риментальным путем. После термообработки проведенной по оптимальным условиям происходит моментальное поглощение водорода сплавом при комнатной температуре и низких давлениях. При этом наблюдалась зависимость: чем больше масса сплава, тем больше водорода поглощается. Данное явление объясняется тем, что Dy и Tb проявляют особую активность к реагированию с кислородом и водородом. Домельчение прогидрированных сплавов NdFeB и P3M–Fe, Со проводилось в органических разбавителях до размера частиц от 0,5 до 5 мкм. Измельченный порошок сплава NdFeB смешивался с 10 масс. % измельченного порошка P3M–Fe, Co.

В докладе авторами будут представлены более подробные выводы по улучшению магнитных характеристик сплавов в процессе твердофазного легирования.

ИССЛЕДОВАНИЕ ПРОЦЕССА СЕРНОКИСЛОГО ВЫЩЕЛАЧИВАНИЯ ОТРАБОТАННОГО ВАНАДИЕВОГО КАТАЛИЗАТОРА

В. Д. Грищёва, А. А. Смороков Научный руководитель – старший преподаватель А. А. Смороков

Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина, 30, vdg6@tpu.ru

Кларк ванадия составляет $9 \cdot 10^{-3}$ % [1, 2], и, относясь к классу рассеянных элементов, чаще содержится в следовых количествах в рудах. Из собственных минералов можно выделить патронит ($V_2S_5 \cdot xS$), карнотит ($K_2(UO_2)_2[VO_4]_2 \cdot 3H_2O$), ванадинит ($Pb_5[VO_4]_3CI$) и роскоэлит ($KV_2[AlSi_3O_{10}](OH)_2$).

Ванадий нашел широкое применение во многих областях, таких как катализ, авиа- и машиностроение, лакокрасочная и текстильная промышленность и др. [3]. Исходя из широкого спектра применений ванадия, данный металл можно с уверенностью назвать важным элементом промышленности.

Существуют пиро- и гидрометаллургические способы переработки ванадиевого сырья. Из гидрометаллургических выделяют щелочное и кислотное выщелачивания. В данной работе была рассмотрена переработка отработанного

Таблица 1. Массовые доли компонентов в катализаторе

Соединение	Содержание, %
$V_2^{}O_5^{}$	4,95
SiO ₂	43,85
Fe ₂ O ₃	3,42
K ₂ SO ₄	11,91
SO ₃	17,04
Прочее	18,83
	Σ100

ванадиевого катализатора методом кислотного выщелачивания. Состав исследуемого катализатора представлен в таблице 1. Методика сернокислотного выщелачивания была выбрана ввиду меньшей температуры процесса, высокой степени извлечения (до 98 %) и малых стоимости и расхода реагентов.

В рамках исследования была проведена серия экспериментов выщелачивания серной кислотой измельченного до фракции — 0,05 мм отработанного ванадиевого катализатора при различных продолжительности (30; 60; 90; 180 минут) и температуре (25 °C; 60 °C; 90 °C) процесса. Постоянными показателями были рН рас-

Таблица 2. Влияние параметров процесса на степень извлечения ванадия в раствор

Параметры вы- щелачивания	Степень извлечения, %
30 мин 25 °C	46,14
60 мин 25 °C	44,93
90 мин 25 °C	43,44
180 мин 25 °C	42,34
30 мин 60 °C	44,31
60 мин 60 °C	46,09
90 мин 60 °C	44,91
180 мин 60 °C	46,41
30 мин 90 °C	44,66
60 мин 90 °C	43,07
90 мин 90 °C	48,80
180 мин 90 °С	44,93

твора серной кислоты (pH = 0) и соотношение фаз $T: \mathbb{K} = 1:5$.

В процессе выщелачивания были получены растворы, цвет которых указывает на протекание реакции:

$$V_2O_5 + 5H_2SO_4 + 2Fe =$$

= $V_2(SO_4)_3 + 2FeSO_4 + 5H_2O$

В дальнейшем были проанализированы твердые остатки, полученные после фильтрования. Данные показывают (таблица 2), что повы-

шение температуры и времени выщелачивания существенно не влияют на степень извлечения ванадия в раствор. Анализируя данные, можно сделать вывод о том, что оптимальными условиями протекания процесса являются: время выщелачивания — 30 минут, температура процесса — 25 °C.

Максимально достигнутая степень извлечения составила 48 %, для более полного извлечения ванадия необходимо провести разрушение кремниевой матрицы.

Список литературы

1. Корзанов В. С., Шульгина Н. П. Химия редких, рассеянных и редкоземельных элементов: Учебное пособие для студентов 4, 5 курсов и магистров хими-ческого факультета. — Пермь: ГОУ ВПО «Пермский государственный университет», 2007. — 100 с.

- 2. Перельман А. И. Геохимия. Москва: Высшая школа, 1989. – С. 4216.
- 3. Elena Romanovskaia, Valentin Romanovski, Witold Kwapinski, Irina Kurilo. Selective recovery of vanadium pentoxide from spent catalysts of sulfuric acid production: Sustainable approach // Hydrometallurgy, 2021. 10 p.

ИЗУЧЕНИЕ СПОСОБОВ ОКИСЛЕНИЯ ЩАВЕЛЕВОЙ КИСЛОТЫ В РАСТВОРАХ ПРОМЫШЛЕННЫХ ОТХОДОВ

Е. А. Дегенгард, А. В. Ерохина Научный руководитель – к.т.н., доцент ОЯТЦ ТПУ А. Н. Страшко

Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина, 30, ead28@tpu.ru

Необходимость применения редкоземельных элементов и актиноидов в научных исследованиях и промышленности с каждым годом увеличивается. Изучение строения редкоземельных элементов и актиноидов [1] позволило применять их в различных областях промышленности. Ядерно-физические свойства элементов актиноидной группы объясняет их широкое применение в ядерной энергетике и промышленности.

Особое место в химии редкоземельных элементов и актиноидов занимают оксалатные соединения. Оксалатный аффинаж основан на осаждении оксалатов четырехвалентного урана и уранила в силькокислой среде [2].

В процессе оксалатного аффинажа образуются избыточное количество щавелевокислых растворов. В них содержится значительное содержание примесей редких, редкоземельных металлов и железа. Накопленные объёмы позволяют регенерировать избыточное содержание металлов в технологический процесс, а щавелевую кислоту окислить. В связи с этим актуаль-

ным является окисление щавелевой кислоты и изучение условий данного процесса.

Условно можно выделить процессы химического окисления, термического окисления путем нагрева смеси и упаривание растворов с дальнейшим прокаливанием. Вопрос прокаливания не является выгодным, так как это приводит к большим энергетическим затратам.

Способы химического окисления щавелевой кислоты, которые подлежали рассмотрению, можно условно разделить на: 1) окисление с помощью серной кислоты и последующее их нагревание, 2) окисление с использованием перманганата калия в нейтральной среде с образованием осадка оксалата марганца (IV) и в кислой среде, 3) окисление пероксидом водорода.

При изучении возможности окисления щавелевой кислоты в таких средах необходимо решить следующие задачи:

• изучение возможности окисления всего раствора или кислоты без примесей,