Томского Политехнического Университета. В результате эксперимента была выявлена зависимость развития растений от концентрации свинца в почве, в которой они росли. Образцы, выращенные на максимальной концентрации, росли заметно медленнее, чем контрольные образцы с нулевой концентрацией. Все образцы накопили больше свинца в корнях, к примеру, растения, выращенные на почве с концентрацией свинца 900 мг/кг, аккумулировали в среднем 12509 мг на кг сухой массы, в свою очередь побеги данных образцов накопили около 753 мг свинца на кг сухой массы. Этот факт позволил сделать

вывод о том, что при очистке земель из почвы недостаточно удалить лишь побеги, ведь именно в корнях сосредоточена основная концентрация загрязнителя.

В ходе работы был подобран оптимальной посевной материал горчицы сарепсткой, выращено 12 образцов, исследовано влияние свинца на развитие растений и проведён анализ с помощью спектрометра. В будущем планируется использовать подобранный посевной материал с целью очистки загрязнённой свинцом почв в реальных условиях.

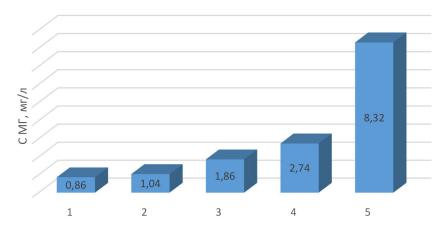
ЛИКВИДАЦИЯ РАЗЛИВОВ НЕФТИ С ВОДНОЙ ПОВЕРХНОСТИ

Р. И. Дудатьев

Научный руководитель – к.х.н., доцент О. В. Ротарь

Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина 30, avr32@tpu.ru

Актуальность работы. Очистка воды от нефти с применением сорбционных технологий является одним из наиболее эффективных способов. Для этой цели использование углеродсодержащих сорбентов, полученных методом карбонизации растительных отходов, находит все большее применение. Сорбенты, используемые для сбора нефтепродуктов с водной поверхности, должны обладать высокой плавучестью. Скорлупа кедрового ореха, отход производства кедрового масла в Томской области, так же является потенциальным сырьем для производства углеродсодержащего нефтесорбента. По возможным заготовкам ореха Томская область


занимает лидирующее положение (35 тыс. т) после Иркутской области (45 тыс. т. [1].

Объектом исследования является шелуха кедрового ореха.

Целью работы является исследование адсорбционной емкости скорлупы кедрового ореха.

Адсорбционную емкость шелухи определяли по количеству красителя метиленового голубого, поглощенного из раствора [2]. Основным требованием, предъявленным к сорбентам, является высокая поглощающая способность за короткий промежуток времени. Данные исследования приведены в таблице 1.

Способ повышения гидрофобизации заключался в термической обработке шелухи при

Рис. 1. График зависимости поглощения $M\Gamma$ от термообработки: 1 – скорлупа без обработки, 2 – обработка при 50 °C, 3 – обработка при 100 °C, 4 – обработка при 150 °C, 5 – обработка при 200 °C

Таблица 1. Данные зависимости адсорбционной емкости от массы сорбента

Шелуха КО	20 мин		40 мин	
Масса, мг	A	С МГ, мг/л	A	С МГ, мг/л
100	1,10	6,38	0,64	3,68
200	0,45	2,57	0,27	1,51
300	0,48	2,74	0,22	1,22
400	0,16	0,86	0,09	0,45
500	0,12	0,63	0,12	0,63
600	0,13	0,69	0,08	0,39

Начальная концентрация МГ 26,7 мг/л.

температурах от 100 °C до 200 °C. В процессе термической обработки происходит удаление физически связанной воды, которая находится в гиалиновых клетках.

Были определены такие показатели как нефтеемкость и плавучесть. Полученные результаты представлены в табл. 2.

Выводы

1. Установлено, что 1 мг сорбента способен адсорбировать 0.065 мг МГ, что составляет 6.5% от массы сорбента.

Список литературы

Егорова Е. Ю. Практические аспекты научного подхода к производству кедрового масла // Масложировая промышленность, 2006.

 № 2. – С. 34–37.

Таблица 2. Основные характеристики сорбентов

№ п/п	Сорбент	НЕ г/г	Плаву- честь ч
1	Шелуха КО	10,5	Более 520
2	Активирован- ный уголь	12,7	48

- 2. Установлено, что термическая обработка улучшает адсорбционные свойства сорбента.
- 3. Полученный сорбент из шелухи ореха по нефтеемкости уступает промышленному активированному углю, а по плавучести значительно превосходит.
- 2. Архипов В. С. Определение адсорбционной способности торфа по метиленовому голубому. Томск: Изд-во Томского политехнического университета, 2011. 28 с.

СВЧ-СИНТЕЗ АЛЮМОКАЛИЕВЫХ КВАСЦОВ

А. А. Евдокимова, А. В. Неупокоева Научный руководитель – учитель химии МБОУ СОШ № 17 И. В. Жук МБОУ «Средняя общеобразовательная школа №17»

630105, г. Новосибирск, ул. Кропоткина, дом 126/2, nastya.sobaka2006@gmail.com

Введение. Алюмокалиевые квасцы используются во многих областях промышленности: в пищевой — в качестве регулятора кислотности и стабилизатора, в текстильной — для производства огнестойких тканей, в кожевенной отрасли для дубления кожи, в бумажной промышленности для проклейки бумаги писчих сортов. Способность алюмокалиевых квасцов поглощать влагу используется в борьбе с повышенной потливостью, поэтому они применяются в косметологии в составе антиперспирантов [1]. Трудоемкость и длительность процессов жидкофазного синтеза квасцов приводит к поиску новых ме-

тодов его получения и разработке упрощенных технологий синтеза. В последние 30 лет активно развивается микроволновый синтез различных соединений. При этом преимуществами применения сверхвысокочастотного (СВЧ) излучения являются малая длительность синтеза благодаря быстрому нагреву реакционной смеси, хорошая воспроизводимость, а также значительный выход продукта [2]. Недостаточная изученность влияния СВЧ-излучения на структуру, физико-химические свойства алюмокалиевых квасцов делают целесообразными исследования полученных образцов. Целью работы является