УДК 538.975

Элементно-фазовый состав YAG:Се покрытий, полученных при высокоскоростном магнетронном осаждении

А.А. Рунц

Научный руководитель: профессор, д.ф.-м.н. Г.А. Блейхер Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина, 30, 634050 E-mail: aar74@tpu.ru

Element-phase composition of YAG:Ce coatings obtained by high-rate magnetron deposition A.A. Runts

Scientific Supervisor: Prof., Dr. G.A. Bleykher Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050 E-mail: <u>aar74@tpu.ru</u>

Abstract: The paper presents a method of high-rate magnetron deposition of a thin-film phosphor composition YAG ($Y_3Al_5O_{12}$) doped with cerium (Ce). The effect of annealing on the composition and structure of the resulting phosphor is investigated. The process of formation of the yttrium-aluminum garnet phase during long-term high-temperature annealing is proved. **Key words:** phosphor, medium-frequency reactive magnetron sputtering, crystal structure.

Введение

Люминофор – это вещество, способное преобразовывать поглощаемую энергию в видимое (световое) излучение. Эти материалы нашли широкое применение в различных областях, в том числе при изготовлении приборов электронной техники. Для некоторых из них, например, электронно-оптических преобразователей (ЭОП), используемых для отображения поглощаемой энергии, крайне важными являются толщина люминофорного слоя, размеры зерен и их расположение, которые определяют разрешающую способность устройства в целом [1, 2]. Поэтому при изготовлении подобных изделий люминофорные материалы необходимо наносить в виде покрытий на функциональные элементы. Для решения подобных вакуумно-плазменные методы осаждения являются задач весьма привлекательными, так как они позволяют обеспечивать высокую чистоту покрытий и повторяемость технологических процессов [3].

Экспериментальная часть

Схема расположения оборудования в вакуумной камере установки для осаждения люминофорных покрытий показана на рисунке 1.

Рис. 1. Схема расположения оборудования в вакуумной камере установки для осаждения люминофорных покрытий: 1, 2, 3 – магнетроны с мишенями из церия, иттрия и алюминия соответственно; 4, 5 – электромагнитные клапаны для напуска рабочего (Ar) и реактивного (O₂) газов соответственно;

4, э – электромаснатные клананы оля напуска рабочесо (лг) и реактавного (02) газов соответственно 6 – радиочастотный генератор плазмы; 7 – ионный источник с замкнутым дрейфом электронов; 8 – трубчатый электронагреватель; 9 – подложка; 10 – корпус вакуумной камеры;

11 — карусель планетарного типа вращения; 12 — высоковакуумный затвор; 13 — вакуумметр

ХХІ МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ СТУДЕНТОВ, АСПИРАНТОВ И МОЛОДЫХ УЧЕНЫХ «ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК»

Осаждение покрытий производилось с помощью трёх магнетронов, оснащённых дисковыми мишенями (диаметром 9 см) из церия (99,999 %, поз. 1), иттрия (99,999 %, поз. 2) и алюминия (99,999 %, поз. 3). Напуск рабочего газа аргона производился через натекатели, расположенные рядом с распыляемыми мишенями из алюминия и иттрия (поз. 4). Для улучшения хемосорбции молекулы реактивного газа (О₂) подвергаются диссоциации и ионизации в пространстве камеры с помощью радиочастотного плазменного генератора (поз. 6). Рабочие параметры осаждения сведены в Таблице 1.

Таблица 1

Мощность магнетронов (Вт) с мишенями из:			Мощность РПГ,	Напуск газов, sccm		Полное давление,
Y	Al	Ce	DI	Ar	O ₂	11a
1000	1570	150	1250	45	42	0.4

Рабочие параметры осаждения покрытий

Далее следует второй этап формирования тонкопленочного люминофора, который подразумевает высокотемпературный отжиг в печи при температуре 1200 °C в течение 6 часов. Процесс протекал либо в среде воздуха, при атмосферном давлении, либо в среде азота при повышенном давлении (1,5 атм.). Процесс необходим для рекристаллизации структуры и образования кристаллической фазы иттрий-алюминиевого граната. Также под действием отжига происходит внедрение атомов примеси в узлы кристаллической решетки. в среде азота или на воздухе.

Результаты

Все покрытия, структурные и функциональные свойства которых были проанализированы, осаждались методом среднечастотного распыления Y и Al мишеней в металлическом режиме в комбинации с среднечастотным распылением Се мишени.

Сведения об элементном составе осаждённых покрытий до и после отжига, определённом с помощью энергодисперсионной спектроскопии, содержится в табл. 2. Анализировались образцы толщиной 7,2 мкм на кремниевых подложках.

Таблица 2

	Концентрация, ат.%				Соотношение атомов			
Вид отжига	О	Y	Al	Ce	в покрытиях		в Y ₃ Al ₅ O ₁₂	
					Y:Al	(Y+Al):O	Y:Al	(Y+Al):O
Fer other	47.87	15.72	35.82	0.59	1:2.28	1:0.92		
Без отжита	±0.14	± 0.10	± 0.14	± 0.02				
После отжига на	61.12	11.17	27.51	0.19	1.2.46	1.1.57	1.1.67	1.1.5
воздухе	±0.59	±0.46	±0.54	± 0.05	1:2.40	1:1.37	1:1.07	1:1.5
После отжига в среде	61.42	11.98	26.45	0.15	1.2.21	1:1.59		
азота	± 0.57	±0.26	±0.35	± 0.02	1:2.21			

Элементный состав покрытий до и после отжига в разной газовой среде

По сравнению со стехиометрическим составом соединения Y₃Al₅O₁₂, во всех покрытиях наблюдается небольшой избыток атомов алюминия по отношению к атомам иттрия. Это обстоятельство обусловлено завышением мощности магнетрона с алюминиевой мишенью.

Оба вида отжига привели не только к обогащению покрытий кислородом до концентрации, при которой может быть сформирован YAG, но и к формированию его кристаллической структуры. Об этом свидетельствуют данные рентгеноструктурного анализа. На рис. 2 приведены рентгенограммы всех покрытий, а в табл. 3 содержится информация о характеристиках их фазового состава после отжига.

291

Рис. 2. Рентгенограммы сформированных покрытий: A – без отжига, B и C – после отжига в среде азота и на воздухе соответственно

На рис. 2 видно, что покрытия без процедуры отжига имеют аморфную структуру. Оба вида отжига, проведённые после магнетронного осаждения, привели к формированию фазы Al₅Y₃O₁₂ с кристаллической структурой YAG.

Таблица 3

• • • •		
Характеристики фазовог	го состава покрытий после отжи	a

Вид отжига	Фаза	Содержание	Параметры	Размер кристаллитов	Микронапря-жение,
		фазы, оо. %	решетки, А	по ОКР, нм	$\Delta d/d+10^{-5}$
На воздухе	$Al_5Y_3O_{12}$	100	12.0283	73.19	0.976
В среде азота	$Al_5Y_3O_{12}$	100	12.0327	58.99	0.114

Содержание кристаллической фазы в обоих покрытиях, согласно данным в табл. 3, составляет 100 %. Среда отжига оказала некоторое влияние на параметры решётки, средний размер кристаллитов и остаточные микронапряжения.

Заключение

Покрытие без отжига имеет недостаточное количество атомов кислорода для формирования стехиометрического соединения Y₃Al₅O₁₂. Отжиг, проведённый как на воздухе, так и в среде азота, привёл к заметному увеличению содержания кислорода, которое практически соответствует стехиометрическому соединению Y₃Al₅O₁₂.

Работа выполнена при поддержке Министерства науки и высшего образования РФ в рамках проекта FEWM 2024-0004.

Список литературы

1. Schauer P., Bok J., Study of spatial resolution of YAG:Ce cathodoluminescent imaging screens // Nuclear Instruments and Methods in Physics Research B. –2013. –Vol. 308. – P. 68–73.

2. Li Y., Almeida R. M., Preparation and optical properties of sol-gel derived thick YAG:Ce³⁺ phosphor film // Optical Materials.- 2012. -Vol. 34 - P. 1148-1154.

3. Chao W.-H., Wu R.-J., Wu T.-B., Structural and luminescent properties of YAG:Ce thin film phosphor // Journal of Alloys and Compounds. –2010. –Vol. 506. – P. 98–102.