Список литературы

- 1. Потапова Е. Н. Сухие строительные смеси. М: Вологда: Инфра-Инженерия, 2023. 376 с.
- 2. ТУ 2131-62-89 Гипсоцементно-пуццолановое вяжущее. Технические условия. М: Издательство стандартов, 1989.

ПОЛУЧЕНИЕ И СВОЙСТВА ПОЛЫХ СТЕКЛЯННЫХ МИКРОСФЕР ИЗ БОРОСИЛИКАТНОГО СТЕКЛА

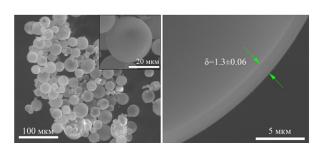
А. В. Беляева

Научный руководитель - д.т.н., профессор О. В. Казьмина

Национальный исследовательский Томский политехнический университет 634050, г. Томск, пр. Ленина 30, avb109@tpu.ru

Стеклянные микросферы представляют собой сферические частицы, диаметр которых варьируется в диапазоне от 10 до 300 мкм. К основным характеристикам стеклянных микросфер относят такие свойства, как низкая истинная плотность $(0,22-0,45 \text{ г/см}^3)$, относительно высокая прочность (до 100 МПа), негорючесть, химическая стойкость [1]. Полые стеклянные микросферы нашли свое применение в областях теплоизоляции и энергосбережения зданий, корабле- и самолетостроения, автомобильной промышленности, в качестве микрокапиллярных емкостей для хранения водорода, в области нефтегазодобычи в виде облегченной добавки в тампонажные растворы, а также их вводят в покрытия и краски [2].

В данной работе с целью получения микросфер было выбрано стекло системы $\mathrm{Na_2O-}$ $\mathrm{CaO-B_2O_3-SiO_2}$. Основными компонентами стекольной шихты использовались следующие материалы: кремнезем, кальцинированная сода, борная кислота, оксид кальция, глинозем и сульфат натрия.


В отличие от существующих составов стекол, используемых для получения микросфер, исследуемое стекло содержит более высокое количество SiO_2 , более низкое количество Na_2O_3 также относительно высокое содержание B_2O_3 по сравнению с составом № 1 [3, 4]. Сравни-

тельный анализ состава стекол представлен в таблице 1.

Сваренное исследуемое стекло было измельчено с использованием планетарной мельницы до порошка со средним размером частиц 10 мкм. Подготовленный стеклопорошок обрабатывали в пропано-воздушном факеле при максимальной температуре 1900 °C с получением полых микросфер.

На электронных микроснимках микросфер, представленных на рисунке 1, полученных при оптимальном режиме, видна высокая сферичность оплавленных частиц, относительно небольшая толщина стенки и ее равнотолщинность, что свидетельствует о получении качественных стеклянных микросфер.

Свойства микросфер, полученных на основе стекла исследуемого состава, сравнивались со свойствами микросфер из стекол, приведенных

Рис. 1. Электронные микрофотографии микросфер

Таблица 1. Составы стекол для синтеза микросфер

Состав №	Содержание оксидов, масс. %							
	SiO ₂	Na ₂ O	CaO	B_2O_3	Al_2O_3	MgO	SO ₃	$K_2O + ZnO + B_2O_3$
1	64	14	7	_	_	_	1,1	13,9
2	72	18,8	_	7	1,9	_	0,3	_
3	72	10	8	9	0,2	0,3	0,5	_

^{1, 2 –} известные составы; 3 – выбранный для исследований

в таблице 1. Результаты показали, что средний диаметр микросфер составляет 60 мкм, что на 15 мкм меньше по сравнению с микросферами состава № 1 и № 2, полученными при температурах 1600 °C и 1300 °C соответственно.

В результате проведенной работы установлена возможность получения стеклянных микросфер из порошка стекла состава, масс %: Na,O 10; CaO 8; MgO 0,3; Al,O, 0,2; B,O, 9; SO₃ 0,5; SiO₂ 72. Получены полые стеклянные микросферы диаметром 60 мкм, со средней толщиной стенки 1,3 мкм, насыпной плотности 260 $K\Gamma/M^3$.

Список литературы

- 1. Karasu B., Demirel İ., Öztuvan A. et al. // Elcezerî journal of science and engineering, 2019. $-V. 6. -N_{\underline{0}} 3. -P. 613-641.$
- 2. Zheng J., Chen, L., Wang P. et al. // Frontiers in Energy, 2020. – V. 14. – P. 570–577.
- 3. Бобкова Н. М., Савчин В. В., Трусова Е. Е. и др. // Стекло и керамика, 2018. – № 1. – *C. 3*–7.
- 4. Елкина А. В., Парамонова А. М., Власова $C. \Gamma. //$ Физика и химия стекла, 2018. - № 3. -*T.* 44. − *C.* 290–293.

ИССЛЕДОВАНИЕ СВОЙСТВ НАНОГЕТЕРОСТРУКТУР FeS₂@MoS₂ ДЛЯ ПРОЦЕССОВ ПОЛУЧЕНИЯ ВОДОРОДА (HYDROGEN EVOLUTION REACTION, HER)

А. А. Блинова

Научный руководитель – д.х.н., профессор научно-образовательного центра Н. М. Кижнера, В. В. Ан Национальный исследовательский Томский политехнический университет 634050, Томск, пр. Ленина, 30, tpu@tpu.ru.

В настоящее время альтернативные источники энергии являются приоритетным направлением энергетической промышленности, в связи с возникновением проблемы истощения невозобновляемых природных ресурсов. Непрерывно ведутся разработки методов получения и активно изучаются свойства полученных образцов в качестве катализаторов процессов, например фотокатализа, очистки сточных вод от загрязнений и многих других. В качестве таких материалов интересны бинарные наногетероструктуры на основе сульфидов.

Фотокатализатор MoS, представляет собой нетоксичный халькогенид переходного металла, обладающий способностью поглощать свет, относительно высокой подвижностью носителей, прекрасной реакционной способностью, устойчивостью к фотокоррозии и регулируемой шириной запрещенной зоны. Однако его практическое применение, например в очистке сточных вод, ограничено из-за его меньшей каталитической активности и быстрой рекомбинации фотогенерированных электронно-дырочных пар. Для преодоления этих проблем представляет интерес синтез композитов на основе MoS₂ [1], благодаря которому увеличивается поглощение видимого света и облегчается адсорбция загрязняющих веществ на поверхности фотокатализатора, а также перенос и разделение электронно-дырочных пар. В связи с этим сульфиды металлов, такие как CoS₂, FeS₂, CuS, ZnS, CdS, SnS и PbS привлекают все большее внимание к модификации МоЅ, посредством формирования композита [2], поскольку они имеют более низкую энергию запрещенной зоны, чем их оксиды.

Ранее было выявлено, что дисульфид железа усиливает фотокаталитическое разложение примесей питьевой воды на примере метиленового синего [3]. При исследовании полученного FeS₂@MoS₂ (Рисунок 1) методами РФА и РСА было обнаружено, что в материале присутствуют фазы дисульфидов молибдена и железа с размерами кристаллитов от 5,1 нм до 50,3 нм.

Таким образом, методом совместного СВС возможно получать бинарные сульфидные наноструктуры фотокаталитического назначения.