К РАСЧЕТУ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ СИСТЕМЫ «КОСТЬ – ИМПЛАНТАТ»

<u>В.В. КИМ</u>, И.Ю. СМОЛИН, А. С. БУЯКОВ Институт физики прочности и материаловедения СО РАН E-mail: <u>valeriiakim@ispms.ru</u>

Имплантация является эффективным методом восстановления функциональности и эстетики челюстно-лицевой области. При этом важную роль в успехе процедуры играет соответствие формы имплантата антропометрическим особенностям пациента. Выбор имплантата должен осуществляться с учетом биомеханических свойств материала [1, 2], индивидуальных особенностей и требований к эстетическому восстановлению. Важным этапом в разработке индивидуальных биокерамических эндопротезов для челюстно-лицевой хирургии является расчет напряженно-деформированного состояния самих протезов и окружающих костных тканей.

Таким образом целью данной работы является трехмерное моделирование [3] напряженнодеформированного состояния системы «кость-имплантат» в челюстно-лицевой области на основе антропометрических данных пациента.

Важным этапом моделирования является подготовка 3D моделей кости и имплантата к проведению расчета. Для учета индивидуальных особенностей пациента 3D моделирование производилось в соответствии с данными КТ пациента, вследствие чего полученные модели имеют сложную конфигурацию и могут содержать дефекты. Главной сложностью процесса был перевод моделей из формата STL в твердотельный формат STEP, дальнейшее разбиение моделей на конечные элементы и создание расчетной сетки. По причине сложной геометрии моделей в качестве формы конечного элемента был выбран тетраэдр.

На первом этапе моделирования был использован фрагмент кости, примыкающий к латеральной части имплантата. Количество элементов было подобрано на основании анализа сеточной сходимости, для кости расчетная сетка содержала 91855 элементов, для имплантата – 145413 элементов.

На втором этапе была выбрана половина лицевой кости, количество элементов в кости составило 565729, в имплантате – 145413 элементов.

Имплантат и кость были расположены так, как они были бы расположены при эндопротезировании и показаны на рисунке 1.

Рисунок 1 – Закрепления и нагрузки в системе «кость – имплантат»: а) первый этап моделирования, б) второй этап моделирования

Имплантат изображен на рисунке 1 темно-серым цветом, кость – светло-серым цветом. Система была закреплена в местах соединения с другими костями и на рисунке 1 места закрепления указаны буквами в зеленых квадратах. Также к имплантату была приложена нагрузка, которая на рисунке обозначена стрелками голубого и синего цвета. Нагрузка, приложенная к имплантату, указанная стрелкой голубого цвета, соответствует давлению на имплантат винта в месте крепления и принята равной 5 кПа. Нагрузка, указанная синим цветом, соответствует давлению глаза на орбитальный участок скуловой кости, и была принята равной 80 Па.

Моделирование было выполнено с помощью метода конечных элементов в программном комплексе ABAQUS.

Задача была решена в рамках линейной теории упругости, поэтому для проведения расчетов были необходимы только модуль Юнга и коэффициент Пуассона костной ткани и материала имплантата. Значения этих характеристик были взяты из литературных источников [4, 5] и приведены в таблице 1. При задании механических свойств участка кости учитывались характеристики компактной ткани.

T (1	•	
Гаолина Г	— IN	еханические своиства кости и керамического имплантата
таотніца т		

Название	Модуль Юнга, ГПа	Коэффициент Пуассона
Костная ткань	7	0,28
Керамика (ZrO ₂ Al ₂ O ₃)	674	0,25

На рисунке 2 приведены результаты расчета напряженно-деформированного состояния системы «кость – имплантат» в случае статического нагружения. Анализ распределения интенсивности напряжений показывает, что увеличение напряжений отмечается в месте крепления.

На рисунке 2а точка максимума лежит на периферии области закрепления, на рисунке 2б точка максимума соответствует точке приложения нагрузки, что говорит об адекватности полученных результатов.

a)

Секция 1. Проблемы надежности конструкционных материалов

б)		
	S, Mises (Avg: 75%) +4.951e+03 +1.000e+02 +9.167e+01 +8.333e+01 +7.500e+01 +6.667e+01 +5.833e+01 +3.333e+01 +2.500e+01 +1.667e+01 +1.667e+01 +1.667e+01 +1.383e-05 Max: +4.951e+03 Elem: temp-Unnamed1-bony001 (Solid)001-1.46045 Node: 28300	Hax: -4.951e+03

Рисунок 2 – Распределение интенсивности напряжения (Па) в системе «кость – имплантат»: а) на первом этапе моделирования, б) на втором этапе моделирования

Полученные в результате исследования напряженно-деформированного состояния системы «кость-имплантат» данные расчетов могут быть использованы при проектировании подобных имплантатов.

Работа выполнена в рамках государственного задания ИФПМ СО РАН, тема номер FWRW-2022-0003.

Список литературы

1. Kolmakova T.V., Buyakova S.P., Kulkov S.N. Researches of mechanical behavior of bone tissues for development and selection of individual ceramic implants // IOP Conference Series: Materials Science and Engineering. – 2016. – Vol. 123. – P. 012005. – DOI 10.1088/1757-899X/123/1/012005.

2. Механические свойства керамического композита с бинепрерывной структурой / М.Д. Кормашова, А.С. Буяков, В.Ф. Войцик [и др.] // Международная научно-техническая молодежная конференция «Перспективные материалы конструкционного и функционального назначения»: Сборник научных трудов. – Томск: Изд-во ТПУ, 2020. – С. 133–134.

3. Трехмерное моделирование с использованием 3D-печати при реконструктивных операциях на нижней челюсти / Ю.Ю. Диков, В. Соболевский, М. Кропотов, В.Ю. Ивашков // Саркомы костей, мягких тканей и опухоли кожи. – 2015. – № 1. – С. 50– 54.

4. Колмакова Т.В. Исследование деформационного поведения фрагмента кости при осевом сжатии, содержащего компактный и губчатый слои разной плотности // Компьютерные исследования и моделирование. – 2013. – Т. 5, № 3. – С. 433–441.

5. Чайковская Т.В., Марченко Е.С. Исследование напряженно-деформированного состояния кости средней фаланги указательного пальца руки человека при изменении плотности губчатой костной ткани // Фундаментальные основы механики. – 2022. – № 10. – С. 119–122. – DOI 10.26160/2542-0127-2022-10-119-122.