматривает «производство низкоуглеродного водорода ... на базе мощностей возобновляемых источников энергии в тех регионах, где производство водорода методом электролиза воды является конкурентоспособным» [39]. Учитывая тот факт, что регион Северо-Восточной Азии (СВА) является одним из ведущих мировых центров развития водородной энергетики [40] и интересы авторов направлены на исследование энергетики восточных регионов России, было принято решение о рассмотрении конкурирующих с российскими проектами экспорта водородоносителей локаций в странах данного региона.

Одним из возможных поставщиков «зелёного» водорода в Японию, Республику Корея и Китай может стать Монголия, природно-климатические условия которой благоприятны для развития ВИЭ и создания крупных СЭС и ВЭС [41, 42]. В совокупности с наличием запасов чистой пресной воды в северных районах страны это позволяет рассматривать Монголию как одного из производителей «зелёного» водорода для соседних стран.

Проверка работоспособности предложенной технико-экономической модели КПЗВ выполнена путём решения задачи оценки стоимости производства «зелёного» сжиженного водорода в двух локациях, отличающихся природно-климатическими и экономическими условиями. Такое исследование позволяет оценить целесообразность транспортировки сжиженного водорода из одной локации в другую.

Для проверки адекватности модели ставится задача сравнения стоимости производства водорода с результатами аналогичных исследований.

Выбор локаций размещения ВЭС и СЭС

В исследовании размещение ВЭС и СЭС рассматривалось на побережье озера Хубсугул (Монголия) и побережье префектур Ниигата, Ямагата (Япония). Оценка выработки электроэнергии ВЭС проводилась для моделей ВЭУ компании Vestas (табл. 3 [43, 44]), оценка выработки электроэнергии СЭС – для моделей ФЭМ компании Jinko Solar (табл. 4 [45]). В табл. 5 представлены принятые технико-экономические характеристики СЭС и ВЭС на основе исследования [46].

Таблица 3. *Технические характеристики ВЭУ* **Table 3.** *Technical specification of the wind turbines*

Характеристика/Specification	Vestas V117-4,2	Vestas V136-3,45
Тип размещения/Туре	Наземная, оффшорная Onshore, Offshore	Наземная Onshore
Номинальная мощность, MBт Rated power, MW	4,2	3,45
Стартовая скорость, мс ⁻¹ Starting speed, meters per second	3	3
Максимальная рабочая скорость, мс ⁻¹ Maximum operating speed, metre per	25	25

second		
Диаметр ротора, м Rotor diameter, metre	117	136
Высота башни, м Tower height, metre	91,5	112

Таблица 4. Технические характеристики фотоэлектрических преобразователей Tiger Pro 72HC JKM535M-72HL4 (Jinko solar, Китай)

 Table 4.
 Technical specification of solar panel Tiger Pro 72HC JKM535M-72HL4 (Jinko solar, China)

Параметр/Specification	Значение/Value
КПД панелей/Panel efficiency, %	20,75
Площадь одной панели, м ²	2.59
Area per panel, square metre	2,30
Мощность одной панели, кВт	0.525
Power per panel, kW	0,335
Температурный градиент КПД	0.25
Temperature gradient efficiency, %/°C	0,55

Предварительное определение нескольких перспективных для размещения ВЭС локаций проводилось с помощью Global Wind Atlas. В Монголии было намечено четыре локации, в Японии – три (рис. 2). Далее для них с использованием базы данных ERA5 были получены ретроспективные оценки скорости ветра на высоте 10 и 100 м с часовой детализацией за период с 01.01.2015 г. по 31.12.2020 г. [47]. Результаты оценки среднегодовой скорости ветра и коэффициента вариации скорости ветра за этот период представлены на рис. 2 [25]. Исходя из полученных оценок, для дальнейшего рассмотрения в Монголии выбрана локация № 4 на восточном побережье озера Хубсугул, в Японии – локация № 3 рядом с г. Саката.

Таблица 5. Технико-экономические характеристики ВЭС и СЭС

 Table 5.
 Technical and economic characteristics of wind and solar power stations

Параметр/Specification	Ед. измерения/Unit	Moнголия/Mongolia	Япония/Japan
Капитальные затраты на строительство ВЭС	Bt^{-1}	1600	3800*
Capital costs for construction of a wind power station	\$ per kW	1800	1500‡
Эксплуатационные расходы ВЭС	\$ 'кВт ⁻¹ 'год ⁻¹	19	56*
Operating costs of a wind power station	\$ per kW per year	40	50.
Капитальные затраты на строительство СЭС	\$ 'кВт ⁻¹	995	2070
Capital costs for construction of a solar power station	\$ per kW	495‡	2070
Эксплуатационные расходы СЭС	\$ ⁻¹ год ⁻¹	12.0	18.2
Operating costs of a solar power station	\$ per kW per year	12,0	18,5

* оффиорная BЭC/offshore power station.

‡ для оценки влияния фактора снижения удельных капиталовложений/to assess the impact of the reduction factor on specific capital expenditure.

Рис. 2. Выбор локаций для ВЭС и СЭС: (А) Монголия, (Б) Япония (в числителе – средняя скорость ветра, м/с; в знаменателе – коэффициент вариации; в прямоугольнике – суммарная солнечная радиация, кВт·ч/м²·год)

Fig. 2. Selection of locations for WPP and SPP: (A) Mongolia, (B) Japan (average wind speed is in the numerator, m/s; coefficient of variation is in the denominator; total solar radiation is in the rectangle, kWh/m² year)

В соответствии с формулой (17) в программе для ЭВМ Wind-MCA [48, 49] были получены оценки почасовой выработки электроэнергии ВЭС при наземном и оффшорном размещении и различных моделях ВЭУ (табл. 3). По формулам (16) и (20) были рассчитаны LCOE и средний КИУМ ВЭС за 2015-2020 гг. В Монголии наиболее экономически эффективным вариантом является строительство наземной ВЭС с ВЭУ Vestas V136-3,45 (среднегодовая выработка электроэнергии одной ВЭУ за 2015-2020 гг. составила 4692 MBт·ч, LCOE ВЭС - 160,2 \$/MBт·ч, средний КИУМ ВЭС – 13,5 %). В Японии выбрана оффшорная модель Vestas V117 (среднегодовая выработка электроэнергии ВЭУ за 2015-2020 гг. составила 16088 MBт·ч, LCOE ВЭС - 111,6 \$/MBт·ч, средний КИУМ ВЭС - 38,1 %).

Анализ гелиоэнергетического потенциала выполнялся с использованием Global solar atlas [26]. Наибольшая величина среднегодового потока суммарной солнечной радиации характерна для южных локаций, однако локации, выбранные для размещения ВЭС (локация № 4 в Монголии и № 3 в Японии), также имеют высокий уровень потока поступающей солнечной радиации, отличающийся от максимального для рассматриваемой территории не более чем на 1 %. Для снижения затрат на электросетевую инфраструктуру КПЗВ размещение СЭС рассматривалось в той же локации, где и ВЭС.

Оценки почасовой выработки электроэнергии СЭС за период с 01.01.2015 г. по 31.12.2020 г. были рассчитаны по формуле (21) с использованием базы данных CERES SYN1deg [50]. По формулам (16), (20) проведена оценка LCOE и среднего КИУМ СЭС за 2015–2020 гг. В Монголии наибольшую выработку электроэнергии СЭС обеспечивает угол наклона ФЭМ, равный 45° (среднегодовая выработка электроэнергии одной панели за 2015–2020 гг. составила 962 кВт·ч, средний КИУМ СЭС – 19,1 %, LCOE СЭС – 69,2 \$/МВт·ч). В Японии угол наклона ФЭП выбран равным 21° (среднегодовая выработка электроэнергии одной панели за 2015–2020 гг. составила 688 кВт·ч, средний КИУМ СЭС – 13,7 %, LCOE СЭС – 164,7 \$/МВт·ч).

Результаты расчетов с использованием модели КПЗВ

Адекватность разработанной технико-экономической модели автономного КПЗВ при принятых предположениях о свойствах рассматриваемой технической системы подтверждается результатами расчётов, полученных для различных сочетаний природно-климатических условий и значений технико-экономических параметров.

В табл. 6 представлены результаты оценки стоимости и структура затрат на производство «зелёного» LH₂ для локаций КПЗВ в Монголии и Японии.

Дополнительно был выполнен анализ чувствительности стоимости водорода к изменению стоимости электроэнергии.

Таблица 6. Стоимость и структура затрат на производство «зелёного» LH₂ для локаций КПЗВ в Монголии и Японии для различных природно-климатических условий 2015–2020 гг. и технико-экономических характеристик ВЭС и СЭС, \$/кг LH₂

Table 6.Cost and cost structure for production of «green» LH_2 for locations of the autonomous complex for production
of «green» hydrogen in Mongolia and Japan for various natural and climatic conditions in 2015–2020 and the
technical and economic characteristics of WPPs and SPPs, \$ per kg of liquid hydrogen

Показатель Specification	2015	2016	2017	2018	2019	2020	Среднее значение за 2015–2020 гг. Average value for 2015–2020	2020*
Стоимость отгружаемого LH_2 Ex-factory cost	11,08/13,37	10,79/13,37	10,75/13,37	10,74/13,37	10,84/13,27	10,77/13,46	10,8/ 13,4	8,82/9,71
Стоимость электроэнергии ВИЭ Cost of «green» electricity	4,38/6,98	4,38/6,98	4,35/6,98	4,35/6,98	4,41/6,98	4,37/7,01	3,7/7,0	2,41/3,24
Стоимость электролиза Cost of electrolysis	4,90/4,91	4,89/4,91	4,89/4,91	4,89/4,91	4,90/4,91	4,88/4,91	4,9/4,91	4,89/4,92

Примечание: Монголия/Япония. *Оценки получены при значениях параметров, отмеченных ‡ в табл. 5 Note: Mongolia/Japan. *Estimations correspond to the values of the parameters marked ‡ in Table 5.

Для этого используется экспертная оптимистичная оценка снижения капитальных затрат на строительство СЭС и ВЭС (табл. 5). Снижение капитальных затрат на строительство СЭС в Монголии в 2,5 раза приведет к уменьшению стоимости водорода на 1,95 \$/кг (с 10,77 до 8,82 \$/кг). Снижение капитальных затрат на строительство ВЭС в Японии в 2 раза приведет к уменьшению стоимости водорода на 3,85 \$/кг (с 13,46 до 9,71 \$/кг).

Иллюстрация результатов расчета модели приведена на рис. 3. Показано изменение состояния ключевых узлов КПЗВ в Японии в течение 2020 г., полученное в результате применения оптимизационной модели для условий сниженных удельных затрат в строительство ВЭС и СЭС.

Адекватность модели подтверждается следующим. Во-первых, из результатов моделирования следует, что при принятых технико-экономических показателях хранение водорода в сжиженном состоянии обладает

существенно более низкой стоимостью в сравнении с использованием накопителя компримированного водорода – последний включается в работу при достижении максимальной загрузки накопителя сжиженного водорода. Во-вторых, на рис. 3 можно увидеть повышение уровня загрузки накопителя сжиженного водорода в мае и в летние месяцы, что обусловлено аномально низким расчётным техническим потенциалом ветровой энергии в июне–июле 2020 г. Таким образом модель учитывает заданные данные о погодных условиях в течение всего года и осуществляет заблаговременное заполнение накопителей водорода. В-третьих, при практически равном объёме производства товарной продукции (10 тыс. т в год LH₂) полученные оценки его минимальной стоимости существенно различаются для локаций в Монголии и Японии. Так, для условий 2015–2020 гг. стоимость производства в Монголии составила 10,74–11,08 \$/кг, а в Японии – 13,27–13,46 \$/кг. В структуре стоимости производства сжиженного водорода для любой локации преобладают затраты на производство газообразного водорода методом электролиза воды и производство электроэнергии ВИЭ. Разница между стоимостью производства сжиженного водорода в Японии и Монголии, согласно выполненным расчётам, составит около 2,6 \$/кг (табл. 6).

Рис. 3. Состояние накопителей водорода и режим отгрузки сжиженного водорода для Японии (природные условия 2020 г., сниженные капиталовложения в офшорные ВЭС)

Fig. 3. State of hydrogen storage and the liquid hydrogen shipment for Japan (weather conditions for 2020, reduced investment in offshore wind power plants)

Адекватность модели также подтверждается сравнением полученных оценок стоимости товарной продукции КПЗВ с аналогичными оценками других исследований. Всемирная ядерная ассоциация на основании исследований различных организаций за 2019-2021 гг. оценила стоимость производства газообразного «зелёного» водорода в 2,5-7,7 \$/кг [51]. Консалтинговая компания Lazard оценивает стоимость газообразного водорода в 5,64 \$/кг при следующих условиях: удельные капитальные затраты на РЕМ-электролизёры составляют 1010 \$/кВт, их установленная мощность равна 100 МВт, а стоимость электроэнергии принята 60 \$/MBT·ч [52]. Полученные авторами оценки стоимости водорода выше приведенных в [52], что объясняется достаточно благоприятными условиями и допущениями, принятыми в том исследовании: сравнительно низкие (перспективные для начала 2030-х гг.) уровни капитальных затрат на РЕМ-электролизёры, очень высокий КИУМ электролизёров («an availability factor») – 98 %, низкая стоимость генерируемой возобновляемыми источниками электроэнергии. В разработанной авторами техникоэкономической модели автономного КПЗВ, при использовании аналогичных [52] стоимостных показателей и допущений, стоимость некомпримированного газообразного водорода на выходе из электролизёра составит 4,43 \$/кг.

Нормированная стоимость сжижения водорода оценивается в широком диапазоне 1–7 \$/кг LH₂ [53–55]. Таким образом, стоимость сжиженного «зелёного» водорода на основании [51–55] может составить 3,5–14,7 \$/кг. Полученные авторами оценки попадают в этот диапазон.

Заключение

Предложен методологический подход, который предусматривает использование годового почасового профиля генерации электроэнергии ВИЭ и описания физико-химической и теплофизической систем автономных комплексов по производству «зелёного» водорода на укрупнённом технико-экономическом уровне.

Разработанная технико-экономическая модель КПЗВ позволяет оценить стоимость производства «зелёного» сжиженного водорода с учётом природноклиматических условий в рассматриваемой изолированной от энергетической системы локации. Особенностями данной модели, реализованными в комплексе, является то, что:

- в качестве товарного продукта выступает сжиженный водород;
- для энергоснабжения технологических процессов при недостаточном уровне генерации ВИЭ используются топливные элементы;
- для регулирования как сезонных, так и режимных дисбалансов производимой ВИЭ и потребляемой комплексом электроэнергии может быть использован компримированный и/или сжиженный водород из накопителей;
- спрос на товарную продукцию задаётся экзогенно графиком отгрузки сжиженного водорода, исходя из потребностей конечных потребителей.

Для проверки работоспособности и адекватности результатов предложенной модели была выполнена оценка стоимости производства сжиженного водорода в двух локациях (в Монголии и Японии) с учётом различных технико-экономических и природноклиматических условий. Сравнение полученных результатов с оценками стоимости «зелёного» водорода

СПИСОК ЛИТЕРАТУРЫ

- Global Energy Review 2020. URL: https://www.iea.org/reports/ global-energy-review-2021 (дата обращения 01.07.2022).
- Global Renewables Outlook: energy transformation. URL: https://www.irena.org/publications/2020/Apr/Global-Renewables-Outlook-202047 (дата обращения 01.07.2022).
- Водородная экономика путь к низкоуглеродному развитию / Т. Митрова, Ю. Мельников, Д. Чугунов, А. Глаголева. – М.: Центр энергетики Московской школы управления Сколково, 2019. – 63 с.
- Водородное оборудование // ПАО «Криогенмаш». URL: https://www.cryogenmash.ru/catalog/vodorodnoe-oborudovanie/ (дата обращения 01.07.2022).
- Large-scale production and transport of hydrogen from Norway to Europe and Japan: value chain analysis and comparison of liquid hydrogen and ammonia as energy carriers / Y. Ishimoto, M. Voldsund, P. Nekså, S. Roussanaly, D. Berstad, S.O. Gardarsdottir // International Journal of Hydrogen Energy. – 2020. – V. 45. – Iss. 58. – P. 32865–32883.
- Nouria M., Miansari M., Ghorbani B. Exergy and economic analyses of a novel hybrid structure for simultaneous production of liquid hydrogen and carbon dioxide using photovoltaic and electrolyzer systems // Journal of Cleaner Production. – 2020. – V. 259. – 120862.
- Comparative techno-economic study of solar energy integrated hydrogen supply pathways for hydrogen refueling stations in China / Y. Gu, Q. Chena, J. Xue, Z. Tang, Y. Sun, Q. Wu // Energy Conversion and Management. – 2020. – V. 223. –113240.
- Ugurlu A., Oztuna S. How liquid hydrogen production methods affect emissions in liquid hydrogen powered vehicles? // International Journal of Hydrogen Energy. – 2020. – V. 45. – Iss. 60. – P. 35269–35280.
- A high-efficiency liquid hydrogen storage system cooled by a fuelcell-driven refrigerator for hydrogen combustion heat recovery / X. Xiafan, X. Hao, Z. Jianpeng, C. Liubiao, W. Junjie // Energy Conversion and Management. – 2020. – V. 226. – 113496.
- Кулагин В.А., Грушевенко Д.А. Сможет ли водород стать топливом будущего? // Теплоэнергетика. – 2020. – № 4. – С. 1–14.
- Koc M., Tukenmez N., Ozturk M. Development and thermodynamic assessment of a novel solar and biomass energy based integrated plant for liquid hydrogen production // International Journal of Hydrogen Energy. – 2020. – V. 45. – Iss. 60. – P. 34587–34607.
- Okundamiya M.S. Size optimization of a hybrid photovoltaic/fuel cell grid connected power system including hydrogen storage // International Journal of Hydrogen Energy. – 2021. – V. 46. – Iss. 59. – P. 30539–30546.
- 13. Hemmati R., Mehrjerdi H., Bornapour M. Hybrid hydrogenbattery storage to smooth solar energy volatility and energy

аналогичных исследований, в том числе для сценария существенного снижения капитальных вложений в строительство электростанций на основе ВИЭ, показывает работоспособность модели и адекватность получаемых с её помощью результатов.

Разработанная модель является основой для создания семейства инструментов научных исследований и решения широкого круга задач развития электроводородных систем, в первую очередь на основе использования возобновляемых источников энергии.

Исследование выполнено при финансовой поддержке по гранту Российского фонда фундаментальных исследований № 20-014-00020, в рамках проекта государственного задания (№ FWEU-2021-0004) программы фундаментальных исследований РФ на 2021–2035 гг. с использованием ресурсов ЦКП «Высокотемпературный контур» (Минобрнауки России, проект № 13.ЦКП.21.0038). Благодарим компанию AIMMS за создание среды для решения задач математического программирования и возможность её использования в научных целях.

arbitrage considering uncertain electrical-thermal loads // Renewable Energy. – 2020. – V. 154. – P. 1180–1187.

- Puranen P., Kosonen A., Ahola J. Technical feasibility evaluation of a solar PV based off-grid domestic energy system with battery and hydrogen energy storage in northern climates // Solar Energy. – 2021. – V. 213. – P. 246–259.
- Bi-level mixed-integer planning for electricity-hydrogen integrated energy system considering levelized cost of hydrogen / G. Pan, W. Gu, H. Qiu, Y. Lu, S. Zhou, Z. Wu // Applied Energy. – 2020. – V. 270. –115176.
- Seasonal energy storage for zero-emissions multi-energy systems via underground hydrogen storage / P. Gabrielli, A. Poluzzi, G. Jan Kramer, C. Spiers, M. Mazzotti, M. Gazzani // Renewable and Sustainable Energy Reviews. – 2020. – V. 121. – 109629.
- You C., Kim J. Optimal design and global sensitivity analysis of a 100% renewable energy sources based smart energy network for electrified and hydrogen cities // Energy Conversion and Management. – 2020. – V. 223. – 113252.
- Marchenko O.V., Solomin S.V. Modeling of hydrogen and electrical energy storages in wind/PV energy system on the Lake Baikal coast // International Journal of Hydrogen Energy. – 2017. – V. 42. – Iss. 15. – P. 9361–9370.
- Krasae-in S., Stang J.H., Neksa P. Exergy analysis on the simulation of a small-scale hydrogen liquefaction test rig with a multicomponent refrigerant refrigeration system // International Journal of Hydrogen Energy. – 2010. – V. 35. – Iss. 15. – P. 8030–8042.
- Liquid hydrogen, methylcyclohexane, and ammonia as potential hydrogen storage: comparison review / A. Tri Wijayanta, T. Oda, C. Wahyu Purnomoc, T. Kashiwagi, M. Aziz // International Journal of Hydrogen Energy. – 2019. – V. 44. – Iss. 29. – P. 15026–15044.
- Large-scale hydrogen liquefaction in Germany / M. Bracha, G. Lorenz, A. Patzelt, M. Wanner // International Journal of Hydrogen Energy. – 1994. – V. 19. – P. 53–59.
- Drnevich R. Hydrogen delivery liquefaction & compression, strategic initiatives for hydrogen delivery workshop. URL: www1.eere.energy.gov/hydrogenandfuelcells/pdfs/liquefaction_co mp_pres_praxair.pdf (дата обращения 01.07.2022).
- Scott R.B., Denton W.H., Nicholls C.M. Technology and uses of liquid hydrogen. – Oxford: Pergamon Press, 1964. – 56 p.
- Asadnia M., Mehrpooya M. A novel hydrogen liquefaction process configuration with combined mixed refrigerant systems // International Journal of Hydrogen Energy. – 2017. – V. 42. – Iss. 23. – P. 15564–15585.
- 25. Global wind atlas. URL: https://globalwindatlas.info (дата обращения 01.07.2022).
- 26. Global solar atlas. URL: https://globalsolaratlas.info (дата обращения 01.07.2022).
- 27. Validation of European-scale simulated wind speed and wind generation time series / J.P. Murcia, M.J. Koivisto, G. Luzia,

B.T. Olsen, A.N. Hahmann, P.E. Sørensen et al. // Applied Energy. - 2022. - V. 305. - 117794.
28. Gleixner S., Demissie T., Diro G.T. Did ERA5 improve

- Gleixner S., Demissie T., Diro G.T. Did ERA5 improve temperature and precipitation reanalysis over East Africa? // Atmosphere. – 2020. – V. 11. – 996. URL: https://doi.org/10.3390/ atmos11090996 (дата обращения 01.07.2022).
- Performance of air temperature from ERA5-Land reanalysis in coastal urban agglomeration of Southeast China / J. Zou, N. Lu, H.Jiang, J. Qin, L. Yao, Y. Xin, F. Su // Science of The Total Environment. – 2022. – V. 828. – 154459. URL: https://doi.org/10.1016/j.scitotenv.2022.154459 (дата обращения 01.07.2022).
- Yang D., Bright J.M. Worldwide validation of 8 satellite-derived and reanalysis solar radiation products: a preliminary evaluation and overall metrics for hourly data over 27 years // Solar Energy. – 2020. – V. 210. – P. 3–19.
- Simplified analysis of the electric power losses for on-shore wind farms considering Weibull distribution parameters / A. Colmenar-Santos, S. Campíez-Romero, L.A. Enríquez-Garcia, C. Pérez-Molina // Energies. – 2014. – V. 7 (11). – P. 6856–6885.
- Modelling and measuring flow and wind turbine wakes in large wind farms offshore / W. Schlez, J. Phillips, K. Rados, A. Zervos, E.S. Politis, P.K. Chaviaropoulos // Wind Energy. – 2009. – V. 12. – № 5. – P. 431–444.
- Jung C., Schindler D. The role of the power law exponent in wind energy assessment: A global analysis // International Journal of Energy Research. - 2021. - V. 45. - P. 8484-8496.
- Ekici S., Kopru M.A. Investigation of PV system cable losses // International Journal of Renewable Energy Research. – 2017. – V. 7. – № 2. – P. 807–815.
- Noorian A.M., Moradi I., Kamali G.A. Evaluation of 12 models to estimate hourly diffuse irradiation on inclined surfaces // Renewable Energy. – 2008. – V. 33. – Р. 1406–1412. URL: https://doi.org/10.1016/j.renene.2007.06.027 (дата обращения 01.07.2022).
- 36. Khalil S.A., Shaffie A.M. A comparative study of total, direct and diffuse solar irradiance by using different models on horizontal and inclined surfaces for Cairo, Egypt // Renewable and Sustainable Energy Reviews. – 2013. – V. 27. – P. 853–863. URL: https://doi.org/10.1016/j.rser.2013.06.038 (дата обращения 01.07.2022).
- Aoun N. Methodology for predicting the PV module temperature based on actual and estimated weather data // Energy Conversion and Management. – 2022. – X 14. – 100182. URL: https://doi.org/10.1016/j.ecmx.2022.100182 (дата обращения 01.07.2022).
- Modeling of photovoltaic cell temperature losses: A review and a practice case in South Spain // I. Santiago, D. Trillo-Montero, I.M. Moreno-Garcia, V. Pallarés-López, J.J. Luna-Rodríguez // Renewable and Sustainable Energy Reviews. – 2018. – V. 90. – P. 70–89. URL: https://doi.org/10.1016/j.rser.2018.03.054 (дата обращения 01.07.2022).
- Концепция развития водородной энергетики в Российской Федерации. Распоряжение Правительства Российской Федерации от 5 августа 2021 г. № 2162-р.
- Ministerial council on renewable energy, hydrogen and related issues Basic hydrogen strategy. – 2017. URL: https://www.meti.go. jp/english/press/2017/1226_003.html (дата обращения 01.07.2022).

- Попов С.П. Методологический подход к моделированию межгосударственной электроводородной системы в северовосточной Азии // Альтернативная энергетика и экология. – 2020. – № 25–27. – С. 84–94. DOI: 10.15518/isjaee.2020.09.008
- International Renewable Energy Agency (IRENA) Mongolia renewables readiness. 2016. URL: https://www.irena.org/ publications/2016/Mar/Renewables-Readiness-Assessment-Mongolia (дата обращения 01.07.2022).
- Vestas V117-4.2 MW. URL: https://www.vestas.com/en/products/ 4-mw-platform/V117-4-2-MW (дата обращения 01.07.2022).
- Vestas V136-3.45 MW. URL: https://www.vestas.com/en/products/ 4-mw-platform/V136-3-45-MW (дата обращения 01.07.2022).
- 45. Jinko solar. URL: https://www.jinkosolar.com/en/site/ dwparametere (дата обращения 01.07.2022).
- Renewable power generation costs in 2020. URL: https://www.irena.org/publications/2021/Jun/Renewable-Power-Costs-in-2020 (дата обращения 01.07.2022).
- Copernicus Climate Data Store. URL: https://cds.climate. copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels (дата обращения 01.07.2022).
- 48. Шакиров В.А., Артемьев А.Ю. Свидетельство о государственной регистрации программы для ЭВМ № 2014619044. Многокритериальная оценка эффективности использования ветроэнергетических установок (Wind-MCA). Зарегистрировано в Реестре программ для ЭВМ 08.09.2014 г.
- Курбацкий В.Г., Шакиров В.А. Методическое и программное обеспечение для оценки ветроэнергетического потенциала Северо-Востока России // Вестник Иркутского государственного технического университета. – 2020. – Т. 24. – № 1 (150). – С. 145–163.
- 50. Ceres Data Products. URL: https://ceres.larc.nasa.gov/data/ (дата обращения 01.07.2022).
- 51. Hydrogen production and uses. URL: https://www.worldnuclear.org/information-library/energy-and-theenvironment/hydrogen-production-and-uses.aspx (дата обращения 01.07.2022).
- Lazard's levelized cost of hydrogen analysis. URL: https://www.lazard.com/media/451779/lazards-levelized-cost-ofhydrogen-analysis-vf.pdf (дата обращения 01.07.2022).
- 53. Yilmaz C. A case study: exergoeconomic analysis and genetic algorithm optimization of performance of a hydrogen liquefaction cycle assisted by geothermal absorption precooling cycle // Renewable Energy. – 2018. – V. 128 (PA). – P. 68–80.
- 54. Review of hydrogen transport cost and its perspective (liquefied hydrogen) / Eds. S. Kimura, I. Kutani, O. Ikeda, R. Chihiro // Demand and Supply Potential of Hydrogen Energy in East Asia – Phase 2. ERIA Research Project Report FY2020 no. 16. – Jakarta: ERIA, 2020. – P. 60–89.
- 55. Current status of hydrogen liquefaction costs / E. Connelly, M. Penev, A. Elgowainy, C. Hunter // DOE Hydrogen and Fuel Cells Program Record 19001. 2019. URL: https://www.hydrogen. energy.gov/pdfs/19001_hydrogen_liquefaction_costs.pdf (дата обращения 01.07.2022).

Поступила 14.07.2022 г. Прошла рецензирование 30.09.2022 г.

Информация об авторах

Попов С.П., кандидат технических наук, старший научный сотрудник Института систем энергетики им. Л.А. Мелентьева.

Шакиров В.А., кандидат технических наук, старший научный сотрудник Института систем энергетики им. Л.А. Мелентьева СО РАН.

Колосницын А.В., младший научный сотрудник Институт систем энергетики им. Л.А. Мелентьева СО РАН. *Максакова Д.В.*, младший научный сотрудник Института систем энергетики им. Л.А. Мелентьева СО РАН. *Балдынов О.А.*, младший научный сотрудник Института систем энергетики им. Л.А. Мелентьева СО РАН.

UDC 661.965:330.15

TECHNICAL AND ECONOMIC MODEL OF AN AUTONOMOUS COMPLEX FOR PRODUCTION OF «GREEN» HYDROGEN AND ITS TESTING ON THE EXAMPLE OF MONGOLIA AND JAPAN

Sergey P. Popov¹, popovsp@isem.irk.ru

Valdislav A. Shakirov¹, shakirov@isem.irk.ru

Anton V. Kolosnitsyn¹, kolosnitsyn@isem.irk.ru

Darya V. Maksakova¹, maksakova@isem.irk.ru

Oleg A. Baldynov¹,

oabaldynov@isem.irk.ru

¹ Melentiev Energy Systems Institute of Siberian Branch of the Russian Academy of Sciences, 130, Lermontov street, Irkutsk, 664033, Russia.

The relevance. The paper presents a technical and economic model of a liquefied hydrogen production complex supplied only by renewable energy. The model compares technical and economic indicators of «green» liquefied hydrogen production in different locations subject to their climate, technical and economic conditions. The unique characteristic of the proposed model is that it considers the main technological processes for hydrogen production, conversion and storage, taking into account the annual hourly profile of possible renewable energy generation and shipping schedule of liquefied hydrogen as a commercial output. Employing the model will be relevant at the stage of pre-feasibility studies devoted to the creation of hydrogen energy productions in regions with high renewable energy potentials and remote from power infrastructure and allow enhancing reasonableness of estimations when taking investment decisions.

The main aim: to develop a technical and economic model of such a complex and to test it by estimating the levelized cost of «green» liquid hydrogen for selected locations in Mongolia and Japan.

Object: the autonomous complex for production of «green» hydrogen.

Methods. The model is based on an optimization problem that determines the level and structure of costs born to produce liquefied hydrogen using solar and wind energy.

Results. For verification of the model the comparative estimations for production of 10000 tonnes per year of the liquefied «green» hydrogen were calculated. The costs for locations in Mongolia (east coast of Lake Hubsugul) and Japan (coastal areas of Yamagata Prefecture) amount to \$10,8 per kg and \$13,4 per kg, respectively.

Key words:

Renewable energy sources, hydrogen technologies, liquefied hydrogen, technical and economic model, estimating costs.

The research was funded by the Russian Foundation for Basic Research, grant no. 18-03-12345, no. 20-014-00020 and under State Assignment Project (no. FWEU-2021-0004) of the Fundamental Research Program of the Russian Federation 2021–2025, using the resources of the High-Temperature Circuit Multi-Access Research Center (Ministry of Science and Higher Education of the Russian Federation, project no. 13.CKP.21.0038). The authors thank AIMMS for creating an environment for solving mathematical problems and for the opportunity to use the software for scientific purposes.

REFERENCES

- Global Energy Review 2020. Available at: https://www.iea.org/ reports/global-energy-review-2021 (accessed 1 July 2022).
- Global Renewables Outlook: energy transformation. Available at: https://www.irena.org/publications/2020/Apr/Global-Renewables-Outlook-202047 (accessed 1 July 2022).
- Mitrova T., Melnikov Yu.V., Chugunov D., Glagoleva A. Vodorodnaya ekonomika – put k nizkouglerodnomu razvitiyu [Hydrogen economy – a way to low-carbon development]. Moscow, SKOLKOVO Energy Centre Publ., 2019. 63 p.
- Vodorodnoe oborudovanie [Hydrogen equipment]. PJSC Cryogenmash. Available at: https://www.cryogenmash.ru/ catalog/vodorodnoe-oborudovanie/ (accessed 1 July 2022).
- Ishimoto Y., Voldsund M., Neksa P., Roussanaly S., Berstad D., Gardarsdottir S.O. Large-scale production and transport of hydrogen from Norway to Europe and Japan: value chain analysis and comparison of liquid hydrogen and ammonia as energy carriers. *International Journal of Hydrogen Energy*, 2020, vol. 45, Iss. 58, pp. 32865–32883.
- Nouria M., Miansari M., Ghorbani B. Exergy and economic analyses of a novel hybrid structure for simultaneous production of liquid hydrogen and carbon dioxide using photovoltaic and electrolyzer systems. *Journal of Cleaner Production*, 2020, vol. 259. 120862.
- Gu Y., Chena Q., Xue J., Tang Z., Sun Y., Wu Q. Comparative techno-economic study of solar energy integrated hydrogen supply pathways for hydrogen refueling stations in China. *Energy Con*version and Management, 2020, vol. 223, 113240.
- Ugurlu A., Oztuna S. How liquid hydrogen production methods affect emissions in liquid hydrogen powered vehicles? *International Journal* of Hydrogen Energy, 2020, vol. 45, Iss. 60, pp. 35269–35280.
- Xiafan X., Hao X., Jianpeng Z., Liubiao C., Junjie W. A highefficiency liquid hydrogen storage system cooled by a fuel-celldriven refrigerator for hydrogen combustion heat recovery. *Energy Conversion and Management*, 2020, vol. 226, 113496.
- Kulagin V. A., Grushevenko D.A. Will hydrogen be able to become the fuel of the future? *Thermal Engineering*, 2020, no. 4, pp. 1–14.

- Koc M., Tukenmez N., Ozturk M. Development and thermodynamic assessment of a novel solar and biomass energy based integrated plant for liquid hydrogen production. *International Journal* of Hydrogen Energy, 2020, vol. 45, Iss. 60, pp. 34587–34607.
- Okundamiya M.S. Size optimization of a hybrid photovoltaic/fuel cell grid connected power system including hydrogen storage. *International Journal of Hydrogen Energy*, 2021, vol. 46, Iss. 59, pp. 30539–30546.
- Hemmati R., Mehrjerdi H., Bornapour M. Hybrid hydrogenbattery storage to smooth solar energy volatility and energy arbitrage considering uncertain electrical-thermal loads. *Renewable Energy*, 2020, vol. 154, pp. 1180–1187.
- Puranen P., Kosonen A., Ahola J. Technical feasibility evaluation of a solar PV based off-grid domestic energy system with battery and hydrogen energy storage in northern climates. *Solar Energy*, 2021, vol. 213, pp. 246–259.
- Pan G., Gu W., Qiu H., Lu Y., Zhou S., Wu Z. Bi-level mixedinteger planning for electricity-hydrogen integrated energy system considering levelized cost of hydrogen. *Applied Energy*, 2020, vol. 270, 115176.
- Gabrielli P., Poluzzi A., Jan Kramer G., Spiers C., Mazzotti M., Gazzani M. Seasonal energy storage for zero-emissions multienergy systems via underground hydrogen storage. *Renewable and Sustainable Energy Reviews*, 2020, vol. 121, 109629.
- You C., Kim J. Optimal design and global sensitivity analysis of a 100% renewable energy sources based smart energy network for electrified and hydrogen cities. *Energy Conversion and Management*, 2020, vol. 223, 113252.
- Marchenko O.V., Solomin S.V. Modeling of hydrogen and electrical energy storages in wind/PV energy system on the Lake Baikal coast. *International Journal of Hydrogen Energy*, 2017, vol. 42, Iss. 15, pp. 9361–9370.
- Krasae-in S., Stang J.H., Neksa P. Exergy analysis on the simulation of a small-scale hydrogen liquefaction test rig with a multicomponent refrigerant refrigeration system. *International Journal of Hydrogen Energy*, 2010, vol. 35, Iss. 15, pp. 8030–8042.
 Wijayanta A.T., Oda T., Purnomoc C.W., Kashiwagi T., Aziz M.
- Wijayanta A.T., Oda T., Purnomoc C.W., Kashiwagi T., Aziz M. Liquid hydrogen, methylcyclohexane, and ammonia as potential hydrogen storage: comparison review. *International Journal of Hydrogen Energy*, 2019, vol. 44, Iss. 29, pp. 15026–15044.
- Bracha M., Lorenz G., Patzelt A., Wanner M. Large-scale hydrogen liquefaction in Germany. *International Journal of Hydrogen Energy*, 1994, vol. 19, pp. 53–59.
- Drnevich R. Hydrogen delivery liquefaction & compression, strategic initiatives for hydrogen delivery workshop. Available at: www1.eere.energy.gov/hydrogenandfuelcells/pdfs/liquefaction_co mp pres praxair.pdf (accessed 1 July 2022).
- Scott R.B., Denton W.H., Nicholls C.M. Technology and uses of liquid hydrogen. Oxford, Pergamon Press, 1964. 56 p.
- Asadnia M., Mehrpooya M. A novel hydrogen liquefaction process configuration with combined mixed refrigerant systems. *International Journal of Hydrogen Energy*, 2017, vol. 42, Iss. 23, pp. 15564–15585.
- Global wind atlas. Available at: https://globalwindatlas.info (accessed 1 July 2022).
- Global solar atlas. Available at: https://globalsolaratlas.info (accessed 1 July 2022).
- Murcia J.P., Koivisto M.J., Luzia G., Olsen B.T., Hahmann A.N., Sørensen P.E. Validation of European-scale simulated wind speed and wind generation time series. *Applied Energy*, 2022, vol. 305, 117794.
- Gleixner S., Demissie T., Diro G.T. Did ERA5 improve temperature and precipitation reanalysis over East Africa? *Atmosphere*, 2020, vol. 11, 996.
- Zou J., Lu N., Jiang H., Qin J., Yao L., Xin Y., Su F. Performance of air temperature from ERA5-Land reanalysis in coastal urban agglomeration of Southeast China. *Science of The Total Environment*. 2022, vol. 828. 154459.
- Yang D., Bright J.M. Worldwide validation of 8 satellite-derived and reanalysis solar radiation products: a preliminary evaluation and overall metrics for hourly data over 27 years. *Solar Energy*. 2020, vol. 210. pp. 3–19.
- Colmenar-Santos A., Campíez-Romero S., Enríquez-Garcia L.A., Pérez-Molina C. Simplified analysis of the electric power losses

for on-shore wind farms considering Weibull distribution parameters. *Energies*. 2014, vol. 7, iss. 11. pp. 6856–6885.

- Schlez W., Phillips J., Rados K., Zervos A., Politis E.S., Chaviaropoulos P.K. Modelling and measuring flow and wind turbine wakes in large wind farms offshore. *Wind Energy*. 2009, vol. 12, iss. 5. pp. 431–444.
- Jung C., Schindler D. The role of the power law exponent in wind energy assessment: A global analysis. *International Journal of Energy Research*, 2021, vol. 45, pp. 8484–8496.
- Ekici S., Kopru M.A. Investigation of PV system cable losses. *International Journal of Renewable Energy Research*, 2017, vol. 7, Iss. 2, pp. 807–815.
- Noorian A.M., Moradi I., Kamali G.A. Evaluation of 12 models to estimate hourly diffuse irradiation on inclined surfaces. *Renewable Energy*, 2008, vol. 33, pp. 1406–1412.
- Khalil S.A., Shaffie A.M. A comparative study of total, direct and diffuse solar irradiance by using different models on horizontal and inclined surfaces for Cairo, Egypt. *Renewable and Sustainable Energy Reviews*, 2013, vol. 27, pp. 853–863.
- 37. Aoun N. Methodology for predicting the PV module temperature based on actual and estimated weather data. *Energy Conversion and Management*, 2022, vol. 14, 100182.
- Santiago I., Trillo-Montero D., Moreno-Garcia I.M., Pallarés-López V., Luna-Rodríguez J.J. Modeling of photovoltaic cell temperature losses: A review and a practice case in South Spain. *Renewable and Sustainable Energy Reviews*, 2018, vol. 90, pp. 70–89.
- 39. Kontseptsiya razvitiya vodorodnoy energetiki v Rossiyskoy Federatsii [The concept of the development of hydrogen energy in the Russian Federation. Decree of the Government of the Russian Federation dated August 5, 2021 no. 2162-r].
- Basic hydrogen strategy. Ministerial council on renewable energy, hydrogen and related issues. 2017. Available at: https://www.meti. go.jp/english/press/2017/1226_003.html (accessed 1 July 2022).
- Popov S.P. Methodological approach to the study of the electrohydrogen system in northeast Asia. *Alternative Energy and Ecolo*gy, 2020, Iss. 25–27, pp. 84–94. In Rus.
- Mongolia renewables readiness. International Renewable Energy Agency (IRENA). 2016. Available at: https://www.irena.org/ publications/2016/Mar/Renewables-Readiness-Assessment-Mongolia (accessed 1 July 2022).
- Vestas V117-4.2 MW. Available at: https://www.vestas.com/en/ products/4-mw-platform/V117-4-2-MW (accessed 1 July 2022).
- Vestas V136-3.45 MW. Available at: https://www.vestas.com/en/ products/4-mw-platform/V136-3-45-MW (accessed 1 July 2022).
- Jinko solar. Available at: https://www.jinkosolar.com/en/site/ dwparametere (accessed 1 July 2022).
- Renewable power generation costs in 2020. Available at: https://www.irena.org/publications/2021/Jun/Renewable-Power-Costs-in-2020 (accessed 1 July 2022).
- Copernicus Climate Data Store. Available at: https://cds.climate. copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels (accessed 1 July 2022).
- Shakirov V.A., Artemiev A.Yu. Mnogokriterialnaya otsenka effektivnosti ispolzovaniya vetroenergeticheskikh ustanovok (Wind-MCA) [Multi-criteria assessment of the effectiveness of the use of wind power plants (Wind-MCA)]. Certificate of state registration of the computer program no. 2014619044, 2014.
- Kurbatsky V.G., Shakirov V.A. Methodology and software for assessing the wind energy potential of the northeast of Russia. *Proceedings of Irkutsk State Technical University*, 2020, vol. 24, Iss. 1, pp. 145–163. In Rus.
- Ceres Data Products. Available at: https://ceres.larc.nasa.gov/data/ (accessed 1 July 2022).
- Hydrogen production and uses. Available at: https://www.worldnuclear.org/information-library/energy-and-theenvironment/hydrogen-production-and-uses.aspx (accessed 1 July 2022).
- Lazard's levelized cost of hydrogen analysis. Available at: https://www.lazard.com/media/451779/lazards-levelized-cost-ofhydrogen-analysis-vf.pdf (accessed 1 July 2022).
- Yilmaz C. A case study: exergoeconomic analysis and genetic algorithm optimization of performance of a hydrogen liquefaction cycle assisted by geothermal absorption precooling cycle. *Renewable Energy*, 2018, vol. 128 (PA), pp. 68–80.

gram Record 19001. 2019. Available at: https://www.hydrogen.

(ac-

Received: 14 July 2022. Reviewed: 30 September 2022.

energy.gov/pdfs/19001_hydrogen_liquefaction_costs.pdf

cessed 1 July 2022).

- Review of hydrogen transport cost and its perspective (liquefied hydrogen). Eds. S. Kimura, I. Kutani, O. Ikeda, R. Chihiro. Demand and Supply Potential of Hydrogen Energy in East Asia – Phase 2. ERIA Research Project Report FY2020 no. 16. Jakarta, ERIA, 2020. pp. 60–89.
- ERIA, 2020. pp. 60–89.
 55. Connelly E., Penev M., Elgowainy A., Hunter C. *Current status of hydrogen liquefaction costs*. DOE Hydrogen and Fuel Cells Pro-

Information about the authors

Sergey P. Popov, Cand. Sc., senior researcher, Melentiev Energy Systems Institute of Siberian Branch of the Russian Academy of Sciences.

Valdislav A. Shakirov, Cand. Sc., senior researcher, Melentiev Energy Systems Institute of Siberian Branch of the Russian Academy of Sciences.

Anton V. Kolosnitsyn, junior researcher, Melentiev Energy Systems Institute of Siberian Branch of the Russian Academy of Sciences.

Darya V. Maksakova, junior researcher, Melentiev Energy Systems Institute of Siberian Branch of the Russian Academy of Sciences.

Oleg A. Baldynov, junior researcher, Melentiev Energy Systems Institute of Siberian Branch of the Russian Academy of Sciences.