

Рис. 2. Векторы скоростей твердой и газовой фазы по объему реактора, м/с

Список источников

- Ахметов С. А. и др. Технология и оборудование процессов переработки нефти и газа / С. А. Ахметов, Т. П. Сериков, И. Р. Кузеев, М. И. Баязитов; Под ред. С. А. Ахметова. – СПб.: Недра, 2006. – 868 с.
- 2. Магарил Р. 3. Теоретические основы химических процессов переработки нефти. – Л.: Химия, 1985. – 280 с.
- Прогноз долгосрочного социально-экономического развития Российской Федерации на период до 2030 года // Правительство России URL: http://government.ru/news/12582/ (дата обращения: 10.02.2023).

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ СОСТАВА И СВОЙСТВ ВЫСОКОМОЛЕКУЛЯРНЫХ НЕФТЯНЫХ ФРАКЦИЙ И ИХ ВЛИЯНИЕ НА ВЫХОД ЦЕЛЕВЫХ ПРОДУКТОВ И КОКСА В ПРОЦЕССЕ КАТАЛИТИЧЕСКОГО КРЕКИНГА

В. В. Мальцев, А. В. Пономаренко, Б. Д. Нафо Научный руководитель – к.т.н., доцент Г. Ю. Назарова

Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, проспект Ленина, дом 30, vvm63@tpu.ru

Целью работы является экспериментальное исследование состава и свойств высокомолекулярных нефтяных фракций и прогнозирование их влияния на показатели процесса каталитического крекинга с применением математической модели процесса [1]. Объектами исследования являются смеси вакуумного газойля и 20 % экстракта, 20 % гача дистиллятного и 20 % деасфальтизата.

В работе использованы ГОСТ 3900-85, ГОСТ Р 51947-2002, ГОСТ 18995.2-73 для определения плотности, показателя преломления и содержания серы в смесевых нефтяных фракциях. Для определения компонентного соста-

	1	1	
Состав/свойство	ВГ+ГД	ВГ+ДА	ВГ+Э
Плотность при 20 °С, кг/м ³	0,887	0,911	0,921
Содержание серы, % мас.	0,805	1,031	1,10
Молекулярная масса, г/моль	400,6	309,8	363,6
Показатель преломления при 20 °С	1,4979	1,5111	1,5179
CA, %	18,43	25,02	26,32
CN, %	12,88	20,74	16,50
CP, %	68,69	54,25	57,19
RA	0,92	0,96	1,2
RN	0,8	1,05	1,05
RT	1,72	2,01	2,24
Содержание насыщенных УВ, % мас	78,0	58,9	57,7
Ароматические УВ, % мас.	18,0	37,0	36,4
Смолы	4,0	4,1	5,8

Таблица 1. Состав и свойства потенциального сырья каталитического крекинга

ва и молекулярной массы нефтяных фракций использован метод жидкостно-адсорбционной хроматографии с градиентным вытеснением с использованием установки «Градиент-М» и криоскопический метод с применением лабораторного оборудования КРИОН-1. Структурно-групповой анализ выполнен согласно ASTM D 3238 – 95 в соответствии с которым гипотетический вид средней молекулы представлен отношением количества ароматических (RA) и нафтеновых (RN) колец, а также содержанием углерода, находящегося в ароматических кольцах (СА %), в нафтеновых (CN %), в парафиновых цепочках (СР %)). В таблице 1 показаны физико-химические свойства, структурно-групповой и углеводородный составы нефтяных фракций.

Структурно-групповой анализ потенциального сырья процесса показал, что смесь вакуумного газойля и экстракта характеризуется наибольшим содержанием углерода в ароматических структурах и наибольшей степенью цикличности, общее число колец составляет 2,24 ед, при этом 1 ед – нафтеновые кольца. Смесь вакуумного газойля и гача дистиллятного характеризуется наибольшим содержанием углерода в парафиновых структурах и наименьшей степенью цикличности (1,72 ед.). Полученные значения согласуются с величинами плотности и молекулярной массы. При добавлении к вакуумному газойлю экстракта селективной очистки

Рис. 1. Влияние состава потенциального сырья процесса каталитического крекинга на выход целевых продуктов и кокса

масел, содержание серы, плотность и показатель преломления фракции возрастают значительно.

На рисунке 1 представлены результаты прогнозных расчетов с применением математической модели процесса.

Прогнозные расчеты по модели показали, что вовлечение в переработку высокоароматизированного потока – экстракта селективной очистки масел способстаует значительному величению выхода кокса (до 7,4 % мас), что приводит к снижению выхода целевых продуктов на 7,7 % мас. При переработке такого сырья потребуется значительная корретировка технологического режима.

Работа выполнена при поддержке гранта РНФ 22-79-00238.

Список литературы

 Nazarova G. Yu., Ivashkina E. N., Ivanchina E. D., Mezhova M. Yu. // Catalysts, 2022. – Vol. 12. – № 1.

МОДЕЛИРОВАНИЕ ПРОЦЕССА ИЗОМЕРИЗАЦИИ ГЕПТАНОВОЙ ФРАКЦИИ

К. Р. Марупова

Научный руководитель – к.т.н., доцент В. А. Чузлов Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина, 30, karima_marupova@mail.ru

В настоящее время производство экологически чистых моторных топлив выступает ключевым аспектом отечественной нефтепереработки. Согласно статистическим данным, а также прогнозу глобального спроса на нефтепродукты объем потребления автомобильных бензинов будет возрастать. Большинство стран мира непрерывно ужесточают требования к качеству автомобильных бензинов.

Ужесточение экологических требований приводит к необходимости корректировки углеводородного состава компонентов бензинов для снижения доли ароматических углеводородов за счет введения высокооктановых компонентов, не содержащих углеводороды ароматического ряда. Один из подобных способов переработки бензиновой фракции изложен в источнике [1]. Целью работы является проведение моделирования процесса изомеризации гептановой фракции и дальнейшая оценка адекватности модели.

В качестве объекта исследования выступает установка изомеризации гептановой фракции, предназначенная для переработки фракции

70–105 °C в метилциклопентан и разветвленные изомеры гептана (высокооктановый компонент автомобильных бензинов без содержания ароматических углеводородов).

Математическая модель позволяет определить зависимость выхода изомеризата от технологических параметров и состава сырья. Благодаря ей можно учитывать давление в системе и разбавление ВСГ, а также изменение температуры в ходе протекания процесса.

Рис. 1. Формализованная схема химических превращений [2]

 C_1-C_4 – углеводородные газы; nP_5 , nP_6 , nP_7 , nP_8 – нормальные парафины C_5 , C_6 , C_7 , C_8 ; iP_5 , iP_6 , iP_7 , iP_8 – изопарафины C_5 , C_6 , C_7 , C_8 ; N_5 , N_6 , N_7 , N_8 – нафтеновые углеводороды C_5 , C_6 , C_7 , C_8 ; A_6 , A_7 , A_8 – ароматические углеводороды C_6 , C_7 , C_8 ; A_6 , A_7 , A_8 – ароматические углеводороды C_6 , C_7 , C_8 ; A_6 , A_7 , A_8 – ароматические углеводороды C_6 , C_7 , C_8 ; A_6 , A_7 , A_8 – ароматические углеводороды C_6 , C_7 , C_8 ; A_6 , A_7 , A_8 – ароматические углеводороды C_6 , C_7 , C_8 ; A_6 , A_7 , A_8 – ароматические углеводороды C_6 , C_7 , C_8 ; A_6 , A_7 , A_8 – ароматические углеводороды C_6 , C_7 , C_8 ; A_6 , A_7 , A_8 – ароматические углеводороды C_6 , C_7 , C_8 ; A_6 , A_7 , A_8 – ароматические углеводороды C_6 , C_7 , C_8 ; A_6 , A_7 , A_8 – ароматические углеводороды C_6 , C_7 , C_8 ; A_6 , A_7 , A_8 – ароматические углеводороды C_6 , C_7 , C_8 ; A_6 , A_7 , A_8 – ароматические углеводороды C_6 , C_7 , C_8 ; A_6 , A_7 , A_8 – ароматические углеводороды C_6 , C_7 , C_8 ; A_6 , A_7 , A_8 – ароматические углеводороды C_6 , C_7 , C_8 ; A_6 , A_7 , A_8 – ароматические углеводороды C_6 , C_7 , C_8 , A_8 – A_8