ОПРЕДЕЛЕНИЕ ХАРАКТЕРИСТИК РАСПЫЛЕННОГО ПОТОКА БИОДИЗЕЛЯ, ПРИГОТОВЛЕННОГО С ПОМОЩЬЮ МЕМБРАН ИЗ ПОЛИТЕТРАФТОРЭТИЛЕНА Верходанов Д.А.

Научный руководитель доцент М.В. Пискунов

Национальный исследовательский Томский политехнический университет, г. Томск, Россия

Биодизель представляет смесь моноалкильных эфиров жирных кислот. Такое топливо обладает характеристиками сравнимыми с коммерческим дизельным топливом. В свою очередь биодизель в отличие от дизельного топлива является возобновляемым, биоразлагаемым и более экологичным, что делает его перспективным альтернативным топливом. Прямое применение биодизеля в традиционных дизельных двигателях подтверждается обширными исследованиями [2, 3]. Исследование микроскопической и макроскопической структуры биотоплива в процессе распыления важно для достижения стабильного пламени, снижения выбросов выхлопных газов и более высокой эффективности сгорания [1]. Вдобавок на структуру распыления влияют такие факторы как физические свойства топлива, внешние условия окружающей среды, давление впрыска и геометрическая конструкция форсунки.

Целью данной работы является измерение характеристик (средний диаметр капли по Заутеру d_{32} , количество частиц N) распыленного потока метиловых эфиров жирных кислот (МЭЖК) рапсового масла и биодизельного топлива на их основе, фильтрация которых проводилась с помощью мембран из политетрафторэтилена (ПТФЭ) и поливинилиденфторида (ПВДФ) посредством метода цифровой обработки изображений – фильтра Калмана. При апробации мембранного фильтра из ПТФЭ (пористость 75 %) анализировались такие характеристики МЭЖК как динамическая вязкость, температура вспышки в закрытом тигле, цетановое число и поверхностное натяжение; показаны сходства и отличия от аналогичных характеристик МЭЖК, профильтрованного с помощью коммерческого фильтра из ПВДФ (размер пор 0,45 мкм), предназначенного для тонкой очистки от коллоидных соединений, механических и микробиологических примесей. В качестве исследуемых жидкостей используются МЭЖК рапсового масла (B100), полученный с использованием обоих фильтров, и соответствующие смеси дизеля с МЭЖК (В6, т. е. примесь МЭЖК составляет 6 % от массы дизеля). В таблице представлены значения динамической вязкости и коэффициента поверхностного натяжения исследуемых образцов. Значения довольно близки; различия физических свойств топлив, отфильтрованных с помощью различных мембран, являются скорее несущественными.

Таблица

Наименование жидкости	Динамическая вязкость, мПа·с		Коэффициент поверхностного натяжения, мН/м	
	ПВДФ	ПТФЭ	ПВДФ	ПТФЭ
B6	2,76	2,75	27,9	28,1
B100	5,89	5,94	26,4	30,3

Физические свойства исследуемых образцов

Исследование характеристик распыления выполнялось методом теневой видеосъемки. Для осуществления данного метода использовались высокоскоростная видеокамера (скорость записи – 35000 кадров/с, разрешение – 320×240 пикселей, масштабный коэффициент – 0,05 мм/пиксель) и прожектор. Распыление топлива осуществлялось с использованием дизельной форсунки с углом раскрытия 60°, при варьировании давления на впрыске от 0,6 МПа до 1,2 МПа. Регулирование давления впрыска осуществлялось с помощью редуктора газового баллона, газовый баллон подключался непосредственно к резервуару с топливом.

Постобработка полученного изображения проводилась в программном комплексе Matlab при помощи кода, реализующего метод фильтра Калмана. Данный фильтр позволяет отслеживать отдельные частицы в потоке, при этом определяя их количество, размеры и скорости движения. Также фильтр Калмана позволяет прогнозировать будущее местоположение объекта на основе уравнения движения. Для осуществления постобработки с помощью фильтра Калмана исходная видеозапись загружается в Matlab. В каждом видеокадре происходит обнаружение частиц и присвоение им индивидуального трек-номера, который позволяет отслеживать обнаруженные частицы на последующих видеокадрах. У каждой обнаруженной частицы рассчитывается площадь идеальной сферической

частицы *S* в пикселях, далее рассчитывается диаметр сферы при помощи следующей формулы: $d = \sqrt{\frac{4S}{\pi}}$. После этого происходит пересчет диаметра из пиксельного значения в миллиметровое путем умножения полученного значения на масштабный коэффициент. Рассчитав диаметры частиц на всех видеокадрах, происходит расчет d_{32} .

На рисунке 1 представлена зависимость массового расхода жидкости от давления на впрыске форсункой. Результаты показывают, что для исследуемых образцов с увеличением давления на впрыске происходит рост массового расхода жидкости. Различия в массовых расходах у образцов В6(ПТФЭ) и В6(ПВДФ) составляет около 10 %, при этом у образцов В100(ПТФЭ) и В100(ПВДФ) менее 11 %.

Результаты постобработки, полученные с помощью фильтра Калмана представлены на рисунке 2. Для всех образцов с увеличением давления на впрыске происходит равномерный рост значений N в потоке. Отличие значений N для биотоплив B6(ПТФЭ) и B6(ПВДФ) составляет менее 12 %, для образцов B100(ПТФЭ) и B100(ПВДФ) значения отличаются существеннее, но не более чем на 22 % (рис. 2а). Изменение давления на впрыске также влияет на значения d32. Для топлив B6(ПТФЭ) и B6(ПВДФ) отличие значений d32 не превышает 11 %, при этом для B100(ПТФЭ) и B100(ПВДФ) расхождение составляет менее 7 % (рис. 26). Можно заключить, что в целом различия в определяемых характеристиках топлив, полученных при использовании различных фильтров (включая самостоятельно изготовленный из ПТФЭ), скорее незначительные.

Рис. 1. Зависимость массового расхода жидкости Q от давления на впрыске форсункой Р

Рис. 2. Зависимость количества части N от давления на впрыске P (a); зависимость среднего диаметра по Заутеру d32 от давления на впрыске P (б)

В работе основное внимание уделено измерению характеристик (*d*₃₂, *N*) распыленного потока МЭЖК и биодизельного топлива на их основе, отфильтрованных с помощью самостоятельно изготовленного мембранного фильтра из ПТФЭ и коммерческого фильтра из ПВДФ. Анализ характеристик распыленного потока и физических свойств топлив, отфильтрованных с помощью различных мембран, демонстрирует схожесть результатов. Это позволяет заключить, что изготовленный мембранный фильтр из ПТФЭ не уступает коммерческому аналогу и может быть использован при фильтрации МЭЖК.

Работа выполнена при поддержке программы развития Томского политехнического университета «Приоритет 2030» (Приоритет -2030-НИП/ЭБ-038-1308-2022).

Литература

- 1. Gad H. M. et al. Experimental study of diesel fuel atomization performance of air blast atomizer // Experimental Thermal and Fluid Science. 2018. T. 99. C. 211-218.
- Najafi G. Diesel engine combustion characteristics using nano-particles in biodiesel-diesel blends // Fuel. 2018. T. 212. – C. 668-678.
- Rajpoot A. S. et al. Performance analysis of a CI engine powered by different generations of biodiesel; Palm oil, Jatropha, and microalgae //Materials Today: Proceedings. – 2023.