

Рис. 2. Спектры поглощения полимеров в тонких пленках

Рис. 3. Циклические вольтамперограммы полимеров

Схема 1. Синтез сопряженного полимера

вольтамперометрии (Рис. 1–3), а также исследованы в качестве зарядово-транспортных материалов для гибридных перовскитных солнечных батарей.

Полученные результаты демонстрируют потенциал полимеров, синтезированных путем

Список литературы

 Nikitenko S. L., Proshin P. I., Kuznetsov I. E., Karpov S. V., Anokhin D.V., Ivanov D. A., Troshin P. A., Akkuratov A. V. // Solar Energy, 2022. – V. 232. – P. 12–17. конденсации, а также открывают широкие возможности для получения новых полимеров альтернативными путями без использования токсичных и дорогостоящих реактивов.

Работа выполнена при поддержке фондом РНФ (грант № 22-73-00029).

ПОЛИМЕРНЫЙ ГЕЛЬ НА ОСНОВЕ ЯБЛОЧНОГО ПЕКТИНА, КАК ТЕСТ-СИСТЕМА ДИАГНОСТИКИ КОРРОЗИИ МЕТАЛЛОВ

Я. Лю, О. В. Дубинина

Научный руководитель – к.х.н., доцент О. В. Дубинина

Национальный Исследовательский Томский Политехнический университет 634050, Россия, г. Томск, пр. Ленина, 30, dubininaov@tpu.ru

На сегодняшний день использование металлических имплантов нашло широкое применение в медицине. К таким металлам и сплавам применяют ряд требований: прочность, упругость, износостойкость, а также повышенная

Рис. 1. Полимерный гель на основе яблочного пектина с наночастицами CaCO₃ в виде цилиндра (а) и пленки (б)

Рис. 2. Потенциометрические кривые для титана ВТО-1, полученные в фоновом электролите – $H_2O(a)$ и раствор Рингера (б): полимерный гель на основе яблочного пектина (1), с коммерческими наночастицами CaCO₃ (2), с наночастицами CaCO₃, полученными методом химического осаждения (3), с наночастицами CaCO₃, полученными методом распылительной сушки(4) и в растворе (5)

коррозионная стойкость по отношению к внутренней среде человеческого организма.

Зачастую коррозионные испытания металлов и сплавов проводят в жидких средах, но организм человека представляет собой сложную систему, содержащую как жидкие, так и твердые фазы. Имитацию такой системы можно создать на основе полимерных гелей. Полимерные гели способны образовывать уникальные наноструктуры, в которых протекают реакции, имитирующие процессы в организме человека [1].

Целью нашей работы было испытание коррозионной стойкости металлов в полимерных гелях на основе яблочного пектина с добавлением наночастиц карбоната кальция. Такие гели имеют те же функциональные группы (–СООН, -OH, -CH₃), которые содержатся в аминокислотах, пептидах, ферментах и т. д.

Полимерный гель состоит из яблочного пектина (($C_5O_7O_4COOO$)_n), растворов электролитов и наночастиц CaCO₃ в соотношении 1:7:0,5 % масс. Гель использовался в работе в виде тонких пленок толщиной 2 ± 0,2 мм и цилиндров (рис. 1). Объекты исследования: биоинертный титан BT1-0 и высоколегированная сталь 440С.

Одним из методов оценки коррозионной стойкости металлов в растворе и среде полимерного геля является потенциометрия. Потенциометрические измерения для титана ВТ0-1 в различных электролитах представлены на рисунке 2. В воде титан быстрее корродирует, чем в среде геля на основе воды и пектина (рис. 2 а, кривая 5). Наибольшую устойчивость демонстрирует гель с коммерческими наночастицами CaCO₃, что обусловлено меньшей степенью диссоциации карбоната кальция по сравнению с наночастицами CaCO₃, полученными методом распылительной сушки (рис. 2 а, кривые 1–4) [2].

Согласно значениям равновесных потенциалов в полимерных гелях с коммерческими

Список литературы

1. Heimann R. B. // Surf. Coat. Technol., 2021. – V. 405. P. 1–41.

наночастицами CaCO₃ и наночастицами CaCO₃, полученные методом химического осаждения, процессы коррозии протекают медленнее, чем в гелях без наночастиц. Однако, быстрее всего корродирует металл в растворе электролитов. Самая большая скорость коррозии в растворе Рингера (рис. 2 б).

2. Ostapiuk M. // Cor. Sci., 2021. – V. 112. – P. 8–17.

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ТЕМПЕРАТУРНОЙ ОБРАБОТКИ НА ФАЗОВЫЙ СОСТАВ НАНОЧАСТИЦ СИЛИКАТА МЕДИ

Д. Г. Маглакелидзе, А. А. Блинова, М. А. Тараванов, М. А. Ясная Научный руководитель – к.т.н., доцент А. В. Блинов

ФГАОУ ВО Северо-Кавказский федеральный университет Россия, Ставрополь, Пушкина 1, ogoniock2015@mail.ru

Жизненно необходимые элементы имеют огромную роль в росте и развитии живых организмов. Биологически-значимые нутриенты содержатся в малом количестве в организме, однако при их недостаточном поступлении нарушается жизнедеятельность организма. Одними из таких являются медь (Cu) и кремний (Si) [1]. Микроэлемент Си необходим для межмолекулярной связи коллагена и эластина и имеет немаловажное значение в процессе образования костей. В свою очередь, кремний участвует в минерализации костных тканей и принимает участие в процессах остеогенеза. Так, наночастицы силиката меди способны выступать в роли вспомогательного элементного ресурса для укрепления костных тканей организма [2]. Ввиду перспективного применения данного материала, целью работы стало исследование влияния температурной обработки на фазовый состав наночастиц силиката меди.

Синтез наночастиц силиката (CuSiO₃) меди осуществляли методом химического восстановления в водной среде. В качестве прекурсора меди использовали ацетат меди (Cu(CH₃COO)₂), а в качестве осадителя – силикат натрия (Na₂SiO₃) [3].

Фазовый состав полученных образцов исследовали методом рентгеноструктурного анализа на дифрактометре Empyrean серии 2 (PANalytical, Almeo) [4]. Результаты представлены на рисунке 1.

Анализ полученных данных показал, что при $T > 400^{\circ}$, образцы наночастиц силиката меди, состоят из механической смеси двух кристаллических фаз диоксида кремния (сейфертит и кварц) и фаз оксида меди (тенорита и куприта) [5]. Важно отметить, что на дифрактограмме образца, высушенного при 80°, наблюдаются малоинтенсивные уширенные полосы, которые свидетельствуют об аморфности образца. Данный факт обусловлен наноразмерным состоянием частиц и характеризуется фазой CuSiO₃.

При увеличении температуры прокаливания до 400 градусов, на дифрактограмме наблюдаются высокоинтенсивные полосы отдельных фаз тенорита на $2\theta = 32,47$, $38,74^{\circ}$ и куприта на $2\theta = 61,52^{\circ}$ [6]. При повышении температуры прокаливания до 1000 градусов, происходит увеличение концентрации кристаллической фазы куприта, что сопровождается увеличением интенсивности полос этой фазы, а также появлением дополнительных полос куприта $2\theta = 29,67$ и 73,76°.

В дальнейшем планируется исследование медико-биологических свойств, разрабатываемых наночастиц in vivo с последующим внедрением в парфюмерно-косметическую промышленность и медицину.

Исследование выполнено при финансовой поддержке Совета по грантам Президента Российской Федерации (проект СП-476.2022.4).