Министерство науки и высшего образования Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Направление подготовки/профиль <u>09.06.01 Информатика и вычислительная техника / 2.3.1. Системный анализ, управление и обработка информации, статистика и на правление и обработка информации и на правление и на</u>

 Школа
 Школа базовой инженерной подготовки

 Отделение
 Отделение математики и информатики

Научный доклад об основных результатах подготовленной научно-квалификационной работы

<u> </u>			
	Тема научного доклада		
Разработка методов исследования			
0,	дноканальных систем массового обслуживания с обратной связью		

УДК <u>519.872</u>

Аспирант

Группа	ФИО	Подпись	Дата	
A9-36	Титаренко Е.Ю.			

Руководитель профиля подготовки

т уководитель профили подготовки				
Должность	ФИО	Ученая степень,	Подпись	Дата
		звание		
доцент ОИТ ИШИТР	Шефер О.В.	д.фм.н.		

Руководитель отделения

Должность	ФИО	Ученая степень, звание	Подпись	Дата
и.о. руководителя ОМИ ШБИП	Рожкова С.В.	д.фм.н.		

Научный руковолитель

Tray mibin pyrobodinions				
Должность	ФИО	Ученая степень,	Подпись	Дата
		звание		
профессор ОМИ ШБИП	Рожкова С.В.	д.фм.н.		

Аннотация к научно-квалификационной работе

В настоящее время при моделировании процессов в телефонии или разработке протоколов связи с повторным управлением передачей в компьютерных сетях используют модели RQ-систем, т.е. систем массового обслуживания с повторными вызовами. Такие системы предполагают повторные попытки получить обслуживание для заявок, поступивших в систему, когда обслуживающий прибор занят. Если в случае потери или повреждении блока данных при передаче в компьютерных сетях происходит повторная передача, то могут применяться модели с обратными связями, которые предполагают повторное облуживание заявок, уже получивших обслуживание.

Целью работы является разработка методов асимптотического и численного анализа одноканальных RQ-систем с обратной связью.

Для достижения поставленной цели необходимо было решить следующие **задачи**:

- 1. Построить математические модели RQ-систем вида $M^{[n]}/M/1$, M/M/1/N-1, $M^{[n]}/GI/1$, MMPP/M/1 с обратными связями.
- 2. Разработать модификации метода асимптотического анализа в условии большой задержки заявок на орбите, которые позволят выполнить исследование рассматриваемых систем.
- 3. Получить стационарные асимптотические распределения вероятностей числа заявок на орбите.
- 4. Разработать комплекс программ и алгоритмов для построения асимптотических распределений, вычисления значений вероятностных характеристик систем, определения области применимости асимптотических результатов.

Основные положения, выносимые на защиту:

- 1. Модификации метода асимптотического анализа в предельном условии большой задержки заявок на орбите для RQ-систем вида $M^{[n]}/M/1$, M/M/1/N-1, $M^{[n]}/GI/1$, MMPP/M/1 с обратными связями.
- 2. Теоремы о виде асимптотических характеристических функций распределения вероятностей числа заявок на орбите.
- 3. Модификация метода асимптотически диффузионного анализа, обладающего повышенной точностью.

4. Комплекс проблемно-ориентированных программ и алгоритмов численного анализа рассматриваемых систем массового обслуживания.

Научная новизна:

- 1. Впервые построены математические модели одноканальных RQсистем вида $M^{[n]}/M/1$, M/M/1/N-1, $M^{[n]}/GI/1$, MMPP/M/1с обратными связями.
- 2. Разработаны модификации метода асимптотического анализа, выполнен анализ рассматриваемых систем в предельном условии большой задержки заявок на орбите, получено асимптотическое гауссовское распределение вероятностей числа заявок на орбите, для которого найдены явные выражения параметров предельного распределения.
- 3. Разработана модификация метода асимптотически диффузионного анализа, который обладает более высокой точностью и более широкой областью применимости.
- 4. Разработан комплекс проблемно-ориентированных программ и алгоритмов для исследования рассматриваемых систем, найдены значения вероятностных характеристик систем, установлена область применимости полученных асимптотических результатов.

Практическая значимость. Предложенные модификации методов асимптотического и асимптотически диффузионного анализа вносят вклад в развитие теории массового обслуживания, так как, в отличие от существующих подходов, позволяют решать задачи исследования систем с обратными связями, неординарными входящими потоками или неэкспоненциальным временем обслуживания.

Рассмотренные RQ-системы могут быть применены при проектировании новых протоколов случайного множественного доступа и модификации уже существующих.

Апробация работы. Основные результаты работы докладывались на 7 международных научных конференциях: VII Международная конференция «Математика, ее приложения и математическое образование» (Улан-Удэ, 2020), XXIII Международная научная конференция «Распределенные компьютерные и телекоммуникационные сети: управление, вычисление, связь» (Москва, 2020), Международная научная конференция «Матема-

тическое и программное обеспечение информационных, технических и экономических систем» (Томск, 2020), XIX Международная конференция имени А. Ф. Терпугова «Информационные технологии и математическое моделирование» (Томск, 2020), XX Международная конференция имени А.Ф. Терпугова «Информационные технологии и математическое моделирование» (Томск, 2021), XV Всероссийская научная конференция молодых ученых «Наука. Технологии. Инновации» (Новосибирск, 2021), XXI Международная конференция имени А.Ф. Терпугова «Информационные технологии и математическое моделирование» (Карши, Узбекистан, 2022),

Публикации. Основные результаты по теме диссертации изложены в 10 печатных изданиях, 3 из которых изданы в журналах, рекомендованных BAK, 7-в тезисах докладов.

В первой главе рассматривается одноканальная система массового обслуживания с повторными вызовами, неординарным потоком, экспоненциально распределенным временем обслуживанием, двумя видами обратной связи: мгновенной и отсроченной. Для исследования системы предлагаются методы производящей и характеристической функции, матричный метод, асимптотический и асимптотически диффузионный методы в предельном условии большой задержки заявок на орбите.

Вторая глава посвящена исследованию RQ-систем вида $M^{[n]}/M/1$, M/M/1/N-1, M/M/1/N-1 с приоритетом, $M^{[n]}/GI/1$, MMPP/M/1 с обратными связями асимптотическим методом в предельном условии растущего среднего времени ожидания на орбите. Показано, что асимптотическое распределение вероятностей числа заявок на орбите является гауссовским, найдены параметры нормального распредения для всех рассматриваемых систем.

В **третьей главе** представлены алгоритмы построения гауссовской и диффузионной аппроксимации числа заявок на орбите в системе $M^{[n]}/M/1$, а также алгоритм построения распределения вероятностей числа заявок на орбите с помощью имитационного моделирования системы. Найдена точность построенных аппроксимаций. Определены области применимости асимптотических анализа.