СРАВНИТЕЛЬНЫЙ АНАЛИЗ ПОЛУЧЕНИЯ КЕРАМИЧЕСКИХ И МЕТАЛЛИЧЕСКИХ ИЗДЕЛИЙ С ИСПОЛЬЗОВАНИЕМ ВЫСОКЭНЕРГИЧЕСКИХ ЛУЧЕЙ ОБРАБОТКОЙ МЕТОДАМИ АДДИТИВНЫХ ПРОИЗВОДСТВ

<u>ЯН ЮЙСИ</u>, Б.С.ЗЕНИН

Томский политехнический университет

E-mail: yuxiyang14@gmail.com

Методы аддитивных производств (АП) могут значительно изменить современную обрабатывающую промышленность. Эта технология управляется компьютерным программированием и программным обеспечением. Простота вычислений и манипулирования данными является основным положительным моментом для развития АП. Увеличение количества исследований в области АП обусловлено необходимостью прототипирования на этапе разработки продукта. АП непосредственно участвует в процессе прототипирования, сокращая время и отходы материалов, используемых в процессе [1,2,5].

Целью данной работы является проведение сравнительного анализа условий формирования монослоя керамического и металлических порошков. методом аддитивной технологии с учетом технических параметров электронно-лучевого плавления (EBM) и селективного лазерного спекания (SLM). Необходимые для расчетов характеристики материалов приведены в таблице 1. ($k\lambda$ - коэффициент поглощения лазерного излучения)

Таблица 1 – Физические характеристики материалов

Материал	$T_{\pi\pi}$, К	$ ho$, кг/м 3	c, Дж/кг $*$ К	L, Дж/кг	kλ
Al_2O_3	2345	3990	770	139000	0.13
Титан	1941	4505	523	417000	0.45
Железо	1812	7874	450	247100	0.42
Никель	1728	8902	440	300051	0.33

Физическая модель

Упрощенные физические модели двух методов – SLM и EBM – очень мало отличаются, физическая модель в этом разделе показывает процесс аддитивного плавления высокоэнергетическим (ВЭ) лучом [3,4]. Как показано на рисунке 1 а, пятно ВЭ луча диаметром d движется со скоростью θ по поверхности насыпного слоя порошка толщиной h, при этом передавая мощность W на объем порошка. Для того чтобы упростить расчет энергетических условий для формирования слоя материала, мы рассматриваем форму пятна электронного пучка как квадрат с длиной стороны, равной a, как представлено на рисунке 1 б.

Рисунок 1 – Физическая модель процесса аддитивного плавления ВЭ лучом (a), форма пятна луча (б)

Математическая модель

В основе расчета лежит уравнение энергетического баланса: подведенное к слою порошка тепло Q, необходимое для его нагрева Q_1 и для расплавления Q_2 , обеспечивается энергией сканирующего луча $E = \Phi W t$, где t – время воздействия пятна луча на поверхность порошка.

$$Q = m c \Delta T + m L = E = \Phi W t \tag{1}$$

Для описания процесса плавления высокоэнергетическим лучом введем следующие технологические параметры обработки порошка – физические свойства материала порошка:

W – мошность ВЭ луча: a – размер пятна ВЭ луча;

 ΔT – разность температур (T_{nn} - $T_{\kappa OMH}$); da – ширина, попадающая под воздействие ВЭ луча;

h — толщина слоя порошка; ρ – плотность порошка; 9 – скорость движения ВЭ луча; c – теплоемкость порошка; d – диаметр пятна на мишени; L – скрытая теплота плавления.

 Φ – эффективный КПД нагрева;

С помощью основной формулы можно установить зависимость между технологическими параметрами процесса и скоростью ВЭ луча 9, при которой обеспечивается получение слоя расплавленного порошка материала:

$$\vartheta = \frac{\Phi * W}{\rho_0 * k_\rho * h * da * (c * \Delta T + L)}$$
 Затем вставляем эту формулу в таблицу 2 с учетом особенностей EBM и SLM.

Таблица 2 – Математические модели и технологические параметры обработки порошка

EBM	SLM				
U – ускоряющее напряжение;	$k\lambda$ – коэффициент поглощения				
I – ток;	лазерного излучения материалом				
η – эффективный КПД нагрева.					
$\eta * U * I$	$k_{\lambda} * W$				
$v = \frac{1}{\rho_0 * k_\rho * h * da * (c * \Delta T + L)}$	$\vartheta = \frac{1}{\rho_0 * k_\rho * h * da * (c * \Delta T + L)}$				

Расчеты и аналитика

Численный эксперимент проводится для условий, отвечающих установке промышленного электроннолучевого 3D принтера EBM200 и лазерного 3D-принтера SLM500, таблица 3.

Таблица 3 – Характеристики установок EBM200 и SLM500 [5]

Тип	W, BT	θ , m/c	d, M	U , к B	<i>I</i> , мА
установки					
EBM200	3000	>1000	0.0005	60	0-50
SLM500	400+1000	>10	0.00015	ı	-

Расчетные данные были получены при обработке порошка выбранных материалов двумя методами – электронно-лучевой плавки и селективного лазерного сплавления, рисунок 2.

Рисунок 2 — Зависимость скорости движения электронного луча от мощности электронного луча (а), от толщины слоя порошок (б); зависимость скорости движения лазерного луча от мощности лазерного луча (в); от толщины слоя порошка (г)

По результатам расчетов можно сделать следующие выводы:

Сравнительный анализ условий получения изделий из металлических порошков и из керамики методом EBM и SLM показывает, что необходимая скорость движения электронного луча для разных материалов одного порядка, в то время как скорость движения лазерного для керамического материала ниже, чем для металлических. Это объясняется более низким коэффициентом поглощения лазерного излучения керамикой.

Сравнительный анализ условий получения изделий из керамики методом EBM и SLM показывает, что EBM по сравнению с SLM имеет более высокую скорость сканирования луча благодаря высокой мощности излучателя. Кроме того, КПД лазерного луча меньше, чем КПД электронного из-за сильного отражения от металлической поверхности.

Список литературы

- 1. Kamal N.L.M., Bas Y. Materials and technologies in road pavements-an overview // Materials Today: Proceedings. 2021. Vol. 42. P. 2660–2667.
- 2. Agapovichev A.V., Khaimovich A.I. et al. Multiresponse Optimization of Selective Laser Melting Parameters for the Ni-Cr-Al-Ti-Based Superalloy Using Gray Relational Analysis // Materials. 2023. Vol. 16(5), 2088.
- 3. Gusarov A.V., Smurov I. Modeling the interaction of laser radiation with powder bed at selective laser melting // Physics Procedia. 2010. Vol. 5. P. 381–394.
- 4. Yan W., Ge W., Smith J., Lin S., Kafka O.L., Lin F., Liu W.K. Multi-scale modeling of electron beam melting of functionally graded materials # Acta Materialia. -2016. Vol. 115. P. 403–412.
- 5. Зленко, М.А., Попович, А.А., Мутылина, И.Н. Аддитивные технологии в машиностроении. СПб.: Издательство политехнического университета, 2013. 212 с.