АНАЛИЗ ВЛИЯНИЯ СВОЙСТВ ОГРАЖДАЮЩИХ КОНСТРУКЦИЙ И ОБОРУДОВАНИЯ НА ТЕПЛОВОЙ РЕЖИМ ПОМЕЩЕНИЯ, ОБОГРЕВАЕМОГО ГАЗОВЫМ ИНФРАКРАСНЫМ ИЗЛУЧАТЕЛЕМ В УСЛОВИЯХ СМЕШАННОЙ КОНВЕКЦИИ

А.В. Вяткин Томский политехнический университет ИШЭ, НОЦ И.Н. Бутакова, группа A1-44

На обогрев промышленного помещения традиционными конвективными системами отопления тратится большое количество энергии. С целью повышения энергетической эффективности существует возможность создавать оптимальный тепловой режим в локальной рабочей зоне с использованием газовых инфракрасных излучателей (ГИИ) [1, 2].

К настоящему времени проведен ряд исследований, показывающих что на тепловой режим помещения влияют не только параметры воздухообмена помещения и расположенное оборудование [3–6], но и степень черноты ограждающих конструкций [7, 8]. Однако на данный момент ощущается недостаток работ, посвященных подробному исследованию влияния материала оборудования на тепловой режим в локальной рабочей зоне.

Анализ влияния свойств материала оборудования проводится путем математического моделирования в двумерном приближении. Рассмотрена прямоугольная область размерами 5×4,4 м, ограниченная полом, потолком и стенами. В области расположены газовый инфракрасный излучатели и горизонтальная панель. Месторасположение источника лучистой энергии (ГИИ) и горизонтальной панели соответствуют наиболее типичному варианту их размещения в производственном помещении. Основные характеристики материалов ограждающих конструкций и горизонтальной панели приведены в таблице 1. Схема расположения оборудования представлена на рисунке 1.

Для математического моделирования заданы условия: начальная температура воздуха в помещении +7 °C, температура нагретой поверхности ГИИ -800 °C, температура на входе приточной вентиляции +7 °C, расход воздуха на входе приточной вентиляции $-2\cdot10^{-4}$ кг/($c\cdot м^3$).

Численный анализ выполнен согласно модели теплопереноса, описанной в [3-6].

При проведении математического моделирования тепломассопереноса использовались стандартные модули «The Heat Transfer in Fluids Interface» и «The Turbulent Flow, k-є Interface» программной среды COMSOL Multiphysics. Расчет радиационного теплового потока проведен с использованием модуля «Surface-to-Surface Radiation» для серых поверхностей с соответствующими степенями черноты в рамках зонной модели с учетом средних угловых коэффициентов. Расчет математической модели проводился методом конечных элементов.

Ta	олица I	. Тепло	физические	свойства	используемы	х материалов
----	---------	---------	------------	----------	-------------	--------------

Объект	Толшина, м	Материал	Плотность, кг м ⁻³	Теплоемкость, Дж/(кг·К)	Теплопроводность Вт/(К·м)	Степень черноты
Пол, потолок, стены	0,1	Бетон	2500	2400	1,55	0,95 (0,3)
Горизонтальная	0,02	Сосна	520	2300	0,2	0,3
панель		Сталь	7850	462	52	(0,95)

Уравнение движения воздуха на границе «воздух-ограждающая конструкция» принималось с учетом условия прилипания. На участке ввода воздуха задавались расход и температура, на выходе – постоянное давление равное атмосферному.

Перед проведением математического моделирования тепломассопереноса проведена верификация модели с результатами физического эксперимента [6].

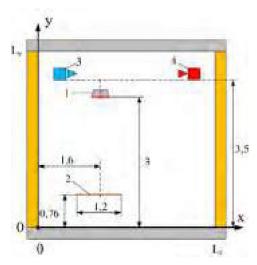


Рис. 1. Схема области моделирования (размеры представлены в метрах): 1 – ГИИ; 2 – горизонтальная панель; 3 – область приточного воздуха; 4 – область вытяжного воздуха

На рисунках 2 и 3 приведены результаты численного моделирования в условиях смешанной конвекции для разных материалов горизонтальной панели.

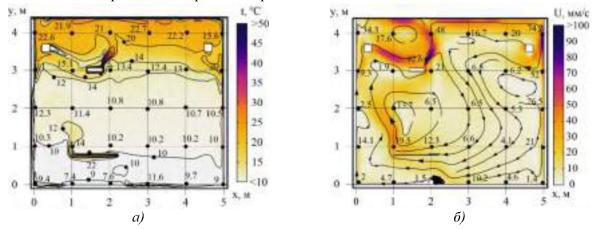


Рис. 2. Поле температур (а) и скоростей (б) через 1 час работы ГИИ в условиях смешанной конвекции при степени черноты ограждающих конструкций $\varepsilon_{o\kappa} = 0.95$ и панели $\varepsilon_n = 0.3$, теплопроводность материала панели $\lambda_n = 0.2$ Вт/(К·м)

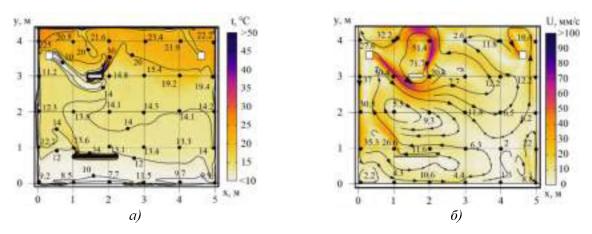


Рис. 3. Поле температур (a) и скоростей (б) через 1 час работы ГИИ в условиях смешанной конвекции при степени черноты ограждающих конструкций $\varepsilon_{o\kappa} = 0.95$ и панели $\varepsilon_n = 0.3$, теплопроводность материала панели $\lambda_n = 52$ Вт/(K:м)

Анализ полученных результатов показывает, что наличие в обогреваемой области оборудования, изготовленного из материалов с высоким коэффициентом теплопередачи, значительно повышает температуру в локальной рабочей зоне и перераспределяет движения потоков воздуха.

На рисунке 4 приведены графики изменения температуры воздуха по высоте в локальных рабочих зонах около горизонтальной панели для различных условий.

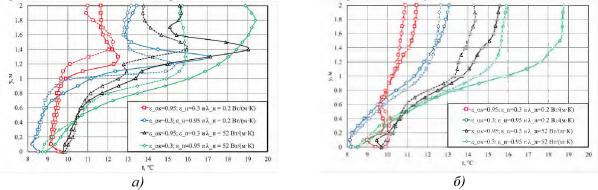


Рис. 4. Изменение температуры воздуха по высоте через 1 час работы ГИИ в условиях естественной (сплошная линия) и смешанной конвекции (пунктирная линия) на расстоянии 0,2 м слева (а) и справа (б) от горизонтальной панели при различных параметрах ограждающих конструкций и панели

Представленные графики показывают, что в условиях естественной и смешанной конвекции, и при разных значениях степени черноты ограждающих конструкций и горизонтальной панели, наибольшая температура достигается при наличии в рассматриваемой области горизонтальной панели из материала с высоким коэффициентом теплопроводности. При чем наибольшая разница наблюдается в высших точках рассматриваемого сечения, и достигает 2–3°С. При этом повышение температуры в области, примыкающей к полу, во всех вариантах расчета незначительно, что не соответствует условиям теплового комфорта из-за существенного перепада температуры воздуха по высоте. Низкие температуры данной области объясняются высокими тепловыми потерями через пол. Данное обстоятельство может быть исправлено применением напольного теплоизолирующего покрытия с высокой степенью черноты, например, локально в области создания теплового комфорта жизнедеятельности человека.

Таким образом, в данной работе показано, что, выбирая материалы поверхностей ограждающих конструкций и оборудования можно повысить энергоэффективность использования газовых инфракрасных излучателей при создании регламентных тепловых режимов в помещениях.

ЛИТЕРАТУРА:

- 1. Dudkiewicz E. Overview of exhaust gas heat recovery technologies for radiant heating systems in large halls / E. Dudkiewicz, P. Szałański // Thermal Science and Engineering Progress. 2020. V. 18. P. 1-15.
- 2. Sarbu I. Numerical modeling of high-temperature radiant panel heating system for an industrial hall / I. Sarbu, A. Tokar // International Journal of Advanced and Applied Sciences. 2018. V. 5. P. 1-9.
- 3. Heat transfer under conditions of operation of a gas infrared emitter and an air exchange system / B.V. Borisov, G.V. Kuznetsov, V.I. Maksimov and oth.// Journal of Physics: Conference Series. 2021. V. 2057. P. 1-6.
- 4. The heat supply object thermal regime under conditions of gas infrared emitter and air exchange system joint operation / G.V. Kuznetsov, V.I. Maksimov, T.A. Nagornova, A.V. Vyatkin // Journal of Physics: Conference Series. 2021. V. 2119. P. 1-5.

- 5. Numerical analysis of the equipment position influence on the premises thermal regime under gas infrared emitter operation and mixed convection conditions / B.V. Borisov, G.V. Kuznetsov, V.I. Maksimov and oth.// Journal of Physics: Conference Series. 2021. V. 2119. P. 1-6.
- 6. Analysis of the Influence of the Gas Infrared Heater and Equipment Element Relative Positions on Industrial Premises Thermal Conditions / B.V. Borisov, A.V. Vyatkin, G.V. Kuznetsov and oth.// Energies. 2022. V. 15. P. 1-19.
- A simple method for building materials thermophysical properties estimation / R. Derbal,
 D. Defer, A. Chauchois, E. Antczak // Construction and Building Materials. 2014. V. 63.
 P. 197-205.
- 8. Experimental investigation of heat transfer coefficients between hydronic radiant heated wall and room / A. Koca, Z. Gemici, Y. Topacoglu and oth.// Energy and Buildings. 2014. V. 82. P. 211-221.

Работа выполнена при финансовой поддержке Российского Научного Фонда (проект № 20-19-00226).

Научный руководитель: д.ф.-м.н. Б.В. Борисов, профессор НОЦ И.Н. Бутакова ИШЭ ТПУ.

ОСОБЕННОСТИ ФОРМИРОВАНИЯ КОНВЕКТИВНЫХ ТЕЧЕНИЙ В ДВУХЖИДКОСТНЫХ КАПЛЯХ

Р.Ю. Кужин Томский политехнический университет ИШЭ, НОЦ И.Н. Бутакова, группа 5Б93

Водо-дизельные эмульсии представляют собой типичный пример двухжидкостных капель, их применение позволяет как повысить эффективность двигателей, так и сократить концентрации антропогенных выбросов [1]. Различают два основных режима фрагментации: паффинг и микро-взрыв [2]. Наиболее комплексные модели паффинга/микро-взрыва описаны в [3–5]. В настоящей работе приведены результаты численного моделирования тепломассопереноса в двухжидкостных каплях с целью выяснения особенностей формирования конвективных течений.

Численное моделирование выполнялось в программе COMSOL Multiphysics 5.6. При разработке математической модели использованы физические модули: Phase Field, Heat Transfer in Solids and Fluids и Laminar Flow. При решении задачи используется метод конечных элементов. Расчетная сетка содержит 4068 элементов. Процессы теплообмена и испарения изучаются в воздухе при атмосферном давлении (101325 Па). Температура газовой среды принималась равной 700 К, а начальная температура двухжидкостной капли 300 К.

Схема области решения представляла собой каплю воды радиуса R_w и оболочку топлива радиуса R_d ($R_d > R_w$) (рисунок 1).

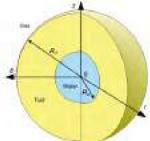


Рис. 1. Схематическое изображение области решения