ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

На правах рукописи

苏度出

Су Чуанчу

ИССЛЕДОВАНИЕ МИКРОСТРУКТУРЫ И МЕХАНИЧЕСКИХ СВОЙСТВ СПЛАВОВ A1-5Mg И A1-5Si, ПОЛУЧЕННЫХ ПРОВОЛОЧНО-ДУ-ГОВЫМ АДДИТИВНЫМ ПРОИЗВОДСТВОМ ПРИ РАЗЛИЧНЫХ ТЕХНО-ЛОГИЧЕСКИХ ПАРАМЕТРАХ

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата технических наук

1.3.8 - Физика конденсированного состояния

Томск - 2024

Работа выполнена в федеральном государственном автономном образовательном учреждении высшего образования «Самарский национальный исследовательский университет имени академика С.П. Королева»

Научный руководитель:	Коновалов Сергей Валерьевич				
	доктор технических наук, профессор, проректор по научной и инновационной деятельности, федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный индустриальный университет», г. Новокузнецк.				
Официальные оппоненты:	Клопотов Анатолий Анатольевич				
	доктор физико-математических наук, профессор, профессор кафедры прикладной механики и материаловедения, федеральное государственное бюджетное образовательное учреждение высшего образования «Томский государственный				

г. Томск.

Иванов Юрий Федорович

доктор физико-математических наук, профессор, главный научный сотрудник лаборатории эмиссионной электроники, плазменной государственное бюджетное федеральное Институт учреждение науки сильноточной электроники Сибирского отделения Российской академии наук, г. Томск.

архитектурно-строительный университет»,

Защита состоится «11» <u>декабря</u> 2024 г. в <u>15-00</u> ч на заседании диссертационного совета ДС.ТПУ.03 Национального исследовательского Томского политехнического университета по адресу: 634050, г. Томск, пр. Ленина, 30.

С диссертацией можно ознакомиться в научно-технической библиотеке Томского политехнического университета и на сайте dis.tpu.ru при помощи QR-кода.

Автореферат разослан « » октября 2024 г.

Ученый секретарь диссертационного совета ДС.ТПУ.03 доктор технических наук

Гынгазов С.А.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования. Сплав Al-5Mg (5356) относится к алюминиевым сплавам серии 5ххх. По сравнению со сплавами этой серии сплав Al-5Mg имеет более высокую пластичность, меньшее содержание легирующих элементов и однофазную структуру. Сплавы серии 5ххх обладают хорошей механической и термической стойкостью К коррозии, сопротивлением радиационному распуханию, что делает его пригодным для конструкций и деталей корпусов ядерных реакторов. Сплав Al-5Si (4043) благодаря своей хорошей формуемости, высокой удельной прочности и отличной коррозионной стойкости широко используется в авиакосмической промышленности И автомобилестроении. С внедрением аддитивных технологий в производство эти два типа сплавов применяются в качестве объектов для исследований в области послойного аддитивного выращивания. Среди всех технологий получения алюминиевых сплавов, важную роль играет технология проволочно-дугового аддитивного производства (WAAM) на основе холодного переноса металла (CMT) (WAAM-CMT). Технология WAAM-CMT – это аддитивная технология, которая позволяет изготавливать металлические детали сложной формы путем послойного нанесения материалов, используя дугу в качестве источника нагрева и металлическую проволоку в качестве присадочного материала. Данная технология имеет преимущества в виде высокой скорости наплавки, высокого коэффициента использования материала, относительно низкой стоимости производства и стоимости оборудования, высокой гибкости оборудования и масштабируемости. В связи с этим, актуальным является изучение особенностей процесса проволочно-дугового аддитивного производства на основе холодного переноса металла и получение стабильных параметров с целью ускорения промышленного внедрения данной технологии для производства аддитивных изделий из алюминиевых сплавов.

Степень научной разработанности проблемы. Технология аддитивного производства широко используется для изготовления металлических изделий с момента ее разработки в 1980-х годах. В частности, изделия из алюминиевых сплавов производятся с помощью лазерной и электронно-лучевой технологии аддитивного производства, при этом накоплен большой объем данных, доступный для изучения влияния параметров процесса на микроструктуру и свойства алюминиевых сплавов. Вместе с этим влияние параметров процесса WAAM-CMT на качество формообразования изделий из алюминиевых сплавов Al-5Mg и Al-5Si, изготовленных по этой технологии, исследовано недостаточно.

Цель и задачи. Целью данной работы является определение влияния параметров процесса (режим дуги, скорость подачи проволоки, скорость сварки, стратегия наплавки и высота наплавки) на структуру и механические свойства сплавов Al-5Mg и Al-5Si, полученных методом проволочно-дугового аддитивного производства на основе холодного переноса металла.

Для реализации поставленной цели в работе решались следующие задачи:

1) Определить влияние различных режимов дуги (СМТ-ADV, СМТ, СМТ-Р) на микроструктуру и механические свойства сплавов Al-5Mg, полученных методом WAAM-CMT.

2) Установить влияние величины тепловложения, зависящего от скорости подачи проволоки и скорости сварки, на микроструктуру и механические свойства изготовленных сплавов Al-5Mg.

3) Определить особенности влияния различных стратегий наплавки и высоты наплавки на изменение микроструктуры и механических свойств сплавов Al-5Si, полученных методом WAAM-CMT, и провести углубленные исследования механизма разрушения сплавов Al-5Si.

Научная новизна.

1) Впервые установлено влияние различных режимов дуги (СМТ-Р → СМТ → CMT-ADV) на изменение микроструктуры и механических свойств сплавов Al-5Mg, полученных WAAM-CMT. Обнаружено, методом что данная последовательность режимов дуги соотвествует изменения уменьшению величины тепловложения, что приводит к измельчению зерна и повышению прочности и твердости сплава.

2) Впервые определено влияние скорости подачи проволоки и скорости сварки в процессе WAAM-CMT на величину тепловложения сплава как одного из ключевых факторов, вызывающих различия в структуре и механических свойствах сплава Al-5Mg.

3) Впервые показано, что в сплавах Al-5Si, полученных методом WAAM-СМТ, варьирование стратегии наплавки и высоты наплавки изменяет скорость охлаждения сплавов в процессе производства. По результатам анализа определены значения скоростей охлаждения сплавов при различных стратегиях и высотах наплавки, а также установлено влияние различий в скоростях охлаждения на микроструктуру и механические свойства сплавов.

4) Установлено, что сплав Al-5Si, изготовленный методом WAAM-CMT, разрушается по смешанному механизму, включающему транскристаллитное и интеркристаллитное виды разрушения.

Теоретическая и практическая значимость работы.

- В работе получены экспериментальные данные по влиянию технологических параметров дугового аддитивного производства (режим дуги, скорость подачи проволоки, скорость сварки, стратегия наплавки и высота наплавки) на структуру, фазовый состав и механические свойства сплавов Al-5Mg и Al-5Si. Полученный результат способствует улучшению и обогащению технологической базы данных по дуговому аддитивному производству сплавов Al-Mg и Al-Si и внедрению данной технологи в промышленное изготовление деталей из алюминиевых сплавов.

- На основе работы был получен патент на изобретение «Синергетический устройство для лазерно-дугового композитного аддитивного И метод производства с использованием металлической проволоки и порошка металла» (патент № ZL202110633084.2), который успешно применяется для производства алюминиевых и титановых сплавов, нержавеющих сталей, сплавов на основе Изобретение характеризуется других изделий. никеля И возможностью

реализации нескольких режимов аддитивного производства, таких как дуговое аддитивное производство, лазерное аддитивное производство, лазерно-дуговой композитный аддитивный метод и др., путем регулирования горения дуги, состояния лазерного источника тепла, а также управления подачей проволоки и металлического порошка, гибкой настройкой химического состава производимых сплавов. Внедрение данного устройства открывает новые возможности для композитного аддитивного производства лопаток турбин со сложной структурой, металлических топливных элементов, автомобильных кронштейнов и других деталей.

- Результаты работы внедрены в производственный цикл китайской компании «Wenzhou Jinghe Intelligent Manufacturing Science& Technology Co., Ltd.», что позволяет увеличивать выгоду от производства алюминиевых фланцев на 2 млн. рублей в год.

Методология и методы исследования. В диссертационной работе сплавы Al-5Mg и Al-5Si получены методом WAAM-CMT. Экспериментальные исследования проводились с использованием аналитического и испытательного оборудования кафедры технологии металлов и авиационного материаловедения Самарского национального исследовательского университета имени академика С.П. Королева и Института лазерного и оптоэлектронного интеллектуального производства Университета Вэньчжоу (КНР). Анализ микротвердости проводился на микротвердомере HVS-1000Z. Макроскопическая структура образцов изучена и проанализирована с помощью 3D лазерного конфокального микроскопа OLS40-СВ. Оптический микроскоп (LEICADM-2500M), сканирующий электронный микроскоп Phenom XL и оборудование для дифракции обратного рассеяния электронов (EBSD / Oxford-Nordli-Max 3) использовались для наблюдения и анализа микроструктуры образцов, а также поверхности разрушения образцов при растяжении. Сканирующий электронный микроскоп TESCAN VEGA применялся для анализа состава и микроструктуры образцов. Анализ и идентификацию фаз в сплавах и определение фазового состава проводили на рентгеновском дифрактометре Bruker D8 ADVANCE.

Положения, выносимые на защиту:

1) Технологические режимы, приводящие к существенному снижению тепловложения в наплавляемые слои сплава Al-5Mg: режим CMT-ADV способствует уменьшению тепловложения на 47,3 %, при уменьшении скорости подачи проволоки до 7,0 м/мин – на 12,3 %, а при увеличении скорости сварки до 0,9 м/мин – на 21,9 %, соответственно. Уменьшение тепловложения сплава Al-5Mg при изменении режимов наплавки способствует преобразованию крупных столбчатых зерен в измельченные равноосные зерна, и к увеличению микротвердости, предела прочности и предела текучести.

2) Траектория наплавки и высота наплавляемого металла при изготовлении сплава Al-5Si методом проволочно-дугового аддитивного производства на основе холодного переноса металла влияет на величину скорости охлаждения и на качество поверхности. Стратегия «Линия 45°» приводит к получению образцов с наилучшим качеством поверхности.

3) Вне зависимости от режима наплавки аддитивный сплав Al-5Mg разрушается

по вязкому механизму, а сплав Al-5Si – по смешанному типу – в области внутри слоя преобладает транскристаллитный механизм, в области на границе между слоями - интеркристаллитный механизм.

4) Все исследуемые режимы получения сплава Al-5Si приводят к рекристаллизации в процессе наплавки и формированию мелкозернистой равноосной структуры в областях на границе между слоями и, в основном столбчатых дендритных зерен в областях внутри слоев, направленных вдоль направления выращивания. С увеличением расстояния от подложки дендритная структура α-Al фазы постепенно превращается в сотоподобные зерна как внутри слоев, так и между ними.

Степень достоверности и апробация результатов. Достоверность определяется корректностью результатов работы поставленных задач, использованием апробированных методов, аппаратуры контроля материалов и исследования, применяемых современном физическом метолик В материаловедении, большим объемом экспериментальных данных и результатов, полученных совместно с другими исследователями.

обсуждались Результаты работы докладывались И на следующих конференциях И Молодежная конференция, семинарах: LXXI научная посвященная 60-летию полета в космос Ю.А. Гагарина, Самара, 2021; XXII Международная научно-практическая конференция «Проблемы прочности и пластичности материалов в условиях внешних энергетических воздействий -2021», Новокузнецк, 2021; XXIII Международная научно-практическая конференция «Металлургия: технологии, инновации, качество», Новокузнецк, 2022; LXVII международная научно-практическая конференция «Технические науки: проблемы и решения», Москва, 2022; XLIX международная научнопрактическая конференция «Advances in Science and Technology», Москва, 2022; Ш Международная научно-практическая конференция «Молодые исследователи устойчивое развитие», Петрозаводск, 2022; за Всероссийская научнопрактическая конференция «Всероссийские научные чтения», Петрозаводск, 2022; XI Международной научно-технической конференции «Современные материалы техника и технология», Курск, 2022; XII Международный онлайн симпозиума «Материалы во внешних полях (МВП-23)», Новокузнецк, 2023.

Публикации. Соискатель имеет 22 опубликованные работы по теме диссертации общим объёмом 10,44 печатных листов, из которых 2 работы, опубликованы в рецензируемых научных изданиях, определенных ВАК РФ, в том числе 7, проиндексированных в международных базах цитирования Scopus, 9 в сборниках трудов международных научно-технических конференций. Получено 4 патента на изобретения. Список основных работ приведен в конце автореферата.

Личный вклад автора заключается в анализе литературных данных, проведении экспериментов, проведении планировании испытаний И механических свойств, подборе параметров процесса изготовления алюминиевых использованием метода WAAM-CMT, сплавы с обработке И анализе экспериментальных данных, написании статей и тезисов, разработке основных выводов и положений, выносимых на защиту.

Соответствие диссертации специальности. Тема и содержание диссертационной работы соответствует научной специальности 1.3.8 Физика

конденсированного состояния в части пунктов: 1. Экспериментальное изучение физической природы и свойств металлов и их сплавов, неорганических и органических соединений, диэлектриков и, в том числе, материалов световодов как в твердом (кристаллы, поликристаллы), так и в аморфном состоянии в зависимости от их химического, изотопного состава, температуры и давления; 4. Разработка экспериментальных методов изучения физических свойств и создание физических основ промышленной технологии получения материалов с свойствами; Установление закономерностей определенными 6. влияния технологии получения и обработки материалов на их структуру, механические, химические и физические свойства, а также технологические свойства изделий, предназначенных для использования в различных областях промышленности и медицины.

Структура и объем диссертации. Диссертация состоит из введения, 5 глав, заключения и 5 приложений. Полный объем диссертации составляет 144 страниц, включая 57 рисунков и 16 таблицы. Список литературы содержит 145 наименований.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во Введении обоснована актуальность темы диссертации, степень ее разработанности, приведены цель и задачи исследования, научная новизна, теоретическая и практическая значимость работы, методология и методы исследования, перечислены основные положения, выносимые на защиту, степень достоверности и апробация результатов, указан личный вклад автора, соответствие паспорту специальности, структура и объем диссертации.

В первой главе «Исследование алюминиевых сплавов, полученных методами технологий аддитивного производства», приводится классификация технологий проволочно-дугового аддитивного производства. Особое внимание уделяется анализу параметров процесса проволочно-дугового аддитивного производства и их влиянию на микроструктуру и механические свойства алюминиевых сплавов в настоящее время. На основе анализа литературных источников формулируются цели и задачи данной работы.

Во второй главе «Материалы, методы и оборудование для исследований» описаны материалы, выбранные в исследовательской работе, оборудование, использованное для изготовления образцов из алюминиевых сплавов, аналитическое оборудование и методы исследования.

В данном эксперименте использовалась проволочно-дуговая аддитивная система наплавки на основе холодного переноса металла (СМТ), состоящая из операционной системы робота FANUC и программного обеспечения для моделирования траектории его движения. В качестве подложек использовались пластины из алюминиевого сплава 6061-Т6 двух размеров: 325 мм × 325 мм × 20 мм и 200 мм × 60 мм × 10 мм. В качестве сырья были выбраны сварочные проволоки из сплавов A1-5Si / ER4043 и A1-5Mg / ER5356 диаметром 1,2 мм. Основные компоненты сплавов перечислены в таблице 1.

Таблица 1 – Химический состав алюминиевого сплава 6061-Т6, проволок ER4043 и ER5356 (мас. %)

Состав	Si	Fe	Cu	Mn	Mg	Al	
ER5356	0,25	0,4	0,1	0,25 ~ 0,2	4,5 ~ 5,5	осн.	
ER4043	4,5 ~ 6,0	0,8	0,3	0,05	0,05	осн.	
6061-T6	0,4 ~ 0,8	0,7	0,15 ~ 0,4	0,15	0,8 ~ 1,2	OCH.	

Параметры процесса WAAM-CMT, такие как скорость подачи проволоки (ϑ_{nn}) и скорость сварки (скорость перемещения сварочной горелки - ϑ_c) были определены на основе серии экспериментов по наплавке валиков. Для контроля стабильности сварочной ванны в дуговом режиме и демонстрации различий в течении расплавленного металла в ванне алюминиевого сплава при разных режимах использовалась высокоскоростная камера (рисунок 1). Для изучения проволочно-дугового аддитивного процессов производства В качестве плавящегося электрода была выбрана сварочная проволока из сплава ER5356 (Al-5Mg) диаметром 1,2 мм. Исследование влияния режима дуги на структуру и механические свойства образцов осуществлялась для режимов CMT-ADV (улучшенный метод СМТ), СМТ и СМТ-Р (импульсный метод СМТ). В процессе создания образцов методом аддитивного производства ϑ_{nn} и ϑ_c для первого слоя были установлены на уровне 7,0 м/мин и 0,6 м/мин соответственно, а для последующих слоев 9_{пп} уменьшалась до 5,5 м/мин. Образцы, изготовленные в режимах СМТ-ADV, СМТ и СМТ-Р, были обозначены соответственно, как 3-1-1, 3-1-2 и 3-1-3. Значения тока и напряжения, генерируемые в различных режимах дуги при фиксированных параметрах $\vartheta_{nn} = 5,5$ м/мин и $\vartheta_c = 0,6$ м/мин, составляли: СМТ-АДV - 92 А, 11,7 В; СМТ - 113 А, 13,6 В и СМТ-Р - 118 А, 17,3 В.

(a) t + 5 mc	t + 10 мс	t + 15 мс	(б) t + 5 мс	t + 10 мс-
Капля / Расплавленный металл	1,09 мм Капля Расплавленный металл	Капля Расплавленный металл	Капля / Расплавленный металл	1,26 мм Капля / Расплавленный металл
t + 15 мс	(в) t + 5 мс	t + 10 мс	t + 15 мс	
Капля Расплавленный металл	Капля / Расплавленный металл	1,48 мм на Капля Расплавленный металл	Капля / Расплавленный металл	Направления цвижения 1,2 мм

Рисунок 1 – Перенос капель при различных режимах дуги: (a) 3-1-1, режим СМТ; (б) 3-1-2, режим СМТ-АDV; (в) 3-1-3, режим СМТ-Р

Для изучения влияния подводимого тепла на структуру и механические свойства образцов, изготовленных методом WAAM-CMT, был использован следующий метод задания технологических параметров: в режиме CMT изменялась 9_{nn} и 9_c для регулировки тепловложения (параметры указаны в **таблице 2**, значение теплового воздействия определяется уравнением 1).

N⁰	Ток,	Напряжение,	θ _{пп} ,	θ _c ,	Расходаргона,	Тепловложение,
образца	Α	В	м/мин	м/мин	л/мин	Дж/мм
3-2-1	158	16,8	7,0	0,6	20	212,352
3-2-2	168	16,9	7,5	0,6	20	227,136
3-2-3	178	17,0	8,0	0,6	20	242,080
3-2-4	158	16,8	7,0	0,7	20	181,497
3-2-5	158	16,8	7,0	0,8	20	159,663
3-2-6	158	16,8	7,0	0,9	20	141,568

Таблица 2 – Технологические параметры изготовления сплава Al-5Mg методом WAAM-CMT при различном тепловложении

Формула расчета тепловложения выглядит следующим образом:

$$HI = \frac{\eta \times \sum_{i=1}^{n} \frac{l_i U_i}{n}}{\vartheta c} \qquad (1)$$

HI – тепловложение, I_i и U_i – ток и напряжение дуги для каждой заготовки, η – термический КПД СМТ режима (его значение принимается равным 0,8), ϑ_c – скорость сварки (м/мин). Согласно формуле, величина тепловложений возрастает с увеличением ϑ_{mi} или уменьшением ϑ_c .

Было разработано программное обеспечение для 3D-моделирования траектории движения горелки, которое используется совместно с операционной системой робота FANUC для планирования и реализации различных траекторий. В эксперименте в качестве присадочного материала использовалась проволока из сплава ER4043 (Al-5Si) диаметром 1,2 мм. 9_{пп} и 9_с установлены на 5,5 м/мин и 0,6 аддитивного производства м/мин, соответственно. Для сплава Al-5Si использовались три различные стратегии наплавки в режиме СМТ: «Линия 90°», при которой каждый последующий слой наплавляется под углом 90° по отношению к предыдущему, «СЛ 90°», в котором наплавка осуществляется по спирали с углом 90°, и «Линия 45°», при которой каждый последующий слой наплавляется под углом 45° (рисунок 2).

Рисунок 2 – Схемы наплавки сплава Al-5Si: (а) оборудование и программное обеспечение; (б) 4-1-1, Линия 90°; (в) 4-1-1, СЛ 90°; (г) 4-1-3, Линия 45°

Кроме того, для изучения влияния высоты наплавленного слоя на структуру и механические свойства сплава Al-5Si была выбрана стратегия наплавки СЛ 90°,

а размер образца после изготовления составлял 150 мм × 30 мм × 70 мм. Остальные технологические параметры WAAM-CMT установлены следующим образом: защитный газ 99,99 % аргон, скорость подачи газа 20 л/мин (Al-5Mg) и 25 л/мин (Al-5Si). Расстояние между соплом горелки и поверхностью заготовки составляло 15 мм. Приращение по оси Z и время ожидания между слоями были установлены на 2,0 мм и 90 с соответственно, а степень перекрытия наплавочных валиков составила 25 %. Перед проведением экспериментов подложки были очищены ацетоном и стальной щеткой, а проволоки содержались в сухом помещении.

Для сравнения различных параметров макроструктуры образцов из алюминиевого сплава рассматривалось продольное сечение по середине образца и определялись его размеры, как показано на рисунке 3.

 W_{расчетная}: расчетная ширина, мм

 S_{расчетная}: расчетная площадь, мм²

 S_{общ}: общая площадь, мм²

 S: расчетный коэффициент

 использования материала

 S= S_{расчетная} / S_{общ}

Рисунок 3 – Геометрические размеры образцов из алюминиевого сплава: (a) W_{расчетная} – расчетная ширина; (б) S_{расчетная} – расчетная площадь

В третьей главе «Влияние режима дуги, скорости подачи проволоки и скорости сварки на макроструктуру, микроструктуру и механические свойства сплава Al-5Mg, изготовленного методами WAAM-CMT», были подготовлены и исследованы образцы сплава Al-5Mg. Тепловложение является основным фактором, непосредственно влияющим на структуру и механические свойства сплавов. В соответствии с параметрами процесса, определенными в главе 2, и формулой расчета тепловложения (1), тепловложение для каждого режима дуги следующее: СМТ-Р (163,312 Дж/мм) > СМТ (122,944 Дж/мм) > СМТ-ADV (86,112 Дж/мм). Кроме того, согласно формуле расчета тепловложения, приведенной в главе 2, видно, что величина 9_{пп} пропорциональна величине тепловложения, а величина ϑ_c обратно пропорциональна величине тепловложения. В этой главе образцы сплавов Al-5Mg изготавливаются при различных режимах дуги и разных ϑ_{nn} и ϑ_{c} , чтобы определить их влияние на макроструктуру, микроструктуру и механические свойства. Сравнивая макроструктуру образцов сплава Al-5Mg, изготовленных при различных режимах дуги, показано, что поверхность образцов Al-5Mg, изготовленных при режиме СМТ является наиболее плоской и ровной, как показано на рисунок 4a₁ максимальное размер колебаний на поверхности образца составляет 1,34 мм. Поверхность образца Al-5Mg, полученного при режиме СМТ-Р характеризуется более высоким рельефом между слоями и низкой плоскостностью (максимальное размер колебаний 2,09 мм на рисунок 4а). Расчетная ширина и расчетное использование сформированного

поперечного сечения образца приведены в таблице 3. По сравнению с режимом СМТ-Р расчетная ширина ($W_{pacчетная}$) образца Al-5Mg в дуговых режимах СМТ-ADV и СМТ ниже, а расчетный коэффициент использования материала (S) выше, что составляет 13,51 мм / 87 % и 11,53 мм / 85 % соответственно. $W_{pacчетная}$ и S образца Al-5Mg в дуговом режиме СМТ-Р являются самыми большими и наименьшими - 14,17 мм / 81% соответственно. В дуговом режиме СМТ, $W_{pacчетная}$ увеличивается от 26,6 до 31,7 мм при увеличении скорости подачи проволоки, в то время как плоскостность поверхности образцов уменьшилась. Также с уменьшением скорости сварки расчетная $W_{pacчетная}$ увеличивается от 27,2 до 28,4 мм, а плоскостность поверхности образцов возрастает. Однако расчетный коэффициент использования материала изменяется незначительно, и все его значения превышают 81%.

Рисунок 4 -Макроструктура образца сплава Al-5Мg: при различных режимах дуги: (а) 3-1-1; (а₁) 3-1-2; (а₂) 3-1-3; (б) 3-2-1; (б₁) 3-2-2; (б₂) 3-2-3; (в) 3-2-4; (в₁) 3-2-5; (в₂) 3-2-6;

Таблица 3 – Геометрические размеры образца сплава Al-5Mg

Nº	Режим дуги /	Коэффициент использования	Расчетная	Расчетная плошаль
образца	Дж/мм	материала, %	ширина, мм	мм ²
3-1-1	CMT-ADV	87	13,51	788,98
3-1-2	CMT	85	11,53	723,85
3-1-3	CMT-P	81	14,17	793,23
3-2-1	212,352	81	26,6	717,4
3-2-2	227,136	83	28,5	771,9
3-2-3	242,080	83	31,7	638,81
3-2-4	181,497	82	28,4	704,3
3-2-5	159,663	81	27,8	661,5
3-2-6	141,568	84	27,2	647,5

Анализ фазового состава образца сплава Al-5Mg показывает, что структура сплавов Al-5Mg после WAAM-CMT в основном представляет собой смесь α-фазы (Al) и β-фазы (Al₃Mg₂) (рисунок 5). Предыдущий наплавленный слой повторно

нагревается следующим слоем в образцах, изготовленных методом WAAM-CMT, что приводит к появлению двух областей – границы между наплавленными слоями (ГМС) и области внутри слоя (OBC). Поры и трещины можно увидеть в ГМС или вдоль межслойной границы, и эти дефекты напрямую влияют на механические свойства. Размер пор обычно меньше 33,535 мкм, а длина трещин достигает 696,154 мкм. Кроме того, как показано на рисунке 6, существуют также очевидные различия в микроструктуре ГМС и OBC. Микроструктура в области ГМС образца, представленная на рисунке 6в, содержит небольшое количество столбчатой структуры и большое количество равноосных зерен, в то время как на рисунках 6б и 6г большинство зерен в OBC имеют крупные размеры и столбчатое строение. При этом небольшое количество удлиненных столбчатых зерен распределено вдоль границы между слоями. В то же время, микроструктура и размеры этих двух областей сильно зависят от режима дуги, а также 9_{пп} и 9_с. При переходе от режимов дуги CMT-ADV и CMT на режим CMT-Р тепловложение увеличивается с 145,02 до 195,2 Дж/мм. В связи с большим тепловложением размер зерен образцов сплава Al-5Mg увеличивается с 59,9 - 106,9 до 83,8 - 115,1 мкм в ОВС и с 31,4 - 89,4 до 58,1 - 103,9 мкм в ГМС при изменении режима дуги. Кроме того, в режиме СМТ, количество тепловложения увеличивается с увеличением 9_{пп} или уменьшением 9_с. В таблицах 2 и 4 показано, что размер зерен увеличивается в диапазоне от 56,1 - 112,2 до 56,4 - 117,9 мкм в ОВС, от 47,2 - 90,4 до 50,2 - 102,5 мкм в ГМС, соответственно, по мере увеличения 9_{пп} с 7,0 до 8,0 м/мин, при постоянном значении $\vartheta_c = 0,6$ м/мин. Сравнение размеров зерен при изменении значения ϑ_c и сохранении других параметров неизменными показывает, что увеличение ϑ_c вызывает уменьшение тепловложения в наплавляемые слои, что является следствием более быстрого затвердевания и охлаждения сварочной ванны, и значительно замедляет тенденцию роста зерна. Размер равноосных зерен колеблется от 54,5 - 107,7 до 42,9 - 88,7 мкм в ОВС, от 43,2 - 89,3 до 37,7 - 77,6 мкм в ГМС при изменении 9_с с 0,7 м/мин до 0,9 м/мин, ширина столбчатого зерна составляет не более 86,5 мкм в ОВС при $\vartheta_c = 0,7$ м/мин.

Рисунок 5 – Результаты рентгеноструктурного анализа образцов сплавов Al-5Mg и Al-5Si, изготовленных методом WAAM-CMT

Рисунок 6 – Микроструктура образца сплава Al-5Mg, изготовленного методом WAAM-CMT: микроструктуры границы между слоями (в) и области внутри слоя (г)

Таблица 4 – Размер зерен	н образца сплава А	I-5Mg в ГМС / ОВС

N⁰	Режим дуги/	Область внутри	Границы между
образца	Тепловложение, Дж/мм	слоя, мкм	слоями, мкм
3-1-1	CMT-ADV	59,9-106,9	31,4-89,4
3-1-2	CMT	75,9-111,6	54,6-91,3
3-1-3	CMT-P	83,8-115,1	58,1-103,9
3-2-1	212,352	56,1-112,2	47,2-90,4
3-2-2	227,136	56,4-117,9	48,1-93,2
3-2-3	242,080	59,1-119,5	50,2-102,5
3-2-4	181,497	54,5-107,7	43,2-89,3
3-2-5	159,663	44,3-92,4	40,5-82,7
3-2-6	141,568	42,9-88,7	37,7-77,6

На рисунке 7а, б, в показаны графики изменения микротвердости образцов вдоль высоты наплавки при различных режимах дуги и ϑ_{nn} и ϑ_c . При трех различных режимах дуги CMT-ADV, CMT и CMT-P микротвердость образца в режиме CMT-ADV выше, чем в двух других режимах, а средние значения микротвердости вдоль вертикального направления составляют 75,71 ± 0,74 HV, 71,89 ± 0,72 HV и 70,11 ± 0,75 HV, соответственно. При изменении ϑ_{nn} с 7,0 до 8,0 м/мин средняя твердость уменьшается приблизительно с 76,20 ± 0,71 до 70,36 ± 0,75 HV. В режиме CMT при изменении ϑ_{nn} с 7,0 м/мин на 8,0 м/мин средняя твердость снизилась с 76,20 ± 0,71 до 70,36 ± 0,75 HV. При изменении ϑ_c , как видно из рисунка 7в, изменение микротвердости составляет около 2 HV. Таким образом, можно заключить, что микротвердость образцов изменяется при изменении основных параметров наплавки, таких как режим дуги, ϑ_{nn} и ϑ_c .

Рисунок 7 – Распределение микротвердости образца сплава Al-5Mg, изготовленного методом WAAM-CMT: (а) микротвердость при различных режимах дуги (б) микротвердость при различных ϑ_{nn} ; (в) микротвердость при различных ϑ_{c}

Результаты изучения влияния режима дуги, ϑ_{nn} и ϑ_{c} на механические свойства образцов Al-5Mg показаны в таблице 5. Из таблицы видно, что существуют различия в механических свойствах образцов, вырезанных из разных частей детали (области 1, 2, 3 и 4 на рисунке 8). При сравнении прочности образцов, изготовленных при различных режимах дуги, значения условного предела прочности (σ_B), предела текучести ($\sigma_{0,2}$) и относительного удлинения (δ) для сплава CMT-ADV составляют приблизительно σ_B : ~ 248,2 МПа, $\sigma_{0.2}$: ~ 110,1 МПа и δ: ~ 20,7 % в образцах, вырезанных из области 1 (рисунок 8б). С изменением $(CMT-ADV \rightarrow CMT \rightarrow CMT-P)$ прочность режима луги уменьшается, a относительное удлинение увеличивается. В отличие от сплава, произведенного в режиме CMT-ADV, сплав в режиме CMT показывает снижение $\sigma_{\rm B}$ и $\sigma_{0.2}$ с улучшением пластичности. Интересно отметить, что по сравнению со сплавом в режиме СМТ относительное удлинение сплава в режиме СМТ-Р увеличивается на 10,3 % при снижении прочности. При сравнении предела прочности образцов, изготовленных в режиме CMT с различными условиями ϑ_{nn} and ϑ_{c} , σ_{B} этих образцов составляет около 255 \pm 5 МПа. σ_{B} имеет тенденцию к увеличению с увеличением 9_с с 252,0 МПа до 262,0 МПа в области 3 и с 249,0 до 259,0 МПа в области 4 (рисунок 8в). Однако по отношению к относительному удлинению наблюдается тенденция к снижению с 26,4 до 23,2 % в области 3 и с 24,4 до 21,6 % в области 4 с увеличением ϑ_c . Кроме того, также наблюдается, что увеличение ϑ_m приводит к снижению $\sigma_{\rm B}$ на 1 ~ 3 %, снижению $\sigma_{0,2}$ на 8 ~ 10 % и увеличению относительного удлинения на 10 ~ 17 % как в области 3, так и в области 4. В целом, из полученных результатов механических испытаний на растяжение следует, что детали из сплава Al-5Mg, изготовленного по методу WAAM-CMT, имеют лучшие характеристики, чем детали из литого сплава Al-5Mg (σ_B: ~ 202,35 MПa, σ_{0.2}: ~ 87,16 МПа, δ: ~ 23,78 %). Все образцы имеют структуру вязкого излома, характеризующуюся наличием сетки из ямок с большом количеством частиц второй фазы, распределенных внутри этих ямок (рисунок 8а).

N⁰		Область 1			Область 2	
образца	σ _в , МПа	σ0,2,МПа	δ, %	σ _в , МПа	σ _{0,2} ,МПа	δ, %
3-1-1	248,2±5	$110,1\pm 5$	20,7±1	215,5±3	105,6±6	$11,8\pm0,5$
3-1-2	245,6±8	107,6±7	22,4±0,6	212,5±5	101,3±4	$10,6\pm0,4$
3-1-3	235,6±3	96,4±6	24,7±0,3	209,3±5	95,6±6	$9,7{\pm}0,8$
N⁰		Область 3			Область 4	
образца	σ _B , MΠa	σ₀,₂,МПа	δ, %	σ _В , МПа	σ _{0,2} ,МПа	δ, %
3-2-1	257,7±5	128±3	20,2±1	252,0±6	127±4	23,6±0,6
3-2-2	253,7±7	127±1	23,1±0,5	250,3±10	126±7	24,5±1
3-2-3	251,0±4	115±7	25,6±1,2	249,5±4	115,7±8	26,2±0,8
3-2-4	252,0±8	119±4	26,4±1	249,0±6	128±3	24,4±0,6
3-2-5	257,0±3	128±3	25,2±0,8	255,0±5	130±9	23,2±0,4
3-2-6	262,0±5	131±5	23,2±0,2	259,0±7	141±5	$21,6\pm0,5$

Таблица 5 – Механические свойства образцов сплава Al-5Mg, изготовленного методом WAAM-CMT

Рисунок 8 – (а) поверхность излома; (б, в) модели расположения образцов для вырезания из образца сплава Al-5Mg

В четвертой главе «Влияние стратегий наплавки и высоты наплавки на макроструктуру, микроструктуру и механические свойства сплава Al-5Si, изготовленного методом WAAM-CMT» изучены структурные и механические свойства сплавов Al-5Si.

Макроструктура сплавов Al-5Si, полученных с использованием стратегии Линия 90° в режиме СМТ, характеризуется большой рельефностью и низкой плоскостностью (максимальное размер колебаний 5,18 мм на рисунок 9а), и значения $W_{pacчетная}$ и S для образца составляет, соответственно, 31,7 мм и 83 %. Однако при изменении стратегии наплавки на стратегии Линия 45° качество поверхности образца Al-5Si улучшается, и значение $W_{pacчетная}$ изменяется до 26,6 мм с расчетным коэффициентом использования материала (S) 81 %. Кроме того, с увеличением расстояния от подложки ширина образцов увеличивается с 26,5 до 29,6 мм, а максимальный размер колебаний поверхности образца Al-5Si более 85 %, достигая максимального значения 90 % в среднем регионе. С учетом этих результатов можно сказать, что стратегии наплавки и высоты наплавки в режиме СМТ напрямую влияют на эффективность использования материала и оказывают большое влияние на поверхность образца Al-5Si (рисунок 9г).

Рисунок 9 - Макроструктура образцов сплава Al-5Si при различных траекториях наплавки: (a) 4-1-1, Линия 90°; (б) 4-1-2, СЛ 90°; (в) 4-1-3, Линия 45°; (г) 4-2, образец сплава Al-5Si

		Коэффициент	Расчетная	Расчетная
№ образца	Стратегии/высота	использования	ширина,	площадь,
	Наплавки	материала, %	MM	MM ²
4-1-1	Линия 90°	83	31,7	638,81
4-1-2	СЛ 90°	83	28,5	771,9
4-1-3	Линия 45°	81	26,6	717,4
4-2	Нижняя область	86	26,5	768,8
4-2	Средняя область	90	28,2	732,9
4-2	Верхняя область	87	29,6	702,8

	Таблица 6 – Геомет	рические размеры	образцов с	сплава Al-5Si
--	--------------------	------------------	------------	---------------

Известно, что наиболее важными параметрами, влияющими на кристаллизацию, являются температурный градиент (G) и скорость затвердевания (R). Более того, параметр G×R (представляющий скорость охлаждения) определяет измельченность микроструктуры, где с увеличением G×R ожидается последовательное формирование более мелкозернистых структур. Для оценки размера зерна измеряется и рассчитываются пространство между дендритными рукавами, или клетчатость зерна, и скорость охлаждения сплавов Al-5Si. Средний размер длины (d) впоследствии вычисляется с использованием уравнения 2, и характерная скорость охлаждения может быть выражена эмпирической формулой (уравнение 3). Уравнения 2 и 3 приводятся ниже:

$$d = \frac{L_s N_c + L_c N_s}{2N_c N_s} (2); \quad R = \left(\frac{d}{B}\right)^{\frac{-1}{n}} (3)$$

где L_s – длина в мкм и N_s – количество промежутков между осями дендритов, L_c – длина ячеистых зерен и N_c – количество ячеистых зерен, R – скорость охлаждения (K/c), а для сплава Al-5Si константы B и n составляли 50 мм (K/c)ⁿ и 0,33.

Результаты показывают, что средний размер d образцов Al-5Si в режиме CMT составляет около 12,34 мкм в процессе Линия 90°, 9,84 мкм в процессе CЛ 90° и 9,23 мкм в процессе Линия 45°. Соответствующие скорости охлаждения показывают возрастающий тренд, а именно: Линия 90°: 69,92 К/с, СЛ 90°: 161,55 К/с и Линия 45°: 179,37 К/с. Средний размер зерна в области (ГМС/ОВС) образца сплавов Al-5Si составляет 62,62 мкм в процессе Линия 90°, 52,86 мкм в процессе СЛ 90°, 43,04 мкм в процессе Линия 45°, соответственно, что измеряется методом обратного рассеяния электронов (ДОРЭ). Как видно по полюсным фигурам (100) на рисунке 10, равноосные зерна, появляющиеся вдоль ГМС, удлинены в соседних OBC (рисунок 10а, б, в), и динамическая рекристаллизация с различной степенью происходит во всех наплавленых образцах (рисунок 10а₁, б₁, в₁). В частности,

степень динамической рекристаллизации сплава Al-5Si при стратегии Линия 45° является наиболее интенсивной. Этот результат дополнительно подтверждает, что образцы, полученные при стратегии Линия 45°, имеют наименьший размер зерна среди трех стратегий. Что касается микроструктуры образцов по высоте наплавки, в нижних областях в данном исследовании средний размер зерен составляет приблизительно 8,25 мкм в ГМС и 8,84 мкм в ОВС на протяжении 7 нанесенных слоев при средней скорости охлаждения 211,36 К/с. В отличие от этого в верхних областях образца наблюдается более высокая средняя скорость охлаждения, составляющая 242,60 К/с, что сопровождается уменьшением размера зерен (d: 7,95 мкм в ГМС и 8,38 мкм в OBC). Кроме того, согласно результатам рентгеноструктурного анализа (XRD), преобладающими фазами в образцах Al-5Si являются α-Al, фаза Si и интерметаллидная фаза Al₉Si (рисунке 5) и с увеличением расстояния от подложки дендритная морфология фазы α-Al постепенно превращается в сотоподобные зерна как внутри слоев, так и между ними. Эвтектическая фаза Si значительно укрупнена и имеет сферическую или квадратную форму вдоль границы зерен (рисунке 11). Результаты исследования различных микроструктур показывают, что при постоянных параметрах процесса изменение только стратегии и высоты наплавки приводит к различной накопленной теплоте в слоях. При изменении стратегии с Линия 90° на Линия 45° или увеличении высоты наплавки заметно ускоряются процессы затвердевания и охлаждения ванны расплава, что приводит к получению более мелкозернистых микроструктур.

Рисунок 10 - Анализ микроструктуры образцов сплава Al-5Si с помощью ДОРЭ, изготовленного методом WAAM-CMT при различных траекториях электродугового выращивания: (a, a₁) 4-1-1, Линия 90°; (б, б₁) 4-1-2, СЛ 90°; (в, в₁,) 4-1-3, Линия 45°

Рисунок 11 – Микроструктура образца сплава Al-5Si: (a, a₁) верхняя область, (б, б₂) средняя область, (в, в₁) нижняя область

Результаты испытаний микротвердости показывают, что вдоль высоты наплавки образцов Al-5Si, изготовленных по стратегии Линия 45° среднее значение микротвердости составляет 55,7 ± 0,64 HV, при стратегии СЛ 90° - 51,7 0,60 HV, и при стратегии Линия 90° - 48,8 \pm 0,64 HV. По сравнению со +средним значением микротвердости образца СЛ 90°, значение увеличивается на 14,1% при использовании стратегии Линия 45°. В то же время, как видно из рисунка 13, значение микротвердости периодически изменяется в зависимости от расстояния от подложки. Среднее значение микротвердости верхней части образца составляет 50,7 ± 0,75 HV, среднее значение микротвердости средней части образца - 48,5 ± 0,77 HV и среднее значение микротвердости нижней части образца - 47,3 ± 0,70 HV (рисунок 13а). Можно сделать вывод, что изменение стратегии электродугового выращивания и расстояние от подложки может существенно влиять на микротвердость сплава WAAM-CMT Al-5Si. В разных участках образца размер зерен в ГМС меньше, чем в областях внутри слоя, и, следовательно, микротвердость относительно выше (рисунок 126_{1} , б2). Аналогичным образом, в верхних областях образца значения микротвердости, будь то в ГМС или ОВС, выше из-за образования более мелких зерен (рисунок 12б₃, б₄), что обусловлено более высокой скоростью охлаждения и меньшим тепловым накоплением по сравнению со средней областью. Однако значение микротвердости выше в области, расположенной близко к подложке. Это в основном связано с теплопроводностью подложки, в результате чего образец в этой области испытывает более высокую скорость охлаждения. При этом наличие пор приводит к снижению значений микротвердости, а наличие мелкозернистой микроструктуры увеличивает эти значения, особенно в ГМС (рисунок 13б).

Рисунок 12 – Распределение микротвердости образцов сплава Al-5Si, изготовленных методом WAAM-CMT: (а) по высоте наплавки образца: в OBC (б₁) и ГМС (б₂), в верхней (б₃) и нижней(б₄) областях

Рисунок 13 – Распределение микротвердости образцов сплава Al-5Si, изготовленных методом WAAM-CMT: (а) по ширине образца; (б) по высоте образца

Результаты механических испытаний на растяжение образцов, полученных при различных стратегиях электродугового выращивания, показывают (таблица 7), что по сравнению с образцами, изготовленными по стратегии Линия 90° ($\sigma_{\rm B}$ ~ 205,2 МПа, $\sigma_{0,2} \sim 132,1$ МПа, $\delta \sim 11,6$ %), образцы, выращенные по траектории Линия 45° обладают отличной прочностью, но меньшим относительным удлиненим ($\sigma_{\rm B} \sim 223.2 \text{ MI}$ а, $\sigma_{0.2} \sim 141.8 \text{ MI}$ а, $\delta \sim 10.6 \%$) из-за их мелкозернистой структуры, вызванной более высокой скоростью охлаждения. Точно так же из-за более мелкозернистой структуры, предел прочности образцов увеличивается по мере увеличения расстояния от подложки (рисунок 14в) на 6,6 МПа с 205,6 до 212,2 МПа. Предел текучести также увеличивается с 130,9 до 134,4 МПа, при этом относительное удлинение уменьшается на 1,3 %. Анализ результатов растяжения показывает, что увеличение высоты наплавки улучшает пластические свойства сплавов Al-5Si. Кроме того, среди всех образцов отмечаются более высокие значения σ_{B} , $\sigma_{0.2}$ и более низкое значение относительного удлинения в области 5, по сравнению с областью 6 (рисунок 146). Фрактография поверхности разрушения образцов после растяжения показывает, что деформация происходила по вязкому механизму. В ямках встречаются крупные частицы второй фазы (Al₉Si), и на поверхности разрушения видно большое число пор (рисунок 14а).

Рисунок 14 – (а) поверхность излома; (б, в) расположение образцов сплава Al-5Si Таблица 7 – Механические свойства образцов сплава Al-5Si, изготовленного метолом WAAM-CMT

	Merodom wAAM-CMI						
No	Область 5				Область 6		
образца	σ _B , ΜΠa	σ₀,₂,МПа	δ, %	σ _B , MΠa	$σ_{\rm B}$, ΜΠα $σ_{0,2}$, ΜΠα		
4-1-1	$208,7\pm2,9$	130,9±3	11,4±1,6	201,6±6	133,2±2	11,8±1,6	
4-1-2	226,4±10	134,4±3	$10,7\pm0,8$	214,6±3	148,5±5	11,3±0,6	
4-1-3	228,2±1,4	143,3±7	$10,3\pm0,7$	218,1±2 140,3±2 1		$10,8{\pm}1,8$	
05	Область 7		Область 8				
Ооразец	σ _B , ΜΠa	σ _{0,2} ,МПа	δ, %	σ _B , MΠa	σ _{0,2} ,МПа	δ, %	
Нижняя	205,6±4	130,9±5	11,3±0,3				
область							
Средняя	$208,7\pm5$	130,8±3	10,8±0,2	207 2+6	128 5+4	11 2+0 5	
область				207,2±0	120,3±4	$11,2\pm0.3$	
Верхняя	212,2±8	134,4±4	10,1±0,5				
область							

На рисунке 15 приведены изображения поверхностей разрушения образцов сплава Al-5Si, полученных с помощью оптической и сканирующей электронной микроскопии (рисунок 14б). Образцы изготовлены при помощи стратегии наплавки Линия 45°. Образцы, вырезанные из заготовки в областях 5 и 6 демонстрируют признаки разрушения смешанного типа. Результаты показывают, что в областях внутри слоя разрушение происходит по внутризеренному механизму (транскристаллитное разрушение), в то время как в области границы между слоями разрушение происходит по границам зерен (интеркристаллитное разрушение). При этом на поверхности разрушения образцов наблюдаются пустоты, поры и трещины. В ГМС наблюдается большее количество пор и микротрещин, с более крупными размерами, по сравнению с OBC, что указывает на то, что с большей вероятностью разрушение произойдет в этой области (рисунок 156, 6_1 , 6_2 и 6_3). При деформации по мере того, как микротрещины, которое сопровождается большим количеством отклоняющихся микротрещин.

Рисунок 15 – Фрактография поверхности образцов сплава Al-5Si, наплавленных по Линия 45°

B пятой «Апробация главе результатов экспериментальных исследований» представлены примеры применения результатов работы диссертационной В производственных условиях научно-И образовательном процессе.

ЗАКЛЮЧЕНИЕ

В ходе исследования с использованием методов физики конденсированного состояния установлено влияние различных процессов наплавки (режим дуги, скорость подачи проволоки (ϑ_{nn}), скорость сварки (ϑ_c), стратегия наплавки, высота наплавки) на структуру и механические свойства сплавов Al-5Mg и Al-5Si, изготовленных методом проволочно-дугового аддитивного производства на основе холодного переноса металла. На основании полученных результатов были сделаны следующие выводы:

1. Установлено, что величина тепловложения в наплавляемые слои сплава Al-5Mg уменьшается в следующих случаях: при переходе от режимов СМТ-Р, СМТ к СМТ-ADV на 47,3 %, при уменьшении скорости подачи проволоки с 8,0 до 7,0 м/мин на 12,3 % и увеличении скорости сварки с 0,7 до 0,9 м/мин на 21,9 %. Это приводит к уменьшению расчетной ширины образца на 5,1 мм (при уменьшении скорости подачи проволоки), расчетный максимальный размер колебаний поверхности образца уменьшается на 1,27 мм (при увеличении скорости сварки), а также повышает коэффициент использования материала до 87 % (в режиме CMT-ADV).

2. Микроструктурный анализ сплава Al-5Mg показал, что независимо от режима дуги, а также ϑ_{nn} и ϑ_c , в сплаве Al-5Mg образуется α -фаза (Al) и вторичная β -фаза (Al₃Mg₂). В связи с термическим воздействием дуги в сплаве образуются 2 характерные области: граница между наплавленными слоями (ГМС) и область внутри слоя (OBC). Размер зерна в ГМС меньше, чем в OBC на 22,17%, что связано с более высокой скорости охлаждения ГМС под тепловым воздействием дуги. В области ГМС присутствуют дефекты: размеры пор обычно составляют менее 33,535 мкм, а длина трещин достигает 696,154 мкм.

3. Показано, что механические свойства сплава Al-5Mg незначительно увеличиваются при смене режимов наплавки от СМТ-Р, СМТ к СМТ-ADV: предел прочности увеличивается на 12,6 МПа, предел текучести — на 13,7 МПа, а микротвердость - на 5,6 HV, что обусловлено снижением величины тепловложения на и уменьшением размера зерен в ГМС с 58,1 - 103,9 до 31,4 - 89,4 мкм, а в ОВС с 83,8 - 115,1 до 59,9 - 106,9 мкм.

4. Установлено, что при увеличении скорости аддитивной наплавки с 0,7 до 0,9 м/мин или уменьшении скорости подачи проволоки с 8,0 до 7,0 м/мин при аддитивном производстве сплава Al-5Mg тепловложение снижается с 242 Дж/мм до 142 Дж/мм. Это приводит к уменьшению размеров зерен сплава в ГМС с 50,2 - 102,5 до 37,7 - 77,6 мкм, а в OBC: с 59,1 - 119,5 до 42,9 - 88,7 мкм, что, в свою очередь, приводит к увеличению микротвердости на 6 HV, увеличению предела прочности на 4 % и увеличению предела текучести на 17,6 %.

5. Выявлено влияние стратегии наплавки и высоты наплавляемой заготовки при производстве сплава Al-5Si методом WAAM-CMT на величину скорости охлаждения. При стратегиях наплавки Линия 45°, СЛ 90° и Линия 90° скорости охлаждения составляют 179,37 К/с; 161,55 К/с; 69,92 К/с, соответственно. Установлено, что скорость охлаждения увеличивается с 211,36 до 242,6 К/с при переходе от нижней области к верхней.

6. В результате анализа микроструктуры сплава Al-5Si установлено наличие фаз α-Al, Si и Al₉Si независимо от режима дуги и параметров наплавки. Фаза α-Al изменяет дендритную морфологию на сотовые зерна с удалением от подложки. Эвтектическая Si-фаза увеличивается и формирует сферические или квадратные образования по границам зерен.

7. Показано, что из трех стратегий наплавки, Al-5Si сплав, обработанный по стратегии Линия 45°, демонстрирует минимальный размер зерен (43 мкм), а также максимальные значения предела прочности ($228,2 \pm 1,4$ МПа) и предела текучести ($143,3 \pm 7$ МПа). В верхней области образца наблюдается увеличение предела прочности на 6,6 МПа и предела текучести на 3,5 МПа по сравнению с нижней областью, что обусловлено более высокой скоростью охлаждения и меньшим размером зерна.

8. С помощью фрактографии поверхности излома установлено, что, вне зависимости от режима наплавки, сплав Al-5Mg характеризуется вязким механизмом разрушения, а сплав Al-5Si разрушается по смешанному типу:

транскристаллитное разрушение преобладает в OBC, а интеркристаллитное – в ГМС.

9. Научно-технологические результаты диссертационной работы по разработке процессов проволочно-дугового аддитивного производства на основе холодного переноса металла для получения изделий из алюминиевых сплавов были апробированы и использованы на производственных предприятиях Китайской Народной Республики.

СПИСОК ОСНОВНЫХ ОПУБЛИКОВАННЫХ РАБОТ ПО ТЕМЕ ДИССЕРТАЦИОННОГО ИССЛЕДОВАНИЯ

Статьи, опубликованные в рецензируемых научных изданиях, определенных ВАК РФ и индексируемых в международных базах данных Scopus и Web of Science

1. Chen, X. Cold metal transfer (CMT) based wire and arc additive manufacture (WAAM) system [Text] / X. Chen, C. Su, Y. Wang, A. N. Siddiquee, K. Sergey, S. Jayalakshmi, R. A. Singh // Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. – 2018. – Vol. 12. – Р. 1278-1284. (0,438 п.л./ 0,0625 п.л.). (Scopus)

2. Su, C. Effect of heat input on microstructure and mechanical properties of Al-Mg alloys fabricated by WAAM [Text] / **C. Su**, X. Chen, C. Gao, Y. Wang // Applied Surface Science. – 2019. – Vol. 486. – Р. 431-440. (0,625 п.л./ 0,156 п.л.). (Scopus)

3. Wang, Y. In-situ wire-feed additive manufacturing of Cu-Al alloy by addition of silicon [Text] / Y. Wang, X. Chen, S. Konovalov, C. Su, A. N. Siddiquee, N. Gangil // Applied Surface Science. – 2019. – Vol. 487. – Р. 1366-1375. (0,625 п.л./ 0,104 п.л.). (Scopus)

4. Wang, Y. Microstructure and Mechanical Properties of Cu-6.5% Al Alloy Deposited by Wire Arc Additive Manufacturing [Text] / Y. Wang, C. Su, S. Konovalov // Metallography, Microstructure, and Analysis. $-2021. - Vol. 10. - P. 634-641. (0,5 \pi.\pi./ 0,167 \pi.\pi.).$ (Scopus)

5. Su, C. Effect of deposition strategies on the microstructure and tensile properties of wire arc additive manufactured Al-5Si alloys [Text] / **C. Su**, X. Chen, S. Konovalov, R. Arvind Singh, S. Jayalakshmi, L. Huang // Journal of Materials Engineering and Performance. – 2021. – Vol. 30. – P. 2136-2146. (0,688 п.л./ 0,115 п.л.). (Scopus)

6. Su, C. Effect of depositing torch angle on the first layer of wire arc additive manufacture using cold metal transfer (CMT) [Text] / C. Su, X. Chen // Industrial Robot: the international journal of robotics research and application. -2019. - Vol. 46. - P. 259-266. (0,438 п.л./ 0,219 п.л.). (Scopus)

7. Huang, L. Modeling and optimization of solidification cracking of 4043 aluminum alloys produced by cold metal transfer welding [Text] / L. Huang, X. Chen, S. Konovalov, M. Wang, C. Su, L. Han, Y. Wang // Journal of Materials Engineering and Performance. – 2022. – Vol. 76. – P. 1123-1139. (1,063 п.л./ 0,152 п.л.). (Scopus)

8. Су, Ч. Влияние режима дуги на микроструктуру и микротвердость Al-5Mg сплава при проволочно-дуговом аддитивном производстве [Текст] / **Ч.** Су, С. Чэн, Х. Хао // Вестник Сибирского государственного индустриального университета. –

2023. – №. 4. – С. 39 - 45. (0,438 п.л./ 0,146 п.л.).

9. Су, Ч. Микроструктура и механические свойства проволочно-дугового аддитивного производства сплава A1 – 5Si [Teкст] / **Ч.** Су, С. Чэн, Х. Хао // Вестник Сибирского государственного индустриального университета. – 2024. – №. 1. – С. 120 - 126. (0,438 п.л./ 0,146 п.л.).

Результаты интеллектуальной деятельности

1. Пат. 202110633084.2 Китай. Синергетический метод и устройство для лазерно-дугового композитного аддитивного производства с использованием металлической проволоки и порошка металла [Текст] / Ч. Су, Я. Ван, Ц. Ли, С. Чэнь, С.В. Коновалов; заявитель и патентообладатель Wenzhou Jinghe Zhizao Technology Co., Ltd. - № 202110633084.2; заявл. 07.06.21; опубл. 17.01.23, Бюл. – 16 с. (1 п.л./ 0,2 п.л.).

2. Пат. 202111387087.9 Китай. Устройство и способ аддитивного производства регулируемых компонентов с несколькими источниками тепла [Текст] / С. Чэнь, Ч. Су; заявитель и патентообладатель Университет Вэньчжоу. - № 202111387087.9; заявл. 22.11.21, опубл. 25.02.22, Бюл. – 17 с. (1,063 п.л./ 0,531 п.л.).

3. Пат. 202110062773.2 Китай. Способ изготовления дуплексно-мартенситной нержавеющей стали тросовой сварочной проволокой СМТ дугового аддитивного производства [Текст] / С. Чэнь, Ч. Су, Ц. Чжан; заявитель и патентообладатель Университет Вэньчжоу. - № 202110062773.2; заявл. 18.01.21, опубл. 04.06.21, Бюл. – 8 с. (0,5 п.л./ 0,167 п.л.)

4. Пат. 201710251322.7 Китай. Аппарат ультразвуковой аргонодуговой сварки [Текст] / С. Чэнь, **Ч. Су**; заявитель и патентообладатель Университет Вэньчжоу. - № 201710251322.7; заявл. 18.04.17; опубл. 07.04.20, Бюл. – 10 с. (0,625 п.л./ 0,313 п.л.)

В прочих изданиях

1. Су, Ч. The effect of deposition height on the composition, microstructure, and microstructure of wire arc additive manufactured Al-5Si alloys [Текст] / **Ч.** Су, С.В. Коновалов, Л. Хуан // «Металлургия: технологии, инновации, качество»: сб. трудов XXIII Международной научно-практической конференции. – Новокузнецк, 2022. – С. 18-21. (0,25 п.л./ 0,083 п.л.).

2. Су, Ч. The macroscopic morphology of wire arc additive manufactured Al-5Mg alloys [Текст] / **Ч.** Су, С.В. Коновалов, Л. Хуан // «Технические науки: проблемы и решения»: сб. статей LXVII Международной научно-практической конференции. – Москва, 2022. – С. 79-83. (0,313 п.л./ 0,104 п.л.).

3. Су, Ч. Comparing the mechanical properties of wire arc additive manufactured Al-5Mg alloys in different arc modes [Текст] / Ч. Су, С.В. Коновалов // «Advances in Science and Technology»: сб. статей XLIX Международной научно-практической конференции. – Москва, 2022. – С. 167-169. (0,188 п.л./ 0,094 п.л.).

4. Су, Ч. The distribution of micro-hardness WAAM Al-5Mg alloys in various arc modes [Текст] / Ч. Су, С.В. Коновалов, Л. Хуан // «Молодые исследователи за устойчивое развитие»: сб. статей III Международной научно-практической конференции. – Петрозаводск, 2022. – С. 43-46. (0,25 п.л./ 0,083 п.л.).

5. Су, Ч. The macroscopic morphology of wire arc additive manufactured Al-5Si alloys using different deposition strategies [Текст] / **Ч.** Су, С.В. Коновалов, Л. Хуан // «Всероссийские научные чтения»: сб. статей Всероссийской научно-практической конференции. – Петрозаводск, 2022. – С. 40-43. (0,25 п.л./ 0,083 п.л.).

6. Су, Ч. Исследование функционального сплава 4CR13-2CR18 полученного методом холодного переноса металлов [Текст] / Ч. Су, С.В. Коновалов, С. Чэнь // «Проблемы прочности и пластичности материалов в условиях внешних энергетических воздействий»: сб. трудов XXII Международной научно-практической конференции. – Новокузнецк, СибГИУ, 2021. – С. 113–114. (0,125 п.л./ 0,042 п.л.).

7. Су, Ч. The composition and microstructure of wire arc additive manufactured Al-5Mg alloys using variable arc mode [Текст] / **Ч.** Су, С.В. Коновалов, Л. Хуан // «Современные материалы техника и технология»: сб. статей XII Международной научно-технической конференции. – Курск, 2022. – С. 12–15. (0,25 п.л./ 0,083 п.л.).

8. Су, Ч. The mechanical properties of WAAM-CMT Al-5Si Alloy [Текст] / **Ч.** Су, С.В. Коновалов // «Материалы во внешних полях»: сб. трудов XII Международный онлайи симпозиума. – Новокузнецк, 2023. – С. 113. (0,0625 п.л./ 0,0313 п.л.).

9. Су, Ч. Влияние скорости подачи проволокина макроскопическуюю морфологию сплавов Al-5Mg [Teкст] / Ч. Су, Х. Хао, С.В. Коновалов // «Наука. Образование. Технологии: тенденции современного развития»: сб. статей II Международной научно-практической конференции. – Петрозаводск , 2024. – С. 201-205. (0,313 п.л./ 0,104 п.л.).