МОДЕРНИЗАЦИЯ ВНУТРИКОРПУСНЫХ УСТРОЙСТВ КОМПЕНСАТОРА ДАВЛЕНИЯ АЭС С ВВЭР-1000

В.В. Цветкова Томский политехнический университет ИШЭ, НОЦ И.Н. Бутакова, группа 5071

Ввеление

Серийный паровой компенсатор давления (КД) имеет конструктивные недостатки, которые приводят к сокращению срока службы оборудования и трубопроводов системы, а также к сложностям управления системой компенсации давления в переходных режимах [1].

Во-первых, в переходных процессах при включении групп трубчатых электронагревательных элементов (ТЭН) в теплоносителе первого контура наблюдается развитое кипение. Известно, что по нормам ведения ВХР в теплоносителе растворены определенные газы. Газы концентрируются в верхней части парового объема КД, тем самым ухудшая упругие свойства паровой подушки, а также водородобезопасность первого контура.

Сдувка парогазовой смеси из КД в барботер, для которой предусмотрена отдельная разветвленная система, в стационарном режиме составляет 250 кг/ч. Очевидно, что в процессе сдувки также происходит потеря некоторого объема теплоносителя, который необходимо восполнять водой необходимого качества с добавлением аммиака и гидразин-гидрата [2].

Во-вторых, при работе энергоблока в стационарном режиме в КД включены 1-2 группы ТЭН малой мощности для компенсации тепловых потерь в самом КД. Таким образом, температура некоторого объема воды, находящегося в нижней части, под ТЭНами, ниже температуры насыщения при давлении в КД. Следовательно, данный объем не может участвовать в переходных процессах регулирования давления.

Прогрев этой части водяного объема путем включения дополнительных групп ТЭН нецелесообразна, так как за этим последует рост давления и включение впрыска из «холодной» нитки первой петли. Это приведет к дополнительным затратам энергии на догрев до температуры насыщения некоторой массы «холодной» воды, помимо прогрева водяного объема под ТЭНами.

В-третьих, из-за расположения штуцера трубопровода впрыска «холодной» воды в верхнем днище КД, трассировка трубопровода предполагает вертикальный опускной участок до штуцера, и горизонтально расположенный участок внутри КД в паровом объеме. Для поддержания температурного режима трубопровода и штуцера в системе КД предусмотрена постоянная протечка. Однако, протечка малого расхода заполняет только часть сечения трубопровода. Остальная же часть прогревается паром от паровой подушки, то есть часть трубопровода находится при температуре близкой к температуре насыщения в КД, а другая часть заполнена «холодной» водой с напора ГЦН первой петли. Следовательно, при полном открытии арматуры впрыска участки трубопровода и штуцера, прогретые паром, испытывают термические напряжения, что приводит к сокращению срока службы трубопровода.

Таким образом, основной целю данной работы является разработка проектного решения модернизации внутрикорпусных устройств компенсатора давления с целю минимизации описанных выше недостатков.

Описание модернизации внутрикорпусных устройств КД

На рисунке 1 представлен упрощенный чертеж модернизированного компенсатора давления. Данная модернизация была запатентована в 2003 году ОКБМ им. Африкантова. Прототипом данного технического решения был патент 1985 года Технического научно-исследовательского института им. Ф.Э. Дзержинского [3].

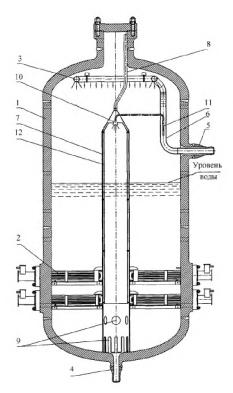


Рис. 1. Модернизаций ВКУ КД [4]:

1 — корпус КД; 2 — ТЭН; 3 — душирующее устройство; 4 — патрубок подвода/отвода ТН; 5 — патрубок; 6 — трубопровод подачи охлаждающей воды; 7 — кожух; 8 — труба теплообменника; 9 — отверстия, соединяющие внутреннюю полость кожуха с нижним объемом КД; 10 — дополнительное душирующее устройство; 11 — трубопровод подачи воды во внтуреннюю полость кожуха; 12 — теплоизоляционный экран

Основной модернизацией является установка в объеме КД кожуха, внутренняя полость которого в верхней части сообщается с паровым объемом КД (причем верхний конец входной трубы теплообменника расположен максимально близко к верхней части парового объема КД, так как именно в этой части наблюдается наибольшее скопление неконденсирующихся газов, подлежащих удалению из парового объема), а в нижней части, посредством отверстий (9) с частью более холодного водяного объема под ТЭНами. В верхней части внутренней полости кожуха размещено дополнительное душирующее устройство. Сама верхняя часть выполнена в виде конуса, конгруэнтно конфигурации душирующего устройства.

Таким образом, внутренний кожух разделяет КД на два объема: большой – пространство между внутренними стенками КД и кожухом и малый – внутри кожуха. Большой объем выполняет основную функцию – компенсации давления, в нижней части он заполнен на две трети водой при температуре насыщения, а в верхней части – почти чистым водяным паром.

В малый объем посредством конической формы кожуха организован подсос неконденсирующихся газов с целью дегазации теплоносителя. В нижней части малый объем сообщается с нижней частью большого объема через специально предусмотренные отверстия для прогрева теплоносителя под ТЭНами.

Также в кожухе организовано дополнительное душирующее устройство (воронка), конец которого заглублен в раздающую трубку основного впрыска. Такая конструкции позволяет осуществлять постоянный впрыск в малый объем и создание дополнительного эжектирующего эффекта для подсоса неконденсирующихся газов, которые конденсируются на факеле капель и струй «холодной» воды с напора ГЦН.

Штуцер трубопровода основного впрыска перемещен на верхнюю обечайку корпуса КД. Таки образом постоянной протечке передается часть теплоты парового объема, и термические напряжения в трубопроводе впрыска снижаются, тем самым увеличивая срок эксплуатации трубопровода и штуцера.

Заключение

Описанное техническое решение способно продлить срок эксплуатации трубопровода впрыска КД, а также оптимизировать регулирование в переходных режимах. Для более детальной проработки проекта модернизации необходимо провести конструкторский расчет модернизированного компенсатора давления, а также оценить термические напряжения трубопровода впрыска.

Расчет будет проводится для 4-го энергоблока Балаковской АЭС. Расчет модернизированного КД целесообразно вести на мощность $N=107~\%~N_{\text{ном}}$, так как на 4-ои энергоблоке БалАЭС ведутся расчеты по переходу на данный уровень мощности, следовательно, некоторое оборудование будет заменено и/или модернизировано. В этой связи возможно подготовить проект модернизации ВКУ КД.

ЛИТЕРАТУРА:

- 1. Инструкция по эксплуатации. Первый контур реакторной установки ИЭ.4.YA.РЦ-2/03. Балаково: Изд-во Филиал АО «Концерн Росэнергоатом» Балаковская АЭС, 2021. 113 с.
- 2. Техническое описание. Система компенсации давления первого контура. ТО.1,2,3,4. YP. ОИТПЭ/116. Балаково: Изд-во Филиал АО «Концерн Росэнергоатом» Балаковская АЭС, 2017. 115 с.
- 3. Система компенсации давления атомной энергетической установки: пат. СССР, No 1017108, заявл.16.10.1981; опубл. 30.12.1985. Бюл No 48. 4 с.
- 4. Паровой компенсатор давления: пат. Рос. Федерация, No 2254626. заявл. 21.08.2003; опубл. 20.02.2005. Бюл. No 17. 7 с.
- 5. Разработка методики расчета давления в первом контуре в условиях больших течей в моделях экспресс-оценки для информационно-аналитического центра ростехнадзора/ Кавун О. Ю. и Пипченко Г. Р. // Ядерная и радиационная безопасность. 2020. Т. 3. No 97. С. 23-31.
- 6. Мысенков А.И. Теплогидравлический расчет ЯЭУ с ВВЭР (Методика и алгоритм нестационарного расчета). Москва: Изд-во Институт атомной энергии им. И.В. Курчатова, 1985. 36 с.

Научный руководитель: доцент, к.т.н. А.М. Антонова, доцент НОЦ И.Н. Бутакова ИШЭ ТПУ.

МОДЕЛИРОВАНИЕ РУЧНОГО НАСОСА

Ш.С. Ашуров Томский политехнический университет ИШЭ, НОЦ имени И.Н. Бутакова, группа 5БМ12

При подготовке квалифицированных инженеров энергетической отрасли особую важность имеют компетенции проектирования различного оборудования включая компетенции проведения механических, прочностных и гидравлических расчетов. Дисциплина «Компьютерное моделирование объектов проектирования» основной образовательной программы подготовки магистров «Тепловые и атомные электрические станции» направлена на изучение системы автоматизированного проектирования Siemens NX [1], которая используется в конструкторских бюро и проектных организациях ОАО «Силовые машины», ГК «Росатом» и др. В рамках дисциплины выполняется моделирование сборочного узла, проведение расчетов на прочность одной из деталей и гидравлический расчет потока жидкости внутри сборочного узла. Исходные данные представлены на рисунке 1.