СРАВНИТЕЛЬНЫЙ АНАЛИЗ ПОЛУЧЕНИЯ КЕРАМИЧЕСКИХ И МЕТАЛЛИЧЕСКИХ ИЗДЕЛИЙ С ИСПОЛЬЗОВАНИЕМ ВЫСОКЭНЕРГИЧЕСКИХ ЛУЧЕЙ ОБРАБОТКОЙ МЕТОДАМИ АДДИТИВНЫХ ПРОИЗВОДСТВ

<u>ЯН ЮЙСИ</u>, Б.С.ЗЕНИН Томский политехнический университет E-mail: yuxiyang14@gmail.com

Методы аддитивных производств (АП) могут значительно изменить современную обрабатывающую промышленность. Эта технология управляется компьютерным программированием и программным обеспечением. Простота вычислений и манипулирования данными является основным положительным моментом для развития АП. Увеличение количества исследований в области АП обусловлено необходимостью прототипирования на этапе разработки продукта. АП непосредственно участвует в процессе прототипирования, сокращая время и отходы материалов, используемых в процессе [1,2,5].

Целью данной работы является проведение сравнительного анализа условий формирования монослоя керамического и металлических порошков. методом аддитивной технологии с учетом технических параметров электронно-лучевого плавления (EBM) и селективного лазерного спекания (SLM). Необходимые для расчетов характеристики материалов приведены в таблице 1. (*k*λ - коэффициент поглощения лазерного излучения)

Материал	Тпл, К	<i>ρ</i> , κγ/m ³	<i>с</i> , Дж/кг*К	<i>L</i> , Дж/кг	kλ
Al ₂ O ₃	2345	3990	770	139000	0.13
Титан	1941	4505	523	417000	0.45
Железо	1812	7874	450	247100	0.42
Никель	1728	8902	440	300051	0.33

Таблица 1 – Физические характеристики материалов

Физическая модель

Упрощенные физические модели двух методов – SLM и EBM – очень мало отличаются, физическая модель в этом разделе показывает процесс аддитивного плавления высокоэнергетическим (ВЭ) лучом [3,4]. Как показано на рисунке 1 а, пятно ВЭ луча диаметром d движется со скоростью 9 по поверхности насыпного слоя порошка толщиной h, при этом передавая мощность W на объем порошка. Для того чтобы упростить расчет энергетических условий для формирования слоя материала, мы рассматриваем форму пятна электронного пучка как квадрат с длиной стороны, равной a, как представлено на рисунке 1 б.

Рисунок 1 – Физическая модель процесса аддитивного плавления ВЭ лучом (а), форма пятна луча (б)

Математическая модель

В основе расчета лежит уравнение энергетического баланса: подведенное к слою порошка тепло Q, необходимое для его нагрева Q_1 и для расплавления Q_2 , обеспечивается энергией сканирующего луча $E = \Phi W t$, где t – время воздействия пятна луча на поверхность порошка. $Q = m c \Delta T + m L = E = \Phi W t$ (1)

Для описания процесса плавления высокоэнергетическим лучом введем следующие технологические параметры обработки порошка – физические свойства материала порошка: *W* – мощность ВЭ луча; *a* – размер пятна ВЭ луча;

W – мощность ВЭ луча; ΔT – разность температур (T_{nn} - $T_{комн}$);

da – ширина, попадающая под воздействие ВЭ луча;

h – толщина слоя порошка; ϑ – скорость движения ВЭ луча; ho – плотность порошка;

- с теплоемкость порошка;
- *d* диаметр пятна на мишени;

L – скрытая теплота плавления.

 Φ – эффективный КПД нагрева;

С помощью основной формулы можно установить зависимость между технологическими параметрами процесса и скоростью ВЭ луча 9, при которой обеспечивается получение слоя расплавленного порошка материала:

$$\vartheta = \frac{\varphi * W}{\rho_0 * k_\rho * h * da * (c * \Delta T + L)}$$

Затем вставляем эту формулу в таблицу 2 с учетом особенностей EBM и SLM.

		_	~	
Таолина / – Математические в	молели и технологические	е параметры ог	паротки по	nouika
ruominia 2 marchann leekne i	модели и технологи теских	inapamerphi oc	puoorkii no	рошки

EBM	SLM
<i>U</i> – ускоряющее напряжение;	<i>k</i> λ – коэффициент поглощения
I- ток;	лазерного излучения материалом
η – эффективный КПД нагрева.	
$\eta * U * I$	$k_{\lambda} * W$
$v = \frac{1}{\rho_0 * k_\rho * h * da * (c * \Delta T + L)}$	$v = \frac{1}{\rho_0 * k_\rho * h * da * (c * \Delta T + L)}$

Расчеты и аналитика

Численный эксперимент проводится для условий, отвечающих установке промышленного электроннолучевого 3D принтера EBM200 и лазерного 3D-принтера SLM500, таблица 3.

Таблиі	1a 3 – Xa	аракте	ристики	установок	EBM200	и SLM500 [5]
--------	-----------	--------	---------	-----------	---------------	--------------

Тип	<i>W</i> , Вт	<i>9</i> , м/с	<i>d</i> , м	<i>U</i> , кВ	<i>I</i> , мА
установки					
EBM200	3000	>1000	0.0005	60	0-50
SLM500	400+1000	>10	0.00015	_	-

Расчетные данные были получены при обработке порошка выбранных материалов двумя методами – электронно-лучевой плавки и селективного лазерного сплавления, рисунок 2.

Рисунок 2 – Зависимость скорости движения электронного луча от мощности электронного луча (а), от толщины слоя порошок (б); зависимость скорости движения лазерного луча от мощности лазерного луча (в); от толщины слоя порошка (г)

По результатам расчетов можно сделать следующие выводы:

Сравнительный анализ условий получения изделий из металлических порошков и из керамики методом EBM и SLM показывает, что необходимая скорость движения электронного луча для разных материалов одного порядка, в то время как скорость движения лазерного для керамического материала ниже, чем для металлических. Это объясняется более низким коэффициентом поглощения лазерного излучения керамикой.

Сравнительный анализ условий получения изделий из керамики методом EBM и SLM показывает, что EBM по сравнению с SLM имеет более высокую скорость сканирования луча благодаря высокой мощности излучателя. Кроме того, КПД лазерного луча меньше, чем КПД электронного из-за сильного отражения от металлической поверхности.

Список литературы

1. Kamal N.L.M., Bas Y. Materials and technologies in road pavements-an overview // Materials Today: Proceedings. – 2021. – Vol. 42. – P. 2660–2667.

2. Agapovichev A.V., Khaimovich A.I. et al. Multiresponse Optimization of Selective Laser Melting Parameters for the Ni-Cr-Al-Ti-Based Superalloy Using Gray Relational Analysis // Materials. – 2023. – Vol. 16(5), 2088.

3. Gusarov A.V., Smurov I. Modeling the interaction of laser radiation with powder bed at selective laser melting // Physics Procedia. – 2010. – Vol. 5. – P. 381–394.

4. Yan W., Ge W., Smith J., Lin S., Kafka O.L., Lin F., Liu W.K. Multi-scale modeling of electron beam melting of functionally graded materials // Acta Materialia. – 2016. – Vol. 115. – P. 403–412.

5. Зленко, М.А., Попович, А.А., Мутылина, И.Н. Аддитивные технологии в машиностроении. – СПб.: Издательство политехнического университета, 2013. – 212 с.