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Abstract: Underground mining, including underground coal mining, is accompanied by accidents
and fire hazards that pose a threat to the life safety of miners. The fire hazard increases with an
increase in the mining depth. Currently, most accidents in coal mines are mine fires. The cost of
eliminating mine fires is 80–95% of the cost of eliminating all accidents occurring at mining enterprises.
Therefore, the problem of developing a new methodology for modeling the ventilation network
parameters of the mine to increase the reliability of controlling the aerogas mode at the excavation site
is very relevant. The comprehensive analysis and assessment of gas-dynamic processes in coalmines
under study were carried out using the methods of probability theory and mathematical statistics.
Spatial data were processed using spline interpolation in “gnuplot”. As a result, a generalized
expression for the transfer functions of coalmine objects, taking into account delays, was developed,
including the description of dynamic properties of mining sites under various operating modes.
The principal possibility of using a graphical method for estimating additional parameters of the
sections of the ventilation system branches has been proved due to the alignment of their profiles at
an equivalent distance relative to an arbitrary analogue. The improved method of spatial modeling
was used to determine the gas-dynamic characteristics through additive gas-dynamic processes. The
studies have been carried out and the method for managing the process of changing connections
between devices (controllers–switches) of the technical system was developed in order to obtain
greater reliability for safe mining. In subsequent studies, there is an issue of more detailed clarification
of the peculiarities concerning the interrelations between the studied parameters in several projections
of the response space.
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1. Introduction

Underground mining, including underground coal mining, is accompanied by the
danger of arising emergencies and fire hazards that pose a threat to the life safety of
miners [1–3]. The development of mining enterprises implies the complication of mining-
geological and mining conditions: an increase in the depth of mining operations, natural
gas content of coal seams, depletion of highly productive reserves, etc. Increasing the depth
of mining operations leads to the intensification of negative manifestations of mountain
pressure, the appearance of new zones of spontaneous combustion [4,5] and an increase in
the frequency of appearance of gas dynamic phenomena [6,7]. In addition, there are new
difficulties in ensuring the explosion safety of mining reserves following the disruption of
the local degassing network operation as a result of: a loss in the stability of underground
wells [8,9], crumpling of casing pipes [10], spacing of the main roof breaks [11] imperfections
in well parameters [12,13], and fire hazards in pipelines [14].

The issues of fire hazard are sufficiently detailed in [15–17], reflecting the results of
studies on the influence of water erosion on the fire hazard of a coal dump [18], on using
indicator gas [19] in fire detection, and analysis of the impact of fires in coal mines on
carcinogenic and non-carcinogenic risks to human health [20]. Based on the predictive
analysis, the authors concluded that in order to ensure the fire-safe condition of mining
sites, it is necessary to develop a system for monitoring the release of methane and other
explosive gases using modern multifunctional safety systems [21,22]. It is also necessary
to develop a set of measures for designing coal lavas in severe mining and geological
conditions [23,24] in coalmines.

The expenditures on eliminating mine fires account for 80–95% of the costs of eliminat-
ing all the accidents at mining enterprises [25,26]. Among the main causes of endogenous
fires, the following should be singled out: spontaneous combustion of coal dust; absence of
preventive treatment (silting) of the mined-out space; opening and preparation of the exca-
vation site in violation of the requirements regarding the laying of the ventilation scheme.
They also include violation of the lava attachment passport; insufficiently high efficiency of
preventive treatment of the formation; insufficient organization of the work of the control
and monitoring service of the ventilation and safety rules (SR); oxidation of a coal slack in
conditions of weak ventilation that is insufficient for removing thermal energy from the
oxidation zone. A number of the following measures are proposed to be used as methods
of control. These are the use of steel structures with intumescent [27], the methodology of
fire dynamics in mine workings [28], increasing the role of complex assessment of hidden
hazards based on data mining [29], improving the methods of modeling the spread of
smoke [30], and evolution of methane explosion foci [31], including using estimates of
time series of data [32]. At the same time, it is necessary to determine the boundaries of
the optimal state of gas-dynamic processes and adapt the methodology at coal industry
enterprises [33,34]. At the same time, it is of great importance to choose a rational period
for extracting the information received from the controlled objects [35,36], as well as com-
prehensive monitoring of cause-and-effect relationships leading to accidents [37,38] and
methods of liquidating underground fires [39].

Therefore, it can be argued that there is a contradiction between the needs of practice
and the possibilities of theory. Within the framework of the theory, there is currently no
consideration of issues on the use of complex analysis and monitoring of cause-and-effect
relationships. They lead to accidents associated with methane emissions for effective pre-
vention of safe mining operations in the coalmines. The improvement of the methodology
for modeling the parameters of the ventilation network of the mine to increase the reliability
of controlling the aerogas mode at the excavation site (in case of instability in the methane
release dynamics) is a very relevant scientific problem. Its solution will allow improving
the safety of mining operations in coal lavas.

The purpose of this work is to develop a new approach to analyzing the topology
parameters of ventilation networks while ensuring the fire safety of the development of
coal and gas deposits.
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2. Materials and Methods

The solution of the set tasks is based on modern methods of mathematical statistics,
decision theory, probability theory, method of active experiment and system analysis, and
methodology for assessing aerologic risks [40,41].

To achieve the goal of reducing the fire and explosion hazard of the coal mining
process [5], the authors used the method of the active experiment. The method was used to
determine the measurement interval ∆tβ. For this purpose, the dependence between the
limit function I∗C(∆t) and the transition function hC(∆t) of the methane concentration was
established.

Mine 31 was chosen as an object of studying the aerogas-dynamic parameters of the
topology of the mine workings, which is part of the Sadkinsky coal deposit. It is located on
the border of two districts, Ust-Donetsky and Belokalitvinsky. Coal has been mined on the
territory of the latter for a long time. The total reserves of the deposit are about 300 million
tons. The estimated bottomhole depth is 350 m at mine 31. The design capacity of the mine
is three million tons of coal per year. At the first stage, one face is planned to be exploited,
which is expected to provide one and a half million tons of anthracite annually.

The main hypothesis of the study was the provision on the possibility of using a
graphical method for evaluating additional parameters of sections of branches of the
ventilation network owing to building their profiles with an equivalent remoteness relative
to an arbitrary analogue (a maximally extended branch) and the direction of reporting. This
approach is based on the need to consider the scheme of the branches of the ventilation
network in a three-dimensional space (a four-dimensional problem). Its obtainment is
possible if there are two projections of the network topology (for example, frontal and
profile), which in turn will allow more reliable control of air distribution in the working area
to ensure the fire safety of mining operations. To process the scattered data of the ventilation
network parameters, spline interpolation was used in the “gnuplot” program [10,42].

3. Results and Discussion
3.1. The Interrelation between the Transition Function of the Methane Concentration and the
Functional of the Influencing Parameters of the Ventilation Network Topology

Let a non-stationary discrete sequence of methane concentration values
C(tk), tk = tk1 + ∆t be obtained during the normal operation of the facility on the ob-
servation section (0, t), where ∆t is the selected discreteness interval (∆t = const, K = 1,
2, 3, . . . ). It is required to find such functionality IC that should not exceed the value of
the safety criterion β over the time interval between two adjacent measurements of the
methane concentration [43]. Having proceeded through the entire discrete sequence C(tk)
for values K = 1, 2, 3, . . . , let us find the maximum value of the functional I∗C(∆t) for the
selected discreteness interval ∆t and express it through the parameters of the transient gas
dynamic process hC(t).

It is known that in case of an arbitrary input action X(t) on a link with an impulse
function K(t), the reaction of the link at time t is equal to [44]:

Y(t) =
t∫

0

K(t− τ)X(τ) dτ. (1)

Let us consider the technical system of the mining site as a control object with a known
impulse function KC(t). The transient process of the methane concentration hC(t) (the
transient gas-dynamic process is represented as deviations from the steady-state mode,
which allows the increasing of the accuracy of determining the dynamic characteristics of
ventilation objects by transient gas-dynamic processes), caused by the controlling action of
the air flow Q(t) of an arbitrary shape at time t, will be equal to:
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hc(t) =
t∫

0

Kc(t− τ)Q(t)dt, (2)

where τ is an implementation shift interval, min.
Let us write expressions for the transient process hC(t) at time t1 and t:

hc(t) =
t1∫

0

Kc(t1 − τ)Q(τ)dτ, (3)

hc(t) =
t2∫

0

Kc(t2 − τ)Q(τ)dτ. (4)

The difference of the two integrals in Expressions (3) and (4) will be equal to the
increment of the transition process hC(t) on a time segment ∆t = t2 − t1:

hc(∆t) = hc(t2)− hc(t1) =

t2∫
0

Kc(t2 − τ)Q(τ)dτ −
t1∫

0

Kc(t1 − τ)Q(τ)dτ. (5)

Considering the fact that k
(
t1 − τ

)
when τ > t1, let us write Expression (5) in the form

of a single integral:

hc(∆t) =
t1+∆t∫

0

Kc(t1 + ∆t− τ)Kc(t1 − τ)Q(τ)dτ. (6)

The determination of the maximum possible increment of the methane concentration
C(t) is reduced to the problem of maximization on the segment (t; t + ∆t) by the variables
Q and t of the integral in Expression (6):

I∗c (∆t) = max hc(∆t) = max
t+∆t∫
0

Kc(t + ∆t− τ)Kc(t− τ)Q(τ)dτ. (7)

In this expression, the index of the variable t is omitted and it is assumed that the
function Q(t) changes within 0.1. In this way, the problem under consideration is reduced
to determining, in case of a preset impulse function Kc(τ) and a fixed measurement interval
∆t, the measurement of the type of control action Q(τ) that provides the maximum value
of the transition process hC(∆t). To solve (7), let us make the following substitution
t + ∆t− τ = ε; then:

Kc(t + ∆t− τ)− Kc(t− τ) = P(ε, ∆t). (8)

Then, the maximized integral will take the form:

t1+∆t∫
0

P(ε, ∆t)Q(t + ∆t− ε)dε. (9)

where
Q is the air consumption on the segment (t + ∆t − ε);
t1 is the measuring time at point 1;
∆t is the discreteness interval, fixed interval;
ε is the measurement error of air flow and methane flow rate;
P is the probability of falling into the extreme quantum of the range ε, ∆t.
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The maximum value of this integral is achieved in the case of (a):

Q(t + ∆t− ε) = signP(ε, ∆t), (10)

where

sign

{
0 when P ≤ 0

I when P > 0
. (11)

As well as in the case of (b):

Q(t + ∆t− ε) = signP(ε, ∆t), (12)

where

sign

{
0 when P ≤ 0

I when P ≥ 0
. (13)

Therefore, taking into account (10) and (12), let us obtain:

I1(∆t, t) =
t+∆t∫
0

P(ε, ∆t) signP(ε, ∆t) dε; (14)

I2(∆t, t) =
t+∆t∫
0

P(ε, ∆t) signP(ε, ∆t) dε. (15)

Integrals (14) and (15), being functions of the variable t, reach a maximum when
t = +∞ at any ∆t. Consequently, the maximum of the considered integral is also achieved
when t = +∞:

I∗c (∆t) = max{I1(∆t, ∞), I2(∆t, ∞)} (16)

The difference of the functions I1(∆t, t) and I2(∆t, t) when t = +∞ is equal to:

I1(∆t, ∞) − I2(∆t, ∞) =

∞∫
0

P(ε, ∆t) [signP(ε, ∆t) + signP(ε, ∆t) ]dε =

∞∫
0

P(ε, ∆t)dε = 0. (17)

where signP(ε, ∆t) + signP(ε, ∆t) = 1.
The integral in the Expression (17) is zero since the function P(ε, ∆t) is the difference

of two identical functions, the argument of one of which is ahead of the other by the value
∆t and at the initial interval (0, ∆t) due to the ratio k(t− τ) ≤ 0. When τ > t, this function
is also equal to zero.

The equality of the functions follows from the last expression I1(∆t, t) and I2(∆t, t).
The maximum of the integral under consideration is reached at the time t = +∞,

when the control variable changes abruptly:

Q(t) = sign [Kc(t + ∆t− τ)Kc(t− τ)] = signP (18)

where sign
{

0 when P ≤ 0
I when P ≥ 0

.

Let us further consider the case when the impulse function Kc(ε) is a positive mono-
tonically decreasing function.

Let us write the function I∗C(∆t) in the form of:

I∗C(∆t) =
∞∫

0

[Kc(ε)− Kc(ε− ∆t)] · signP(ε, ∆t)dε. (19)
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Let us transform Expression (19) as follows:

I∗C(∆t) =
t∫

0
[Kc(ε)− Kc(ε− ∆t)] · signP(ε, ∆t)dε +

∞∫
∆t

[Kc(ε)− Kc(ε− ∆t)] · signP(ε, ∆t)dε =

=
∆t∫
0

Kc(ε) · signP(ε, ∆t)dε−
∆t∫
0

Kc(ε− ∆t) · signP(ε, ∆t)dε +
∞∫

∆t
[Kc(ε)− Kc(ε− ∆t)] · signP(ε, ∆t)dε

. (20)

The integrals in Expression (20) are as follows:

∆t∫
0

Kc(ε− ∆t) · signP(ε, ∆t)dε = 0; (21)

∞∫
∆t

[Kc(ε)− Kc(ε− ∆t)] · signP(ε, ∆t)dε = 0. (22)

In Formula (21), the impulse function Kc(ε− ∆t) = 0 is on the segment (0, ∆t), and in
Formula (22), due to the monotony of the function Kc(ε), the difference of the functions
Kc(ε)− Kc(ε− ∆t) is everywhere on the interval t = +∞; therefore, signP(ε, ∆t) ≥ 0.

The integral
∆t∫
0

Kc(ε) · dε in the Formula (20) represents the value of the required one

hC(t), while the function I∗C(∆t) is identically equal to it (which was to be proved):

I∗C(∆t) = hc(t) (23)

As a result, it has been proved that the impulse function is a monotonically decreasing
non-negative one only in case of an abrupt decrease in the air flow at the site. Consequently,
the transient gas-dynamic processes, obtained when the air flow decreases abruptly, are
identically equal to the function hC(t) and can be used to determine the interval of mea-
surement through the safety criterion β.

3.2. The Relationship between the Change of the Air Flow in the Working Area and the Transition
Function of the Methane Concentration

To determine the maximum increment in the consumption of the air required to obtain
the transient process hC(t), it is necessary to determine the relationship between the air rates
before and after changing the gas release at the site, ensuring the methane concentration at
the level C∗ (methane concentration value, CH4, m3/min).

In previous studies, it has been found [45] that when gas is released at the site q, the
required air consumption value is Q = q1

C∗ . Let us assume the fact that in the case of the
known level of gas release at the site, the actual flow rate Q1 differs from the required level
Q, and the actual methane concentration C differs from C∗. Then, we have the expression
C = q1

Q1
for the case of non-optimal control of the aerogas mode at the site.

Now the final expression (when dividing Q
Q1

) to determine the required flow rate will
take the form:

Q =
C
C∗

Q1. (24)

Considering the fact that the methane concentration C satisfies the ratio:

C < Cp > C∗ + β

where Cp is the level regulated by the “Safety Rules for coal mines” of the district.
β is the safety criteria by the ventilation factor (0.2–0.4% of methane in the air jet

coming from the working area).
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After substituting the value of C into the expression (24), we obtain:

Q =
C∗ + β

C∗
Q1 (25)

The final increment of the air consumption rate, which must be supplied to the site to
obtain a transient gas-dynamic process hC(t), will take the form:

Q = (0.5 + 0.66)Q1 (26)

As a result, the boundary ranges of the aerologic parameters of the ventilation network
of the mine were established to control situational changes in the level of methane release
in the working area.

3.3. Assessment of the Aerogas-Dynamic Parameters of the Topology of Mine Workings at Mine 31

The scheme of air connections of the inclined panel 18-P, mine 31 is shown in Figure 1.
It is referred to complex diagonal connections (42 diagonals, or 89.3% of the total number
of mine branches). The parameters of the air connections are shown in Table 1.

Table 1. Indicators of the aerogas-dynamic parameters of the typical diagram.

Branch
Parameters

Branch
Parameters

Branch
Parameters

R, kµ Q, m3/s h, Pa R, kµ Q, m3/s h, Pa R, kµ Q, m3/s h, Pa

1–3 0.0004 60.03 1.44 62–74 0.0018 39.85 2.86 69–71 0.0605 2.78 9.88
3–5 0.0013 59.59 4.62 22–26 0.1 10.41 1.08 71–73 0.0054 9.92 0.53
5–7 0.00313 35.12 3.86 30–34 0.01 2.88 0.08 71–75 0.066 2.07 0.28
7–9 0.0005 34.73 0.6 46–50 0.0025 0.52 0.0007 75–73 0.0895 1.87 0.2

9–11 0.00313 6.59 0.14 62–66 0.0025 2.07 0.01 73–14 0.2919 11.58 39.16
11–13 0.005 6.19 0.019 13–22 800 0.27 59.71 14–16 0.0044 23.69 2.47
13–17 0.00363 5.92 0.13 17–30 88.888 0.84 62.39 47–10 350 0.39 52.31
17–25 0.00726 5.07 0.19 25–46 43.75 1.24 67.28 49–20 50 0.87 38.05
25–33 0.00726 3.83 0.11 33–62 37.5 1.39 72.44 45–61 0.0011 13.49 0.20
33–37 0.004 2.45 0.02 37–76 350 0.46 75.62 61–63 0.0605 12.89 10.05
37–74 19.05 1.99 75.27 5–39 0.0075 24.47 4.49 63–65 0.0054 10.01 0.54
74–76 0.0002 41.84 0.35 39–41 0.0039 22.96 0.65 63–67 0.066 2.08 0.29
76–78 0.0002 42.30 0.36 41–43 0.0021 12.56 0.33 67–65 0.0895 1.89 0.26
1–18 3.19 4.20 56.23 43–84 0.2455 11.60 33.06 65–12 0.2925 11.7 40.05
18–20 0.0194 5.14 0.51 84–86 0.0635 12.80 10.4 12–14 0.0066 12.08 0.96
20–26 0.435 6.01 15.70 86–6 0.0623 13.41 11.21 69–86 100 0.6 36.31
26–34 0.0067 16.42 1.81 6–8 0.0044 27.10 3.23 71–84 25 0.8 16.01
34–50 0.0134 19.31 5.0 41–2 350 0.41 58.23 75–84 100 0.4 15.73
50–66 0.0134 19.84 5.27 43–18 50 0.94 44.7 61–82 100 0.6 36.04
66–78 0.0074 21.93 3.56 39–80 0.2412 11.50 31.92 63–80 25 0.79 15.76

3–2 350 0.44 67.99 80–82 0.0635 12.69 10.23 67–80 100 0.39 15.48
2–8 0.0014 0.85 0.001 82–4 0.1694 13.29 12.26 11–12 350 0.4 56.64

8–10 0.00023 27.95 0.18 4–6 0.0066 13.69 1.24 22–30 0.0016 41.88 2.81
10–16 0.0004 28.33 0.222 7–4 350 0.40 55.04 45–47 0.0039 14.65 0.84
16–22 0.00023 52.04 0.62 9–45 0.0075 28.14 5.94 30–46 0.0032 39.84 5.08
47–49 0.0021 14.26 0.43 46–62 0.0032 40.55 5.26 49–69 0.00535 13.39 0.96

To implement the general research methodology, equidistant sections of the three
branches (extreme right = 1; extreme left = 2 and the subsequent left following it = 3) were
classified relative to the right branch with 13 sections (Table 2).
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Figure 1. Schematic representation of the ventilation network at mine 31, divided into components of
the limited complexity.

Table 2. Aggregated network parameters taking into account the projection of the sphere on a
horizontal plane.

Branch Number Number of the Section
of the Same Length

Sections on the
Diagram (Figure 1) Q R

(M) (N) m3/s kµ

1 1 1–3 60.03 0.0004
1 2 3–5 59.59 0.0013
1 3 5–7 35.12 0.00313
1 4 7–9 34.73 0.0005
1 5 9–11 6.59 0.00313
1 6 11–13 6.19 0.005
1 7 13–17 5.92 0.00363
1 8 17–25 5.07 0.00726
1 9 25–33 3.83 0.00726
1 10 33–37 2.45 0.004
1 11 37–74 1.99 19.05
1 12 74–76 41.84 0.0002
1 13 76–78 42.3 0.0002
2 3 1–18 4.2 3.19
2 6 18–20 5.14 0.0194
2 8 20–26 6.01 0.435
2 9 26–34 16.42 0.0067
2 10 34–50 19.31 0.0134
2 12 50–66 19.84 0.0134
2 13 66–78 21.93 0.0074
3 2 3–2 0.44 350
3 4 2–8 0.85 0.0014
3 5 8–10 27.95 0.00023
3 7 10–16 28.33 0.0004
3 8 16–22 52.04 0.00023
3 9 22–30 41.88 0.0016
3 9.5 30–46 39.84 0.0032
3 10 46–62 14.26 0.0021
3 11 62–74 39.85 0.0018
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Using modern means of three-dimensional interpolation when processing the data
from Table 2, by analogy with [46,47], let us obtain separate response surfaces for Q and R
(Figure 2).
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The analysis of the projections of the response functions evidences the adequacy of
the similarity between the local minima (in most of the studied areas, for example, site
N = from 10 to 12) and the fundamental laws of mine ventilation. On the other hand, there
are areas on the response surfaces whose interrelations remain difficult to predict. This fact
confirms the need to model profile projections of the response, followed by the restoration
of the true three-dimensional view of the spherical ventilation network scheme.

4. Conclusions

The authors have obtained a generalized expression for the transfer functions of
coalmine facilities, taking into account the delay and a description of the dynamic properties
of production units under various modes of functioning. The improved method was
used to determine gas dynamic characteristics via additive gas-dynamic processes, using
correlation functions of input and output processes. The main results of the work are
as follows:
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- the stability of gas and explosion safety and air supply of coal mines is significantly
affected by diagonal connections, which have their own peculiarities and have differ-
ent effects on the distribution of air flows and methane emissions in mine workings,
influencing fire safety in general. Therefore, building a spherical scheme of the venti-
lation network using the projections of the response surface will increase the accuracy
of identifying diagonal sections to increase the safety of mining operations.

- the most acceptable existing method is that of decomposition, which differs through
high accuracy (5–10%), as compared to the previously known ones, by the quality
of the search for diagonals of varying complexity and the efficiency of the solution,
which is required to control the aerologic safety in coalmines.

The results of the research are recommended for using when designing efficient
ventilation schemes of mining areas of coalmines to prevent accidents and the correct
placement of sensors to register the methane concentration in airflows. Reducing the fire
hazards when developing methane-rich coal beds with high-performance mining faces
exclusively through ventilation means is still a difficult task. A complex approach, including
advanced technologies for degassing upper beds and mined-out areas, through both
surface and underground wells, combined with an increase in the reliability of ventilation
control, will significantly improve the situation. Nevertheless, in further studies, it is worth
clarifying in more detail the peculiarities of the interrelations of the studied parameters in
several projections of the response space.
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