

На правах рукописи

Регер Антон Андреевич

# СИНТЕЗ СИАЛОНСОДЕРЖАЩИХ КОМПОЗИЦИЙ НА ОСНОВЕ ФЕРРОСИЛИКОАЛЮМИНИЯ С ДОБАВКАМИ ОКСИДОВ МЕТОДОМ СВС И ТЕХНОЛОГИЯ МАТЕРИАЛОВ НА ИХ ОСНОВЕ

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук

2.6.14 - Технология силикатных и тугоплавких неметаллических материалов

Томск - 2023

Работа выполнена в Федеральном государственном бюджетном учреждении науки Томский научный центр Сибирского отделения Российской академии наук и в Федеральном государственном автономном образовательном учреждении высшего образования «Национальный исследовательский Томский политехнический университет».

| Научный руководитель:  | Болгару Константин Александрович                 |  |  |  |  |  |
|------------------------|--------------------------------------------------|--|--|--|--|--|
|                        | к.т.н., заведующий лабораторией Новых            |  |  |  |  |  |
|                        | металлургических процессов Федерального          |  |  |  |  |  |
|                        | государственного бюджетного учреждения науки     |  |  |  |  |  |
|                        | Томский научный центр Сибирского отделения       |  |  |  |  |  |
|                        | Российской академии наук, г. Томск               |  |  |  |  |  |
| Научный консультант:   | Верещагин Владимир Иванович                      |  |  |  |  |  |
|                        | д.т.н., профессор научно-образовательного центра |  |  |  |  |  |
|                        | Н.М. Кижнера Инженерной школы новых              |  |  |  |  |  |
|                        | производственных технологий Федерального         |  |  |  |  |  |
|                        | государственного автономного образовательного    |  |  |  |  |  |
|                        | учреждения высшего образования «Национальный     |  |  |  |  |  |
|                        | исследовательский Томский политехнический        |  |  |  |  |  |
|                        | университет», г. Томск                           |  |  |  |  |  |
| Официальные оппоненты: | Жугор Илья Алексанпровин                         |  |  |  |  |  |
|                        | лти завелующий пабораторией начотехнологий       |  |  |  |  |  |
|                        | металлургии Фелерального государственного        |  |  |  |  |  |
|                        |                                                  |  |  |  |  |  |
|                        | образования "Национальный исследовательский      |  |  |  |  |  |
|                        | Томский государственный университет» г. Томск    |  |  |  |  |  |
|                        | Прибиткор Гонцаний Андроории                     |  |  |  |  |  |
|                        | пти главный научный сотрудник паборатории        |  |  |  |  |  |
|                        | физики наноструктурных функциональных            |  |  |  |  |  |
|                        | материалов Фелерального государственного         |  |  |  |  |  |
|                        | бюлжетного упрежления науки Институт физики      |  |  |  |  |  |
|                        | прочности и материаловеления Сибирского          |  |  |  |  |  |
|                        | отлепения Российской акалемии наук г. Томск      |  |  |  |  |  |

Защита состоится 21 ноября 2023 г. в 14:30 часов на заседании диссертационного совета ДС.ТПУ.24 Национального исследовательского Томского политехнического университета по адресу: 634050, г. Томск, пр. Ленина, 43а, ауд. 117.



С диссертацией можно ознакомиться в научно-технической библиотеке Томского политехнического университета и на сайте dis.tpu.ru при помощи QR-кода.

Автореферат разослан \_\_\_\_\_

Ученый секретарь диссертационного совета ДС.ТПУ.24 к.т.н., доцент

Н. А. Митина

# ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

#### Актуальность работы.

β-сиалон - оксинитрид кремния и алюминия является востребованным материалом, который обладает уникальными физико-химическими свойствами: повышенной твердостью, высокой прочностью, износостойкостью, коррозионной стойкостью, стойкостью в условиях высоких температур и т. д. Композиты на основе сиалона перспективны для использования в современных технологиях. Наиболее способом подходящим синтеза сиалоновых материалов является метод фильтрационного самораспространяющегося высокотемпературного синтеза (CBC). Главное отличие СВС от традиционных методов состоит в том, что синтез сиалона осуществляется не в высокотемпературном поле при длительном нагреве, а в волне горения при экзотермическом взаимодействии порошков металлов и сплавов с азотом. Является перспективным использование в качестве исходных компонентов ферросплавов, которые взаимодействуют с азотом в дисперсном состоянии с выделением тепла. Актуальность работы заключается в разработке технологии получения сиалоновых материалов азотированием ферросиликоалюминия с дисперсными оксидами кремния и алюминия методом СВС, что позволяет получать сиалоновые материалы с малой себестоимостью.

# Степень разработанности темы исследования.

Разработка способа синтеза высокотемпературных фаз в процессе горения самораспространяющегося высокотемпературного порошков (метод синтеза) принадлежит научной школе Мержанова (А. Г. Мержанов, И. П. Боровинская, В. М. Шкиро и др. в институте структурной макрокинетики АН СССР). Метод СВС получил развитие в Томском научном центре СО РАН в направлении использования в качестве исходных порошков для горения ферросплавов (М. Х Зиатдинов, Л. Н. Чухломина). сиалонов Впервые получение методом самораспространяющегося высокотемпературного синтеза на основе ферросплавов было в предложено в работах Л. Н. Чухломиной. Исследований по получению сиалоновых материалов с максимальным содержанием целевой фазы в режиме горения с использованием порошковой смеси на основе ферросиликоалюминия и дисперсных оксидов ранее не проводилось.

**Целью данной работы** является установление составов и разработка технологии синтеза сиалонсодержащих композиций методом CBC азотированием ферросиликоалюминия с добавками дисперсных оксидов кремния и алюминия.

Для достижения поставленной цели решались следующие задачи:

1. Исследование процессов азотирования ферросиликоалюминия в режиме горения;

2. Исследование процессов синтеза сиалона при азотировании смесей ферросиликоалюминия с дисперсным кремнеземом (маршалит, микрокремнезем), в режиме горения;

3. Исследование процессов синтеза сиалона при азотировании смесей ферросиликоалюминия с дисперсным алюмосиликатом (каолином) в режиме горения;

4. Активации синтеза сиалона добавками продуктов азотирования и фторида аммония при азотировании в режиме горения исследованных смесей;

5. Разработка составов и технологии получения материалов методом CBC с максимальным содержанием сиалоновой фазы;

6. Разработка технологии получения сиалоновых порошков из продуктов азотирования шихт на основе ферросиликоалюминия с мелкодисперсными добавками оксидов (микрокремнезем, маршалит и каолин);

7. Разработка технологии получения пористого сиалонсодержащего композита на основе ферросиликоалюминия для использования его в качестве носителя фотокатализатора;

8. Использование сиалонсодержащих продуктов СВС в качестве фотокатализаторов и абразивных материалов.

## Научная новизна.

1. Установлено, что дозированным введением в дисперсную смесь на основе ферросиликоалюминия –ФСА (Si 46,5 масс. %, Al 13,3 масс. %) кислорода оксидами кремния и алюминия (микрокремнезем 22 масс. %, маршалит 10 масс. %, каолин 15 масс. %) с последующим азотированием данной смеси методом CBC достигается получение  $\beta$ - сиалона ( $\beta$ -SiAlON) с выходом целевой фазы ~ 100 масс. % при условиях: давление азота 4 МПа, размер упаковки порошка (диаметр) 40 мм, дисперсность порошка менее 80 мкм, добавка азотированного продукта 20-30 %, добавка фторида аммония 0,5-1 %. Не азотированным продуктом является  $\alpha$ -Fe.

2. Установлена последовательность химических реакций синтеза сиалона при послойном горении смесей ферросиликоалюминия с дисперсными компонентами оксидов кремния и алюминия при температурах 1970-2070°С и скоростях распространения фронта волны горения 0.35-0.4 мм/с. Азотирование начинается с образования неустойчивых нитридов железа (300 °C) с последующим их разложением при 500-680°С. При температурах 800-870°С происходит синтез нитрида алюминия за счет алюминия из фаз  $Al_3Fe_2Si$  и  $Al_{0.5}Fe_{0.5}$ . В температурном интервале 1000-1450°С происходит взаимодействие кремния с азотом с образованием фазы нитрида кремния ( $\beta$ -Si<sub>3</sub>N<sub>4</sub>) при разложении силицидных фаз: FeSi<sub>2</sub>, FeSi, Fe<sub>5</sub>Si<sub>3</sub> и Fe<sub>3</sub>Si. Плавление образовавшихся частиц железа происходит при температуре выше 1538°С. При 1595°С плавится эвтектическая смесь оксидов кремния и алюминия и происходит синтез сиалоновой фазы путем замещения атомов кремния и азота на атомы алюминия и кислорода соответственно с образованием твердого раствора переменного состава.

3. Установлены механизмы образования и кристаллизации сиалоновой фазы в продуктах азотирования смесей ферросиликоалюминия с оксидами кремния и алюминия и добавками предварительно азотированного продукта и фторида аммония при температурах 1890-1925°С. Образование и рост кристаллов осуществляется как кристаллизацией из железокремниевого расплава и кислородсодержащей добавки (механизм жидкость-кристалл) так и по механизму «пар-жидкость-кристалл». Образование нитевидных кристаллов происходит по механизму «твердое-жидкостькристалл» и «газ-кристалл». Добавка фторида аммония разлагается в волне горения с выделением легколетучих газов, которые проделывают дополнительные каналы фильтрации к зоне химической реакции, тем самым увеличивая количество азота в продуктах горения. Введение добавки фторида аммония приводит к увеличению доли протекания азотирования по механизму «газ кристалл».

## Теоретическая значимость.

Получены новые данные о процессах азотирования в режиме горения смесей порошков ферросиликоалюминия с дисперсными оксидами кремния и алюминия, обеспечивающих синтез сиалоновой фазы до ~ 100% при дополнительной активации синтеза сиалона азотсодержащими добавками - предварительно азотированного продукта и фторида аммония.

## Практическая значимость.

1. Разработаны состав и технология азотирования композиции ферросиликоалюминия с дисперсными добавками (микрокремнезем, маршалит и каолин) с максимальным выходом сиалоновой фазы в продукте;

2. Разработана технология получения дисперсных чистых сиалоновых материалов кислотным обогащением продуктов азотирования;

3. По разработанной технологии получена опытная партия сиалоновых материалов (композиционных спёков, пористых и чистых сиалонов) методом CBC на основе ферросиликоалюминия и кислородсодержащих добавок в установке постоянного давления объёмом 20 литров.

4. Материалы, полученные по разработанной технологии, использованы в качестве фотокатализатора, носителя катализатора и абразивного материала.

# Методология диссертационной работы.

В основе методологии диссертационной работы лежит рабочая гипотеза, что дисперсный ферросплав – ферросиликоалюминий (ФСА) содержащий 46.5 масс. % кремния и 13.3 масс. % алюминия (промышленная марка ФС45А15), потенциально пригоден для синтеза сиалона при азотировании методом СВС при условии введения кислорода в исходную смесь оксидами кремния и алюминия. Что определяет последовательность этапов исследований: вначале исследование процесса азотирования ФСА затем смесей с маршалитом, микрокремнеземом и каолинитом с определением фазового состава продуктов.

## Методы диссертационной работы.

диссертационной работе для исследования полученных материалов В использовали химический анализ на содержание азота и кислорода на приборе LECO ОNH836, рентгенофазовый и рентгеноструктурный анализ на дифрактометре Shimadzu XRD600 и электронный микроанализ на приборе Philips SEM 515. Процесс насыщения азотом исходной порошковой смеси проводили горением режиме В самораспространения (методом СВС) в условии естественной фильтрации азота, максимальные температуры горения определяли термопарным методом, для исследования процесса азотирования применен термический анализ на приборе JEOL JSM 6000.

### Положения, выносимые на защиту.

1. Положение о граничных количествах компонентов, содержащих оксиды кремния и алюминия (микрокремнезем-  $20\pm 2$  масс. %, маршалит - $10\pm 1$  масс. %, каолин - $15\pm 1$  масс. %), с выходом  $\beta$ - сиалона ~ 100 масс. % при азотировании смеси на основе ферросиликоалюминия – $\Phi$ CA (Si 46,5 масс. %, Al 13,3 масс. %) в режиме горения.

2. Положение о последовательности протекания химических реакций при горении смесей ферросиликоалюминия с компонентами оксидов кремния и алюминия с ростом температуры: при  $300^{\circ}$ C образование неустойчивых нитридов железа и последующим их разложением при  $500-680^{\circ}$ C, при  $800-870^{\circ}$ C синтез нитрида алюминия за счет алюминия из  $Al_3$ Fe<sub>2</sub>Si,  $Al_{0.5}$ Fe<sub>0.5</sub>, В интервале  $1000-1450^{\circ}$ C взаимодействие кремния с азотом с образованием фазы нитрида кремния ( $\beta$ -Si<sub>3</sub>N<sub>4</sub>), при  $1595^{\circ}$ C плавление эвтектической смеси оксидов кремния и алюминия далее до  $1025^{\circ}$ C синтез сиалоновой фазы путем замещения атомов кремния и азота на атомы алюминия и кислорода соответственно с образованием твердого раствора.

3. Механизмы синтеза и кристаллизации сиалоновой фазы при горении смесей ФСА с компонентами оксидов кремния, алюминия и добавками предварительно азотированного продукта и фторида аммония при температурах 1890-1925°С. Образование и рост кристаллов осуществляется как кристаллизацией из железокремниевого расплава и кислородсодержащей добавки (механизм жидкость-кристалл), так и по механизму «пар-жидкость-кристалл». Образование нитевидных кристаллов происходит по механизму «твердое-жидкость-кристалл» и «газ-кристалл». Разложение фторида аммония с выделением легколетучих газов активирует механизм «газ-кристалл».

# Достоверность результатов исследования.

Подтверждается проведением статистической обработки полученных результатов многократно повторенных экспериментов и отсутствием противоречий с имеющимися литературными данными и основными физико-химическими и материаловедческими правилами. Исследования были проведены на оборудовании с поверочными сертификатами в аттестованных учреждениях.

## Апробация результатов работы.

Результаты диссертационной работы доложены и обсуждены на: ХХ международная научно-практическая конференция имени профессора Л. П. Кулёва (г. Томск, 2019); Международная научно-техническая конференция Инновационные силикатные и тугоплавкие неметаллические материалы и изделия: свойства, строение, способы получения (г. Минск, 2020); ХХІІ Международная конференция «Химия и химическая технология в ХХІ веке » (г. Томск, 2021); ХІV Международная научно-техническая конференция «Современные проблемы машиностроения» (г. Томск, 2021); ЕFRE 2022: 5<sup>th</sup> International Conference on New Materials and High (г. Томск, 2022); ХХІІІ Международная научно-практическая конференция студентов и молодых ученых (г. Томск, 2022).

## Личный вклад автора.

Автор диссертационной работы принимал участие в формирование темы и постановке цели и задач. Автор лично провёл анализ литературы, синтез, обработал и интерпретировал экспериментальные результаты и разработал основы технологии получения сиалоновых материалов методом СВС на основе ферросиликоалюминия и мелкодисперсных кислородсодержащих добавок. Результаты диссертационной работы были опубликованы в научных статьях. Общий вклад автора в публикации научных результатов составляет 70 %. Формирование темы, цели задач и выводов были проведены совместно с научным консультантом и научным руководителем.

# Публикации.

По результатам диссертационной работы опубликовано 5 статей, входящих в список ВАК, 3 из которых входят в базу данных Scopus/Web of Science. Количество публикаций в материалах конференций 6.

### Объем диссертационного исследования.

Объём диссертационной работы 131 страница и включает 60 рисунков и 23 таблиц. Диссертация состоит из введения, пяти глав, основных выводов, заключения, списка сокращений и терминов, списка литературы (133 источника) и одного приложения.

#### СОДЕРЖАНИЕ РАБОТЫ

**Во введении** обоснована актуальность темы исследования, показана степень разработанности тематики, сформулированы цели и задачи, представлена научная и практическая значимость результатов работы.

В первой главе «Научные и практические разработки по синтезу и применению сиалона» обобщены литературные данные о структуре, свойствах, применению и способах получения сиалона и материалов на его основе. Подробно описаны основы самораспространяющегося высокотемпературного синтеза. Отмечены преимущества метода СВС и его применимость в получение сиалона и материалов на его основе. Обобщена информация по применению ферросплавов в процессах фильтрационного СВС азотирования.

Материалы на основе сиалона обладают уникальными физико-химическими свойствами: высокой прочностью, износостойкостью, коррозионной стойкостью, стойкостью в условиях высоких температур и т.д. Композиты на основе сиалона имеют высокую значимость в промышленности и могут быть применены в производстве люминофоров, абразивов, фотокатализаторов, носителей катализаторов, огнеупоров, фильтров, износостойких частей токарных станков, двигателей и т.д. Наиболее подходящим способом синтеза сиалоновой керамики является метод СВС. Метод СВС позволяет осуществлять синтез материалов без затрат большого количества энергии и времени. Изучением метода СВС занимались А. Г. Мержанов, И. П. Боровинская, К. Л. Смирнов и В. Э. Лорян. Большой интерес представляет использование в качестве исходного сырья в процессах СВС материалов неподверженных глубокой химической очистке таких, как ферросплавы. Развитие данной теме дали М. Х. Зиатдионов и Л. Н. Чухломина.

Во второй главе «Характеристики исходных материалов, методы исследования и методология работы» приведены характеристики исходных материалов: ферросиликоалюминия, кислородсодержащих добавок (микрокремнезем, маршалит и каолин), азотсодержащих добавок (предварительно азотированные материалы и фторид аммония) и газообразного азота. Характеристики исходных компонентов приведены в таблице 1.

| Ферросиликоалюминий (ФС45А15) |                             |                                                                                                               |         |                                |                |                                |                                |  |
|-------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------|---------|--------------------------------|----------------|--------------------------------|--------------------------------|--|
| Фазовый                       |                             | FeSi <sub>2</sub> , Si, Al <sub>0.5</sub> Fe <sub>0.5</sub> и Al <sub>3</sub> Fe <sub>2</sub> Si <sub>3</sub> |         |                                |                |                                |                                |  |
| Химический со                 | став, масс. %               | Si                                                                                                            |         | Fe                             |                | Al                             | 0                              |  |
|                               |                             | 46.5                                                                                                          |         | 39.4                           |                | 13.3                           | 0.8                            |  |
| Дисперсный о                  | 80-63                       |                                                                                                               | <63     |                                | <40            | <20                            |                                |  |
|                               | 30 %                        |                                                                                                               | 70 %    |                                | 35 %           | 19 %                           |                                |  |
|                               | Микрокремнезем (МК-85)      |                                                                                                               |         |                                |                |                                |                                |  |
| Химический                    | Химический SiO <sub>2</sub> |                                                                                                               | $_2O_3$ | Fe <sub>2</sub> O <sub>3</sub> | S              | i <sub>своб</sub>              | Примеси                        |  |
| cocrub                        | 88.90 мас.%                 | 0.8 м                                                                                                         | ac. %   | 0.67 мас. %                    | 0.5            | мас. %                         | остальное                      |  |
| Дисперсный                    | 5-20 мкм                    | м                                                                                                             |         | < 20 мкм                       | 20 мкм         |                                | <0,5 мкм                       |  |
| состав, мкм                   | 35 масс. %                  | . %                                                                                                           |         | 75 масс. %                     |                | 40 масс. %                     |                                |  |
|                               | Маршалит                    |                                                                                                               |         |                                |                |                                |                                |  |
| Химический                    | SiO <sub>2</sub>            |                                                                                                               |         | $Al_2O_3$                      |                | Fe <sub>2</sub> O <sub>3</sub> |                                |  |
| COCTAB                        | 92,93 масс.                 | %                                                                                                             |         | 6,80 масс. %                   | 0 масс. % 0,2' |                                | 7 масс. %                      |  |
| Дисперсный                    |                             |                                                                                                               | <8      |                                |                |                                |                                |  |
| состав, мкм                   |                             |                                                                                                               | 54 %    |                                |                |                                |                                |  |
| Каолин (КЖФ-1)                |                             |                                                                                                               |         |                                |                |                                |                                |  |
| Химический                    | $SiO_2$                     |                                                                                                               |         | Al <sub>2</sub> O <sub>3</sub> |                |                                | Fe <sub>2</sub> O <sub>3</sub> |  |
| состав                        | 37 масс. %                  |                                                                                                               |         | 46.5 мас                       | 46.5 масс. %   |                                | 0,5 масс. %                    |  |
| Дисперсность                  | Дисперсность <20 мкм        |                                                                                                               |         |                                | <2 мкм         |                                |                                |  |
| 90 %                          |                             |                                                                                                               |         |                                | 50 %           |                                |                                |  |

Таблица 1. Характеристики исходных материалов.

Предварительно азотированные материалы получены однократным сжиганием исходной порошковой смеси на основе ФСА с введенными по отдельности добавками микрокремнезема, маршалита и каолина. Фторид аммония (ГОСТ 4518-75) использован как азотсодержащая газифицирующая добавка. В качестве азотсодержащего реагента был взят азот особой чистоты.

Исследование материалов проводили методами рентгенофазового анализа (Shimadzu XRD-6000), растровой электронной микроскопией (Philips SEM 515), химического анализа на кислород и азот (LECO-ONH 836) и ситовым анализом (сита Retsch).

В третьей главе «Физико-химические процессы азотирования ферросиликоалюминия в режиме горения» представлено исследование процессов азотирования ферросиликоалюминия в режиме горения при различных условиях газовой среды и характеристик компакта порошка и механизм азотирования ферросиликоалюминия. Проведен анализ фазового состава и содержания азота в продуктах горения на основе ферросиликоалюминия и получены значения

максимальных температур горения. Определены критические и оптимальные параметры горения ферросиликоалюминия.

Рассчитано что максимальное теоретическое значение поглощенного азота полученных образцах на основе в ферросиликоалюминия составляет 27.2 масс. %. При помощи варьирования параметров экспериментально горения не удалось достичь теоретически рассчитанного максимального значения количества поглощенного азота (Рисунок 1 А, Б, В, Г(3)).

возрастании При давления газообразного реагента от 2.7 до 6.5 МПа происходит увеличение количества поглощенного азота И скорости распространения фронта волны горения (Рисунок 1 A). Данная зависимость тем, что при увеличении объясняется давления возрастает концентрация азота и скорость его фильтрации к зоне реакции. азота МΠа Однако при давлении 4 увеличение количества поглощенного азота в продуктах синтеза и скорости горения незначительно. В процессе горения при давлении 4 МПа в зоне химической реакции не образуется градиента концентрации из-за высокой скорости доставки газообразного реагента. При давлении азота менее 2,7 МПа реализовать реакцию горения не удалось. Изменение максимальной температуры горения ФСА при повышении давления газообразного реагента является относительно незначительным и колеблется в пределах от 1950 до 2083 °С.



Рисунок 1. Зависимость количества поглощенного азота -  $N_2(1)$  и скорости горения - W (2) ФСА от: А – давления газообразного азота (Р), Б – диаметра исходного образца (d), В – плотности компакта ( $\rho$ ),  $\Gamma$  – дисперсности порошка ФСА (D) (3 – теоретически рассчитанное максимальное значение поглощенного азота).

Увеличение диаметра исходных образцов не оказало значительного влияния на количество поглощенного азота и привело к снижению скорости распространения фронта волны горения (Рисунок 1 Б). Данная зависимость объясняется поверхностным режимом горения ФСА. При увеличении диаметра исходных образцов значительно ухудшается фильтрация азота к зоне химической реакции из-за образования плотного спёка и расплава в центре образца. При диаметре исходной заготовки менее 35 мм реализовать реакцию горения не удалось. Увеличение диаметра образцов не приводит к значительному изменению максимальной температуры горения ФСА (2060-2080 °C).

При увеличении плотности исходного образца уменьшается скорость продвижения фронта волны горения и количество поглощенного азота (Рисунок 1 В). Данная зависимость объясняется тем, что при увеличении плотности появляются значительные фильтрационные барьеры на пути доступа газообразного реагента к зоне химической реакции. Увеличение плотности исходного образца приводит к значительному уменьшению температуры горения от 2060 до 1590 °C.

На рисунке 1 Г представлена зависимость скорости распространения фронта волны горения и количества поглощенного азота в азотированных материалах от дисперсности исходного порошка ФСА. Реализовать реакцию горения порошка с дисперсностью более 100 мкм и в отсутствии мелкой фракции (менее 40 и 63 мкм) не удалось. Ввиду увеличения реакционноспособной удельной поверхности при уменьшении дисперсности исходного порошка ФСА наблюдается увеличение количества поглощенного азота и скорость распространения фронта волны горения. Уменьшение размера частиц исходного порошка приводит к незначительному увеличению температуры горения от 2045 до 2120 °С.

Таким образом, наиболее оптимально проводить азотирование ферросиликоалюминия при P = 4 MIa, d = 40 мм, насыпная плотность и D < 80 мкм.

Продукты азотирования на основе ферросиликоалюминия являются многофазными материалами и содержат в своём составе  $Si_3N_4/\beta$ -SiAlON,  $\alpha$ -Fe и Fe<sub>x</sub>Si<sub>y</sub> (Рисунок 2). Наличие фазы Fe<sub>x</sub>Si<sub>y</sub> свидетельствует о неполноте протекания реакции азотирования исходного ферросиликоалюминия.



Рисунок 2. Фрагмент рентгенограммы азотированного ФСА ( $1 - \beta$ -Si<sub>3</sub>N<sub>4</sub>/ $\beta$ -SiAlON,  $2 - \alpha$ -Fe,  $3 - Fe_xSi_y$ ). (P = 4 МПа, d = 40 мм, D > 80 мкм и насыпной плотности).



Рисунок 3. Изображение азотированного ферросиликоалюминия.

Горение ферросиликоалюминия протекает в нестационарном режиме. Азотированные образцы на основе ферросиликоалюминия характеризуются макронеоднородным составом с наличием большого количества трещин (Рисунок 3). Образование трещин обусловлено усадкой материала под действием высоких температур, которые развиваются в процесс горения и приводят к плавлению исходного материала.

Протекание азотирования ферросиликоалюминия может быть представлено следующими процессами:

1) При 300-680 °C происходит образование и разложение неустойчивых нитридов железа:

$$Fe_{2}N \xrightarrow{>500o_{C}} 2Fe + N^{*}$$
$$\overrightarrow{Fe_{4}N} \xrightarrow{>680o_{C}} 4Fe + N^{*}$$

2) При температуре 800-870 °С протекает взаимодействие алюминия с азотом:

$$Al_3Fe_2Si_3(TB) + 2Al_{0.5}Fe_{0.5}(TB) + 2N_2(\Gamma) = 4AlN(TB) + 2Fe(TB) + FeSi_2(TB);$$

3) В температурном диапазоне от 900 до 1450 °С происходит разложение силицидных фаз с образованием кремниевых силицидных расплавов и образованием паров кремния:

$$FeSi_{2}(TB) \xrightarrow{(900-1000)o_{C}} FeSi(x) + Si(\Gamma) \xrightarrow{(1200)o_{C}} Fe_{5}Si_{3}(x) + Si(\Gamma) \xrightarrow{(1320)o_{C}} Fe_{3}Si(x) + Si(\Gamma) \xrightarrow{(1450)o_{C}} Fe(x) + Si(\Gamma);$$

4) При температуре от 1000 до 1450 °С протекает азотирование кремния:

$$3Si(TB, \#, \Gamma) + 2N_2(\Gamma) = Si_3N_4(TB);$$

5) При температуре свыше 1500 °С происходит плавление частиц железа и эвтектической смеси оксидов кремния и алюминия и происходит синтез сиалоновой фазы путем замещения атомов кремния и азота на атомы алюминия и кислорода соответственно с образованием твердого раствора переменного состава:

$$Al_2O_3 + SiO_2 + Si_3N_4 + AlN \xrightarrow{\text{clubbly}} \beta - Si_3Al_3O_3N_5$$

(1500)ac

В четвертой главе «Самораспространяющийся высокотемпературный синтез сиалона азотированием композиций ферросиликоалюминия с оксидами кремния И алюминия» представлено исследование влияния азот-И кислородсодержащих добавок на химический и фазовый состав продуктов горения. Проведен анализ на содержание азота и кислорода в продуктах синтеза, определен фазовый состав и представлены микроструктуры продуктов горения. Определен состав исходной порошковой смеси, использование которой приводит к получению двухфазного материала – β-SiAlON и α-Fe с содержанием азота приближенным к максимальному теоретически рассчитанному значению.

Добавление микрокремнеза к ФСА до 20 масс. % приводит к незначительному изменению количества поглощенного азота и уменьшению скорости распространения фронта волны горения (Рисунок 4). Данная зависимость объясняется тем, что микрокремнезем является кислородсодержащей и инертной добавкой в процессах азотирования, которая приводит к замедлению продвижения фронта волны горения, тем самым увеличивая время пребывания исходной порошковой смеси в зоне химической реакции при условии относительно малого содержания. При добавлении

микрокремнезема в исходную смесь от 20 до 42 масс. % происходит увеличение кислорода в продуктах синтеза до 22.5 масс. %, уменьшение скорости распространения фронта волны горения до 0,1 мм/с и количества поглощённого азота в синтезированных образцах до 13.1 масс. %. Максимальная температура горения ФСА при добавлении 42 масс. % микрокремнезема снижается от 2080 до 1700 °C. Количество поглощенного азота в порошковой смеси на основе ФСА и микрокремнезема несколько меньше теоретически рассчитанного максимального значения (Рисунок 4 (4)). Для азотирования методом СВС оптимально использовать порошковую смесь на основе ФСА с 22 масс. % микрокремнезема так как при данном составе возможно внесение максимального количества кислорода при условии сохранения устойчивого горения.



Рисунок 4. Зависимость количества поглощенного азота (1), скорости горения (2) и содержания кислорода (3) от количества микрокремнезема в композициях с ферросиликоалюминием (4 - теоретически максимальное количество поглощенного азота).





Для активации синтеза в исходную смесь ФСА с микрокремнеземом (22 масс. %) была введена предварительно азотированная добавка. В качестве предварительно азотированной добавки был взят продукт горения на основе порошковой смеси 78 масс. % ФСА и 22 масс. % микрокремнезема. Введение предварительно азотированного продукта до 20 масс. % приводит к увеличению количества азота в продуктах горения от 22,00 до 22.60 масс. % и замедлению продвижения фронта волны горения от 0,41 до 0,29 мм/с (Рисунок 5). Увеличение количества азота объясняется тем, что при добавлении предварительно азотированного продукта происходит внесение дополнительного азота в исходную порошковую смесь и увеличение времени пребывания исходной порошковой смеси в зоне химической реакции. Добавление предварительно азотированного продукта более 20 масс. % приводит к невозможности реализации реакции горения. Теоретически рассчитано, что максимальное содержание азота в порошковой смеси на основе 78 масс. % ФСА и 22 масс. % микрокремнезема составляет 22,88 масс. % что больше полученного экспериментального значения с азотированной добавкой на 0,28 масс. %. (Рисунок 5 (3)).

Для дополнительного насыщения исходной порошковой смеси азотом использована добавка фторида аммония. На рисунке 6 показана зависимость количества поглощенного азота от добавки фтористого аммония к порошковой смеси на основе ФСА, микрокремнезема и азотированного продукта (20 масс. %). При увеличении добавки фтористого аммония до 0,5 масс. % возрастает общее содержание азота в полученных образцах от 22,60 до 22,87 масс. %. Увеличение количества поглощенного азота при внесении фтористого аммония объясняется тем, что данная добавка содержит в своём составе азот и при горении разлагается с выделением легколетучих газов. Выделение легколетучих газов из объема образца приводит к образованию дополнительных каналов фильтрации азота к зоне химической реакции. Добавление фтористого аммония более 0,5 масс. % приводит к уменьшению содержания азота в продуктах из-за деформации образца ввиду чрезмерного газовыделения.

Максимальное экспериментально полученное количество поглощенного азота равняется 22,87 масс. % и соответствует исходному составу: 62,01 масс. % ФСА, 17,49 масс. % микрокремнезема, 20 масс. % предварительно азотированного продукта и 0,5 масс. % NH<sub>4</sub>F. Данное значение наиболее приближено к теоретически рассчитанному.





Рисунок 6. Зависимость количества поглощенного азота от добавки NH₄F в композиции ферросиликоалюминий (62,4 масс. %), микрокремнезем (17,6 масс. %) и предварительно азотированного продукта (20 масс. %) (1 - теоретически максимальное

количество поглощенного азота).

Рисунок 7. Содержание фаз и фрагмент рентгенновской дифрактограммы азотированного образца на основе ферросиликоалюминий (62,01 масс. %), микрокремнезем (17,49 масс. %), предварительно азотированный продукт (20 масс. %) и NH<sub>4</sub>F (0,5 масс. %).

Добавление микрокремнезема к исходному порошку на основе ФСА от 10 до 30 масс. % приводит к смещению рефлексов, соответствующих фазе  $\beta$ -нитрида кремния, в сторону углов, которые соответствуют фазе  $\beta$ -сиалона. При добавлении от 30 до 42 масс. % микрокремнезема в азотированных образцах происходит сдвиг рефлексов в сторону меньших углов с образованием фазы нитрида кремния и фаз, обнаруженных в исходных материалах. При содержании в исходном ФСА микрокремнезема в количестве 40-42 масс. % в полученных материалах образуется фаза Si<sub>2</sub>N<sub>2</sub>O. Наиболее высокий выход сиалоновой фазы и минимальное содержание силицидной фазы наблюдается в продуктах азотирования порошковой смеси на основе ФСА с 22 масс. %

микрокремнезема. Введение предварительно азотированного продукта синтеза (полученного азотированием ФСА с 22 масс. % микрокремнезема) 20 масс. % и фторида аммония 0,5 масс. % в смесь порошков на основе ФСА и микрокремнезема до 20 масс. % позволило получить двухфазный материал на основе  $\beta$ -Si<sub>3</sub>Al<sub>3</sub>O<sub>3</sub>N<sub>5</sub> ( $\beta$ -Si<sub>3</sub>N<sub>4</sub>) и  $\alpha$ -Fe (Рисунок 7).

Введение маршалита к порошку ФСА до 10 масс. % приводит к незначительному изменению содержания азота в продуктах синтеза и скорости распространения фронта волны горения (Рисунок 8). При добавлении маршалита от 10 до 35 масс. % наблюдается увеличение содержания кислорода до 11,4 масс. %, уменьшение количества поглощенного азота в полученных образцах до 16.1 масс. % и скорости распространения фронта волны горения до 0,1 мм/с. Добавка маршалита более 35 масс. % приводит к невозможности реализации реакции горения. Введении маршалита до 35 масс. % приводит к уменьшению максимальной температуры горения исходной порошковой смеси от 2080 до 1870 °С. При использовании шихты на основе ФСА с добавками маршалита количество азота поглощенного в процессе горения ниже теоретически рассчитанного максимального значения (Рисунок 8 (4)). Оптимально использовать в процессах азотирования смесь на основе ФСА с 10 масс. % маршалита.



Рисунок 8. Зависимость количества поглощенного азота (1), скорости горения (2), и содержания кислорода (3) от количества маршалита в композициях с ферросиликоалюминием (4 - теоретически максимальное количество поглощенного азота).



Рисунок 9. Зависимость количества поглощенного азота (1) и скорости горения (2) от содержания азотированного продукта в смеси: ферросиликоалюминий (90 масс. %) и маршалита (10 масс. %) (3 - теоретически максимальное количество поглощенного азота).

В качестве предварительно азотированной добавки для активации синтеза в смесь на основе ФСА и маршалита (10 масс. %) был введен продукт горения на основе ФСА с 10 масс. % маршалита. Введение предварительно азотированного материала приводит к увеличению общего содержания азота в продуктах горения и замедлению продвижения фронта волны горения до 0,28 мм/с. При добавлении предварительно азотированного продукта к исходной порошковой смеси более 30 масс. % реализовать реакцию горения не удалось (Рисунок 9). Максимальное содержание азота в продуктах горения в продуктах горения не удалось (Рисунок 9). Максимальное содержание азота в продуктах горения при добавке 30 масс. % предварительно азотированного продукта составляет 24,5 масс. %. Данное значение ниже теоретически рассчитанного максимального количества поглощенного азота (25,16 масс. %) на 0,66 масс. %. Введение фтористого

аммония до 1 масс. % позволяет увеличить количество поглощенного азота до 25.0 масс. % (Рисунок 10).

Экспериментально полученное значение максимального количества поглощенного азота исходной порошковой смеси равняется 25 масс. % и получено при использовании состава 67.15 масс. % ФСА, 11.85 масс. % маршалита, 30 масс. % азотированного продукта и 1 масс. % NH<sub>4</sub>F. Вышеуказанное значение максимально приближено к теоретически рассчитанному (25,16 масс. %) значению содержания азота. Полученные образцы на основе ФСА, маршалита, азотированного продукта и фторида аммония являются макрооднородными без видимых деформаций, трещин и капель расплава.





Рисунок 10. Зависимость количества поглощенного азота от добавки NH<sub>4</sub>F к смеси на основе ФСА (63 масс. %), маршалита (7 масс. %) и предварительно азотированного продукта (30 масс. %) (1 теоретически максимальное количество поглощенного азота).

Рисунок 11. Содержание фаз и фрагмент рентгенновской дифрактограммы азотированного образца на основе ферросиликоалюминия (62,1 масс. %), маршалита (6,9 масс. %), азотированного продукта (30 масс. %) и фторида аммония (1 масс. %).

Внесение маршалита в смесь с дисперсным ФСА от 10 до 20 масс. % приводит к смещению рефлексов, соответствующих нитридной фазе, в сторону малых углов ссоответствующих сиалоновой фазе в продуктах азотирования. Продукты азотирования на основе ФСА с 10-20 масс. % маршалита являются многофазными материалами и содержат в своём составе фазы  $\beta$ -Si<sub>3</sub>Al<sub>3</sub>O<sub>3</sub>N<sub>5</sub>,  $\alpha$ -Fe и Fe<sub>x</sub>Si<sub>y</sub>. При добавлении маршалита более 20 масс. % рефлексы сиалоновой фазы постепенно смещаются в сторону углов, соответствующих фазе нитрида кремния. При добавлении маршалита более 25 масс. % в продуктах азотирования обнаружена фаза диоксида кремния, которая содержится в исходном материале. Введение продукта азотирования в смесь на основе 90 масс. % ФСА и 10 масс. % маршалита до 30 масс. % и фторида аммония до 1 масс. % позволило постепенно уменьшить интенсивность фазы Fe<sub>x</sub>Si<sub>y</sub> и получить двухфазный материал на основе  $\beta$ -Si<sub>3</sub>Al<sub>3</sub>O<sub>3</sub>N<sub>5</sub> ( $\beta$ -Si<sub>3</sub>N<sub>4</sub>) и  $\alpha$ -Fe (Рисунок 11).

Добавление каолина к исходному порошку ФСА до 15 масс. % не оказывает значительного влияния на содержание азота в продуктах горения и приводит к снижению скорости распространения фронта волны горения (Рисунок 12). При добавлении каолина от 15 до 27 масс. % увеличивается содержание кислорода до 14

масс. %, уменьшается количество поглощенного азота до 16,9 масс. %, скорость распространения фронта волны горения от 0,43 до 0,15 мм/с и снижается максимальная температура горения до 1820 °С. При добавлении каолина более 27 масс. % реализовать реакцию горения не удалось. Оптимально в процессах горения использовать порошковую смесь на основе ФСА с 15 масс. % каолина.



Рисунок 12. Зависимость количества поглощенного азота (1), скорости горения (2) и содержания кислорода (3) от количества каолина в композициях с ферросиликоалюминием (4 - теоретически максимальное количество поглощенного азота).



Рисунок 13. Зависимость количества поглощенного азота (1) и скорости горения (2) от содержания азотированного продукта в смеси: ферросиликоалюминий (85 масс. %) и каолина (15 масс. %) (3 - теоретически максимальное количество поглощенного азота).

В качестве предварительно азотированного продукта использована азотированная в режиме СВС смесь на основе ФСА с 15 масс. % каолина. Как показано на рисунке 13 введение предварительно азотированного продукта приводит к увеличению содержания азота в продуктах синтеза до 23,9 масс. %, замедлению распространения фронта волны горения и незначительному снижению максимальной температуры горения до 1925 °C. Введение предварительно азотированного продукта более 20 масс. % приводит к невозможности реализации реакции горения. При использовании предварительно азотированного материала не удалось достичь теоретически рассчитанного максимального количества азота в продукте горения (24,32 масс. %).

Добавление фтористого аммония до 1 масс. % к порошковой смеси на основе ФСА, каолина и предварительно азотированного материала приводит к увеличению количества поглощенного азота до 24,25 %. (Рисунок 14). Максимальное количество поглощенного азота получено при использовании исходной порошковой смеси равняется 24,3 масс. % и соответствует составу 61.62 масс. % ФСА, 17.38 масс. % маршалита, 30 масс. % азотированный продукт и 1 масс. % NH<sub>4</sub>F. Полученное значение меньше теоретически рассчитанного на 0,02 масс. %. Данный азотированный образец однороден без видимых капель расплава и трещин.



17 α-Fe **B-SIAION** β-SIAION β-SIAION β-SIAION β-SIAION . 40 . 45 55 50 60 **2**0 β-SiAION β-Si₃N₄ α-Fe Фаза Fe<sub>x</sub>Si<sub>y</sub> Содержание фазы, масс. % 39.58 23.29 35.31 1.12

Рисунок 14. Зависимость количества поглощенного азота (N<sub>2</sub>) смесью на основе ферросиликоалюминия (68 масс. %), каолина (12 масс. %) и предварительно азотированного продукта (20 масс. %) от количества добавки NH<sub>4</sub>F (1 - теоретически максимальное количество поглощенного азота).

Рисунок 15. Содержание фаз и фрагмент рентгенновской дифрактограммы азотированного образца на основе ферросиликоалюминия (67,15 масс. %) и каолина (11,85 масс. %) с добавками азотированного продукта (20 масс. %) и фторида аммония (1 масс. %).

Внесение каолина к исходному ФСА от 5 до 25 масс. % приводит к смещению рефлексов в сторону меньших углов, соответствующих фазе сиалона. При добавлении каолина более 25 масс. % в продуктах горения начинает преобладать фаза нитрида кремния и в наблюдается фаза кремния. Наличие фаз Si и Fe<sub>x</sub>Si<sub>y</sub> свидетельствует о неполноте протекания реакции азотирования. Введение 20 масс. % добавки предварительно азотированного материала и 1 масс. % фторида аммония в порошковую смесь на основе ФСА и каолина приводит к получению двухфазного материала ( $\beta$ -Si<sub>3</sub>Al<sub>3</sub>O<sub>3</sub>N<sub>5</sub> ( $\beta$ -Si<sub>3</sub>N<sub>4</sub>) и  $\alpha$ -Fe) (Рисунок 15).

На рисунке 16 изображены микрофотографии продукта азотирова ния ФСА. Как было отмечено ранее максимальная температура горения порошка ФСА составляет 2080 °С. При температуре свыше 1500 °С протекает плавление кремния и переход мелких частиц (менее 10 мкм) в процессе газовую горения В фазу. Затем конденсирование происходит азотированного кремния на твердой поверхности. Таким образом, процесс азотирования ФСА может проходить по двум механизмам «пар-газ» и «пар-



Рисунок 16. Микрофотографии продуктов азотирования ферросиликоалюминия.

жидкость-кристалл». В соответствие с механизмом «пар-жидкость-кристалл» рост кристаллов («вискеров») осуществляется при наличии сферических частиц на вершине (глобул) кристаллов (Рис. 16 в). Размеры глобул могут достигать размера в диаметре свыше 30 мкм (Рис. 16 б).

| peppoentinkounomining (pre. 10 d). |                |         |       |       |     |       |
|------------------------------------|----------------|---------|-------|-------|-----|-------|
| Микрофотография                    | Точка на микро | Macc. % |       |       |     |       |
|                                    | фотографии     | Fe      | Si    | Al    | 0   | N     |
| Рисунок 16(a)                      | 1              | 73.08   | 13.14 | 11.43 | -   | 2.35  |
|                                    | 2              | 8.85    | 47.53 | 9.11  | 0.2 | 34.13 |

Таблица 2: Локальный элементный микроанализ продуктов азотирования ферросиликоалюминия (рис.16 а).

Основу глобулярных частиц в продуктах азотирования ФСА составляет расплав железа (Таблица 2). Нитрид кремния/сиалон представлен бесформенными частицами, одинарными и двойниковыми /сросшимися кристаллами (Рис. 16 г). Образование двойных кристаллов происходит путем срастания кристаллов, рост которых происходит в процессе высокотемпературного горения.

Микроструктура продуктов азотирования с кислород- и азотсодержащими добавками будет представлена на примере смесей на основе ФСА и микрокремнезема. На рисунке 17 изображены микрофотографии продуктов азотирования на основе ФСА с добавкой микрокремнезема (рис. 17 а, б), предварительно азотированного материала

(рис. 17 в, г) И фторида аммония (рис. 17 Д, e). Микроструктура продуктов азотирования представлена бесформенными частицами, ограненными кристаллами, нитевидными частицами («вискерсы») и шаровидными глобулами. Наличие нитевидных частиц обосновано наличием в лобавке микрокремнезма частиц менее 1 мкм, которые при воздействии высоких температур переходят В газовую фазу. Образование и рост кристаллов осуществляется как кристаллизацией из железокремниевого расплава и кислородсодержащей добавки (механизм жидкостькристалл), так и по механизму «пар-жидкость-кристалл». Образование нитевидных

кристаллов происходит по механизму «твердое-жидкостькристалл» и «газ-кристалл».



Рисунок 17. Микрофотографии продуктов азотирования смесей ферросиликоалюминия с микрокремнеземом, азотированного продукта и фтористого аммония: а, б – ферросиликоалюминий (78 масс. %) и микрокремнезема (22 масс. %), в, г – ферросиликоалюминий (62,4 масс. %), микрокренезема (17,6 масс. %) и азотированного продукта (20 масс. %), д, е - ферросиликоалюминий (62,01 масс. %), микрокренезема (17,49 масс. %), азотированного продукта (20 масс. %) и NH<sub>4</sub>F (0,5 масс. %).

Добавка фторида аммония разлагается в волне горения с выделением легколетучих газов, которые проделывают дополнительные каналы фильтрации к зоне химической реакции. Введение добавки фторида аммония приводит к увеличению доли протекания азотирования по механизму «газ кристалл». По результатам локального микроанализа (Таблица 3) основу глобулы составляет расплав железа, наибольшее содержание железа в глобулах наблюдается при внесении предварительно азотированного материала и фторида аммония в порошковую смесь на основе ФСА и микрокремнезема.

Таблица 3: локальный элементный микроанализ продуктов азотирования смесей ферросиликоалюминия с микрокремнеземом, азотированного продукта и фтористого аммония (рис. 17).

| Микро          | Область на          | Macc. % |       |       |       |       |
|----------------|---------------------|---------|-------|-------|-------|-------|
| фотогр<br>афия | микрофотог<br>рафии | Fe      | Si    | Al    | 0     | N     |
| a              | 1                   | 89.06   | 6.53  | 1.12  | -     | 3.29  |
|                | 2                   | 7.43    | 46.12 | 11.43 | 9.21  | 25.81 |
| В              | 1                   | 85.87   | 5.82  | 5.33  | -     | 2.97  |
|                | 2                   | 6.98    | 42.35 | 9.75  | 10.51 | 30.31 |
| Д              | 1                   | 92.31   | 4.41  | 0.97  | -     | 2.31  |
|                | 2                   | 3.18    | 40.14 | 9.48  | 8.95  | 38.25 |

В пятой главе «Получение сиаонсодержащих материалов азотированием смесей ферросиликоалюминия с оксидами в режиме горения» представлены технология получения сиалоновых материалов методом СВС в полупромышленном реакторе объёмом 20 литров, дисперсных чистых порошков сиалона и сиалоновых материалов с заданной пористостью. Показано применение полученных по разработанной технологии материалов в качестве фотокатализаторов, носителей катализаторов и абразивов.

На рисунке 18 приведена технологическая схема получения сиалонсодержащего материала методом СВС. Стадия (1) включает в себя последовательное измельчение исходного ферросиликоалюминия (при необходимости) в щековой дробилке (А), дисковом истирателе (Б) и шаровой мельнице (В). Затем измельчённый материал просеивают до размера частиц менее 80 мкм (Г) и разбавляют кислородсодержащей добавкой (Д). После порошковую смесь на основе ФСА с кислородсодержащей добавкой подвергают СВС азотированию (Д). Стадия (2) включает в себя последовательное измельчение предварительно азотированного материала полученного на стадии (1) (А, Б, В) и просеивание данного материала до размера частиц менее 80 мкм (Г). После просеивания предварительно азотированный материал смешивают с порошками ФСА, кислородсодержащей добавкой и фторида аммония (Е). Затем порошковую смесь подвергают СВС азотированию. На стадии (3) азотированный спёк, состоящий из Fe и SiAlON, измельчают (А, Б, В) и классифицируют по размеру частиц (Г).



Рисунок 18. Технологическая схема получения сиалонсодержащего материала методом CBC. 1 – 1 стадия (предварительно азотированного материала), 2 – 2 стадия (получение сиалонового материала), 3 - 3 стадия (измельчение и классификация по размеру частиц) (А –щековая дробилка, Б – дисковый истиратель, В – шаровая мельница, Г - сито, Д - CBC реактор, Е – бочка смешения).

С целью получения чистого порошка SiAlON продукты горения на основе ФСА с кислород- и азотсодержащими добавками подвергали кислотной обработке для удаления железа. Наиболее эффективно удаление железа проводить в 30 % соляной кислоте при температуре кислотного раствора 80 °C и размере частиц порошка не более 40 мкм. Таким образом, удалось получить дисперсный порошок с содержанием целевой фазы до 99,5 масс. %.

Получение сиалонсодержащих материалов с заданной пористостью осуществляли путем сжигания предварительно структурированных образцов в условиях естественной фильтрации азота. Для получения пористых структурированных образцов исходный ферросиликоалюминий в сосуде определенной форме смешивали с водно-щелочным раствором. Образование устойчивой матрицы и пор происходило за счет газовыделения при химическом взаимодействии щелочи с алюминием и кремнием.

Установлена высокая активность композитов Fe-SiAlON в процессе фотокаталитической деградации диклофенака в водной среде при УФ-облучении (Таблица 4) с деградаций органического загрязнителя до 89 %. Фотокатализатор использовали в виде гранул с дисперсностью от 0,63 до 2,5 мм. Высокая фотокаталитическая активность композитов обусловлена наличием широкозонной полупроводниковой фазы SiAlON и фазы металлического железа, которые в присутствии  $H_2O_2/H_2C_2O_4$  дают возможность проводить гетерогенный фотокатализ и гомогенный фото-Фентон процесс в водной среде одновременно.  $H_2O_2$  и  $H_2C_2O_4$  использованы в качестве реагентов активаторов.

Таблица 4: Степень деградации (D, %) диклофенака в водной среде в условии УФоблучения с применением реагентов активаторов  $H_2O_2$  и  $H_2C_2O_4$ .

| Композит  |    | D, %                |                         |                                |  |  |
|-----------|----|---------------------|-------------------------|--------------------------------|--|--|
|           | УΦ | УФ/H <sub>2</sub> C | $V_2$ $V\Phi/H_2C_2C_2$ | $D_4$ $V\Phi/H_2O_2/H_2C_2O_4$ |  |  |
| Fe-SiAlON | 71 | 58                  | 64                      | 89                             |  |  |

Пористый сиалонсоде ржащий композит был использован качестве в носителя фотокатализатора g-C<sub>3</sub>N<sub>4</sub> в фотокаталитической деградации мурексида (NH<sub>4</sub>C<sub>8</sub>H<sub>4</sub>N<sub>5</sub>O<sub>6</sub>) в условиях видимого излучения. Части ΠР  $g-C_3N_4$ синтезировали пиролизом мочевины в порах керамического композита полученого методом СВС. На 19 рисунке представлены результаты фотокаталитичес кой деградации мурексида в



Рисунок 19. Фотокаталитическая деградация мурексида под действием видимого света в присутствии носителя катализатора и носителя катализатора с нанесенным фотокатализатором (а), активность фотокатилитеской системы g-C<sub>3</sub>N<sub>4</sub>/Fe-β-SiAlON после семи циклов фотокаталитического разложения в условиях видимого светового облучения (б).

условии видимого облучения. Удалось достичь деградации мурексида до  $\approx 90$  % при использовании погружного фотокатализатора нанесенного на носитель. Стабильность фотокатализаторов сохраняется при множестве повторяющихся циклов использования (более 5 циклов) (рисунок 19).

При изготовлении абразивных гранул в качестве абразивных компонентов использовали порошки на основе композита Fe-SiAlON и β-SiAlON. В качестве связующего материала была использована эпоксидная смола. Для получения абразивных гранул абразивные порошки смешивали с эпоксидной смолой и затем полученную смесь формовали в треугольные пирамиды с размером 15\*15 мм. Эффективность полученных гранул измеряли по режущей способности и удельному износу (Рисунок 20).



Рисунок 20. Режущая способность (а) и удельный износ (б) абразивных гранул на основе: Fe-SiAlON и β-SiAlON.

В заключение изложены основные итоги диссертационной работы и обозначены направления дальнейших исследований.

# ОСНОВНЫЕ ВЫВОДЫ

1. Азотированием дисперсных смесей ферросиликоалюминия –ФСА (Si 46,5 %, Al 13,3 %) с компонентами, содержащими оксиды кремния и алюминия, методом CBC достигается синтез  $\beta$ -сиалона с выходом до 98,5 % при условиях: давление азота 4 МПа, размер упаковки порошка (диаметр) 40 мм, дисперсность порошка <80 мкм, добавки азотированного продукта 20%, добавки фторида аммония 0,5 %. Добавка азотированного продукта обеспечивает и фторида аммония приводит к увеличению количества поглощенного азота.

2. Азотирование ферросиликоалюминия марки  $\Phi$ C45A15 в режиме горения протекает в нестационарном режиме при максимальной температуре 2080°C с образованием макронеоднородных образцов, содержащих следующие фазы:  $\beta$ -Si<sub>3</sub>N<sub>4</sub>/ $\beta$ -SiAlON,  $\alpha$ -Fe и Fe<sub>x</sub>Si<sub>y</sub>. Наличие силицида железа (Fe<sub>x</sub>Si<sub>y</sub>) свидетельствует о незавершенности процесса азотирования, что связано со скоротечностью процесса CBC. Микроструктура продукта азотирования  $\Phi$ CA представлена бесформенными кристаллами нитрида кремния и сиалона (одинарными и сросшимися) и глобулярными частицами на основе железа.

3. Горение ферросиликоалюминия в среде азота не происходит при давлении газообразного азота менее 2,7 МПа, диаметре упаковки порошка менее 35 мм и размере частиц исходного ФСА более 100 мкм. Оптимальными условиями проведения CBC азотирования порошка ФСА является давление азота-P = 4 МПа, диаметр упаковки порошка- d = 40 мм,  $\rho = 1.7$  г/см3 (насыпная плотность), размер частиц поршка- D < 80 мкм.

4. Азотирование ферросиликоалюминия является стадийным процессом и начинается с образования и разложения неустойчивых нитридов железа до 680 °C. Затем протекает взаимодействие алюминия с азотом с образованием нитрида алюминия при температуре от 800°C. Образование фазы нитрида кремния начинается при температуре свыше 1000°C. Образование сиалоновой фазы наблюдается в высокотемпературной области (более 1500°C) при замещении атомов кремния и азота в нитриде кремния на атомы алюминия и кислорода соответственно.

5. Максимальный выход сиалона достигается при азотировании смесей ферросиликаолюминия с мелкодисперсными добавками: микрокремнезема (22 масс. %), маршалита (10 масс. %) и каолина (15 масс. %). Продукты азотирования на основе ферросиликоалюминия являются многофазными материалами с содержанием азота несколько ниже теоретически рассчитанного максимального значения. Азотированные материалы содержат в своём составе фазы β-SiAlON, α-Fe и Fe<sub>x</sub>Si<sub>y</sub>. Фаза Fe<sub>x</sub>Si<sub>y</sub> свидетельствует о незавершенности процесса азотирования. Увеличение содержания мелкодисперсных добавок в исходной смеси на основе ферросиликоалюминия приводит к уменьшению количества поглощенного азота, скорости горения и увеличению содержания кислорода в продуктах горения. Процесс нитридообразования продуктов горения осуществлялся по механизму «пар-жидкость кристалл».

6. Максимальное содержание сиалоновой фазы в продуктах азотирования смесей на основе ферросиликоалюминия достигается при введении азотсодержащей добавки фторида аммония в исходную смесь. При одновременном введение фторида аммония предварительно азотированного продукта И достигается максимальное приближение количества азота в продуктах горения к теоретически рассчитанному, что обеспечило получение двухфазного материала с фазами β-SiAlON и α-Fe И представляет основу технологии дисперсного β-SiAlON кислотным обогащением продуктов азотирования смесей ферросиликоалюминия с микрокремнеземом, маршалитом и каолином. Увеличение количества азота в продуктах синтеза при введении фторида аммония связано с тем, что при высокотемпературном воздействие фторид аммония разлагается с выделения газообразных веществ, в том числе азотсодержащих, которые проделывают дополнительные каналы фильтрации азота к зоне химической реакции. При введении фторида увеличивается доля азотирования по механизму «твердое-газ».

7. Композиционные материалы, полученные по разработанной технологии СВС, показали высокую фотокаталитическую активность в процессах деградации диклофенака в условии УФ излучения. Пористые композиты эффективны в качестве носителя фотокатализатора g-C<sub>3</sub>N<sub>4</sub> в процессах фотокаталитического разложения красителя мурексида в условии видимого излучения.

8. Сиалонсодержащие материалы, полученные методом СВС, проявили абразивные свойства.

# СПИСОК РАБОТ ПО ТЕМЕ ДИССЕРТАЦИИ

# Публикации в изданиях, рекомендованных ВАК:

1. Болгару, К. А. Синтез сиалона и нитридных фаз на основе ферросиликоалюминия с добавками маршалита в режиме горения / К. А. Болгару, В. И. Верещагин, А. А. Регер и др. // Новые огнеупоры. – 2020. - № 11. – С. 34-37.

2. Bolgaru, K. Combustion synthesis of porous ceramic  $\beta$ - Si<sub>3</sub>N<sub>4</sub> -based composites with the use of ferroalloys / K. Bolgaru, A. Reger, V. Vereshchagin et al. // Ceramics International. – 2021. – Vol. 47. –P. 34765-34773.

3. Akulinkin, A. Facile synthesis of porous  $g-C_3N_4/\beta$ -SiAlON material with visible light photocatalytic activity / A. Akulinkin, K. Bolgaru, A. Reger // Materials Letters. – 2021. – Vol. 305. – P. 130788.

4. Болгару, К. А. Синтез сиалонсодержащей композиции на основе ферросиликоалюминия и наноразмерного микрокремнезема в режима горения /К. А. Болгару, А. А. Регер, В. И. Верещагин // Новые огнеупоры. – 2023. - № 1. – С. 26-30.

5. Combustion synthesis of  $\beta$ -SiAlON from a mixture of aluminum ferrosilicon and kaolin with nitrogen-containing additives using acid enrichment / K. Bolgaru, A. Reger, V. Vereshchagin et al. // Ceramics International. 2023. – Vol. 49. – P. 2302-2309.

# Публикации в других изданиях:

6. **Регер, А. А.** Влияние добавки каолина на азотирование ферросиликоалюминия в режиме горения /К. А. Болгару А. А. Регер// Химия и химическая технология в XXI веке: материалы XX Международной научно-

практической конференции имени профессора Л. П. Кулёва студентов и молодых ученых / Томский политехнический институт. – Томск: Изд-во Томского политехнического университета, 2019. – с. 40-42.

7. **Регер, А. А.** Синтез композиционных материалов на основе сиалона методом СВС из смеси ферросиликоалюминия с маршалитом / К. А. Болгару, В. И. Верещагин, А. А. Регер// Инновационные силикатные и тугоплавкие неметаллические материалы и изделия: свойства, строение, способы получения: материалы Междунар. Науч.-техн. конф., Минск: БГТУ. -2020. – с. 66-68.

8. Регер, А. А. Влияние состава смеси ферросиликоалюминия с маршалитом на выход β-SiAlON при азотировании в режиме горения /А. А. Регер, К. А. Болгару// Химия и химическая технология в XXI веке: материалы XXII Международной научно-практической конференции студентов и молодых ученых имени выдающихся химиков Л. П. Кулёва и Н. М. Кижнера, посвященной 125-летию со дня основания Томского политехнического института. – Томск: Изд-во Томского политехнического университета, 2021. - с. 112-113.

9. Регер, А. А. Получение пористых нитридсодержащих композитов с использованием ферросиликоалюминия методом СВС /В. И. Верещагин, К. А. Болгару, А. А. Регер// Современные проблемы машиностроения: сборник трудов XIV Международной научно-технической конференции. – Томск : Томский политехнический университет, 2021. – с. 129-130.

10. **Reger, A. A.** Obtaining of B-SiAlON SHS from aluminum ferrosilicon with the addition of marshalite /A. A. Reger, K. A. Bolgaru, A. A. Akulinkin// EFRE 2022: 5<sup>th</sup> International Conference on New Materials and High technologies Combustion: fundamentals and applications. – 2022.

11. Регер, А. А. Синтез композиционного материала на основе β-Сиалона из ферросиликоалюминия и каолина в режиме горения /Регер А. А., Болгару К. А.// Химия и химическая технология в XXI веке : материалы XXIII Международной научно-практической конференции студентов и молодых ученых имени выдающихся химиков Л.П. Кулёва и Н.М. Кижнера. В 2 томах. Том 1 (г. Томск, 16–19 мая 2022 г.). / Томский политехнический университет. – Томск : Изд-во Томского политехнического университета, 2022. – с. 137-138.