## МОДЕЛИРОВАНИЕ В СРЕДЕ GEANT4 СПЕКТРОВ РЕНТГЕНОФЛУОРЕСЦЕНТНЫХ И ДЕНСИТОМЕТРИЧЕСКИХ ИЗМЕРЕНИЙ

# Котляревская А.С.<sup>1</sup>, Павлюк А.О.<sup>2</sup> <sup>1</sup>НИ ТПУ, ИЯТШ, группа 0АМ32, e-mail: ask157@tpu.ru <sup>2</sup>НИ ТПУ, ИЯТШ, и.о. директора НИЦ ВЭ, e-mail: pavlyuk17@tpu.ru

### Введение

Одной из актуальных задач в области обеспечения контроля жидких радиоактивных отходов и технологических растворов, содержащих актиниды, является разработка методик и средств их измерения (СИ). В настоящий момент к перспективным методам анализа содержания актинидов в жидкостях относятся рентгенофлуоресцентный анализ (РФА) и рентгеновская денситометрия (плотнометрия).

Математическое моделирование в данном случае выступает инструментом, значительно упрощающим проектирование новых СИ. Компьютерная модель разрабатываемого СИ позволит выявить и исключить возможные технические проблемы, связанные с выбором материалов, конструкции устройства, параметров эксплуатации и т. д.

Моделирование денситометрических и РФА-спектров может быть осуществлено имитационными методами [1]. В настоящей работе в качестве среды разработки выбран Geant4, поскольку его функциональные возможности позволяют проводить моделирование объектов исследования различной геометрии на основе метода Монте-Карло с использованием множества физических моделей для широкого диапазона энергий [2].

Целью настоящего исследования являлась разработка компьютерной модели гибридного устройства для измерения концентраций смеси актинидов в пробах радиоактивных отходов на основе специализированного программного продукта Geant4.

## Структура модели

Перспективность гибридного устройства связана с возможностью выполнять измерения концентраций смеси актинидов в широком диапазоне от десятых долей до сотен г/л с уровнем погрешности не более 10 % за счет одновременного выполнения пробы разными методами (РФА и денситометрии (рис. 1). Подобный подход был продемонстрирован при разработке установки комплексного определения элементов УОКЕР, созданной для применения в специальных камерах и боксах радиохимического производства в «промежуточных» растворах отработанных тепловыделяющих сборок [3]. Устройство реализует методы РФА, денситометрии и гамма-спектрометрии. В качестве источника ионизирующего излучения в установке используется <sup>241</sup>Ат. Материал кюветы – полистирол.



Рис. 1. Сравнение погрешности анализа растворов урана двумя методами [3]

В рамках настоящей работы предполагается усовершенствовать подход из работы [3] за счет использования в качестве источника ионизирующего излучения рентгеновской трубки, а также усовершенствовать конструкцию устройства и определить возможность применения других материалов кюветы. Для реализации данного подхода была разработана модель с несколькими базовыми объёмами, представленными на рис. 2. Вся измерительная система помещена в стальной корпус, визуализация которого в модели отключена с целью получения информативных изображений.



Рис. 2. Геометрия модели измерительного устройства

Зависимость интенсивности рентгеновского излучения *I* от энергии излучения *E* построена на основе формулы Крамерса:

$$I(E) = \frac{KZ}{(hc)^3} E^2 (E_0 - E),$$
(1)

- где К коэффициент пропорциональности;
  - Z зарядовое число материала мишени;
  - *h* постоянная Планка;
  - c скорость света;

*E*<sub>0</sub> – максимальная энергия излучения.

Спектр первичного излучения в модели задан в виде гистограммы «энергия – относительная интенсивность» через макрос. Создание макроса по исходным данным автоматизировано в программе Wolfram Mathematica. Также перед началом сеанса моделирования организован выбор состава модельного раствора из перечня и задание концентрации актинидов через терминал.

Основной модуль физической модели взаимодействий частиц представлен библиотекой G4EmPenelopePhysics, которая использует модель Penelope для расчёта электромагнитных взаимодействий электронов, позитронов и гамма-излучения с энергиями до 1 ГэВ [4].

Работа детекторов организована на основе встроенного класса G4UserSteppingAction. Методы данного класса на каждом шаге (отрезке траектории частицы) осуществляют проверку на принадлежность текущего положения частицы детектирующему объёму и затем сохраняют значение энерговыделения на текущем шаге. Конечная энергия частицы вычисляется путём суммирования всех значений энерговыделения частицы на траектории, принадлежащей объёму детектора.

Дополнительно в модель введена поправка на статистические флуктуации количества рождённых носителей заряда в чувствительном объёме детектора в соответствии с формулой [5]:

$$FWHM = 2,355\sigma \approx 2,355\sqrt{F\omega\omega},\tag{2}$$

где *FWHM* – полная ширина на половине высоты пика;

 $\sigma$  – среднеквадратичное отклонение энергии частицы;

- F фактор Фано;
- *w* энергия, затрачиваемая на рождение носителя заряда;
- Е энергия частицы.

Для полупроводникового детектора *F* принят равным 0,128 [6], а  $\omega = 3,650$  эВ (энергия рождения электронно-позитронной пары для Si). Таким образом, для кремниевого полупроводникового детектора *FWHM* ≈ 0,0509  $\sqrt{E}$  (кэВ).

Для сцинтилляционного детектора *F* принят равным 1 [5], а *w* вычислена по следующей формуле:

$$\omega = \frac{hc}{\lambda \eta \varepsilon},\tag{3}$$

где  $\lambda$  – средняя длина волны фотонов, образуемых в сцинтилляторе (550 нм для CsI);

 $\eta$  – световой выход сцинтиллятора в долях (0,135 для CsI);

 $\varepsilon$  – квантовый выход фотокатода ФЭУ (0,1).

Таким образом, исходя из формул 2 и 3, для сцинтилляционного детектора CsI(Tl)  $\omega$  = 167 эB, а *FWHM* ≈ 0,962  $\sqrt{E}$  (кэB).

Введение поправки реализовано путём перерасчёта энергии частицы в соответствии с распределением Гаусса с заданным *σ*. После перерасчёта осуществляется запись энергии в гистограмму Root. Подобный подход позволяет запускать симуляцию в режиме многопоточности, что значительно ускоряет процесс вычислений, но увеличивает нагрузку на оперативную память.

#### Результаты моделирования

На начальном этапе проверка модели на адекватность осуществлялась по соответствию пиков, присутствующих на полученных спектрах, основным энергетическим переходам интересующих элементов (таблица 1) в рассматриваемом диапазоне (от 5 до 160 кэВ).

Таблица 1

| Элемент | Энергия фотонов, кэВ |                |                |                |
|---------|----------------------|----------------|----------------|----------------|
|         | К-край               | $K_{\alpha 1}$ | $K_{\alpha 2}$ | $L_{\alpha 1}$ |
| U       | 115,6                | 98,4           | 94,7           | 13,6           |
| Np      | 118,7                | 101,1          | 97,1           | 13,9           |
| Pu      | 121,8                | 103,7          | 99,5           | 14,3           |
| Am      | 125,0                | 106,5          | 102,0          | 14,6           |

Основные энергии рентгеновских переходов для U, Np, Pu и Am

На рис. 3 приведены предварительные результаты моделирования прохождения рентгеновского излучения (3 · 10<sup>7</sup> событий) через модельный раствор нитрата уранила с концентрацией U порядка 200 г/л для трёх материалов кювет: полистирола, нержавеющей стали и кварца. Концентрация урана подобрана таким образом, чтобы обеспечить высокую контрастность спектров при небольшой статистике.



*Рис. 3. Спектры для раствора нитрата уранила при различных материалах кювет: а) со сцинтилляционного детектора; б) с полупроводникового детектора* 

На рис. За различим спад интенсивности излучения с энергиями выше 115 кэВ, что соответствует *К*-краю поглощения U, а также прослеживаются пики, соответствующие линиям  $K_{a1}$  и  $K_{a2}$  U. При этом, в сравнении с кюветой из полипропилена, кюветы из кварца и нержавеющей стали демонстрируют меньшую пропускную способность первичного излучения на 4 % и 42 % соответственно. На РФА-спектре (рис. 36) линия  $L_{\alpha}$  U отчётливо различима только в случае пластиковой кюветы. В случае стальной кюветы преобладает линия  $K_{\alpha}$  Fe (6,4 кэВ), а при использовании кварца достоверно судить о наличии пиков нельзя в связи с малым количеством отсчётов.

Также проведено моделирование прохождения рентгеновского излучения через растворы, содержащие один основной элемент (U, Np, Pu или Am) в легкой матрице (HNO<sub>3</sub>), помещённые в кювету из полистирола (рис. 4). Спектры с полупроводникового детектора малоинформативны по причине незначительных различий в энергиях *L*<sub>α</sub>линий элементов, поэтому опущены.



Рис. 4. Спектры со сцинтилляционного детектора для модельных растворов, содержащих один из элементов (U, Np, Pu или Am), в сравнении с пробой 1М HNO<sub>3</sub>

Ввиду того, что значения энергий *К*-края поглощения у U, Np, Pu и Am сравнительно близки, при сходной концентрации элементов в растворах (массовая доля каждого составляет 15%) наблюдаемая спектральная картина практически идентична. Тем не менее, на данном этапе возможно различить сдвиг по энергиям линий  $K_{\alpha}$ .

#### Заключение

Имеющаяся компьютерная модель гибридного СИ для осуществления РФА, денситометрии растворов актинидов в жидких пробах на данном этапе разработки позволяет получать спектры рентгеновского излучения с двух детекторов и оценивать влияние материала измерительной кюветы на получаемые спектры.

Следует отметить, что полученные функции отклика детекторов пока являются «идеалистичными» т. к. в модели отсутствует учет влияния сцинтилляционных эффектов (плато комптоновского рассеяния, пик обратного рассеяния и т. п.) и электронные шумы, что будет устранено в ходе совершенствования модели. Также планируется введение в модель собственного излучения содержимого кюветы и верификация результатов на экспериментальных данных.

Работа выполнена в рамках программы Приоритет 2030 (проект № Приоритет-2030-НИП/ЭБ-039-375-2023).

#### Список использованных источников

1. Берлизов А.Н. и др. Моделирование спектров энергодисперсионных рентгенофлуоресцентных измерений актиноидов на основе метода Монте-Карло // Известия ТПУ. – 2012. – № 2. – С. 62-66.

2. Agostinelli S. и др. Geant4–a simulation toolkit // Nucl. Inst. and Methods in Phys. Res., A. – 2003. – T. 506. № 3. – C. 250-303.

3. Белоусов М.П. и др. Установка комплексного определения параметров растворов ОТВС // АНРИ. – 2023. – № 2. – С. 50-66.

4. Guide for Physics Lists: Rev 7.0. – Текст: электронный // Geant4: официальный сайт. – 1999-2022. – URL: https://geant4-userdoc.web.cern.ch/UsersGuides/PhysicsListGuide/html/index.html (дата обращения: 20.09.2023).

5. PANDA: Пассивный неразрушающий анализ ядерных материалов. Справочник / под ред. Д. Райлли, Н. Энслина, Х. Смита, С. Крайнер; перевод с английского ВНИИА. – 2007. – 720 с.

6. Kotov I.V.,Neal H., O'Connor P. Pair creation energy and Fano factor of silicon measured at 185 K using <sup>55</sup>Fe X-rays // Nuclear Inst. and Methods in Physics Research, A. – T. 901. – 2018. – C. 126-132.