СОВЕРШЕНСТВОВАНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ПРОЦЕССА КАТАЛИТИЧЕСКОГО РИФОРМИНГА БЕНЗИНОВ СО СТАЦИОНАРНЫМ СЛОЕМ КАТАЛИЗАТОРА Тажмуликов Д.Б.¹, Пчелинцева И.В.^{1,2}, Чузлов В.А.¹

Научные руководители: к.т.н., доцент Е.С. Чернякова, д.т.н., профессор Е.Н. Ивашкина ¹Национальный исследовательский Томский политехнический университет, г. Томск, Россия ²НОУ «Академия инжиниринга нефтяных и газовых месторождений», г. Томск, Россия

Каталитический риформинг бензинов был и остается одним из основных процессов по улучшению октановых характеристик моторных топлив [1, 2]. Основу процесса составляют целевые реакции дегидрирования нафтенов и дегидроциклизации парафинов до ароматических углеводородов, которые способствуют повышению октанового числа продукта. Помимо целевых, в процессе протекают побочные реакции гидрокрекинга алканов и конденсации ароматических структур, в результате чего образуются продукты уплотнения и кокс, приводящие к дезактивации катализатора [1, 3]. Классическим сырьем риформинга является прямогонная нафта 85–180°С, но возможно вовлечение потоков вторичного происхождения (бензиновых фракций термодеструктивных процессов, нафты гидрокрекинга, газового конденсата). Перечисленные варианты характеризуются высоким содержанием олефиновых углеводородов, которые при технологических условиях риформинга склонны к образованию высокомолекулярных соединений – предшественников кокса, блокирующего активные центры катализатора [1].

В Томском политехническом университете в рамках научной школы профессоров А.В. Кравцова и Э.Д. Иванчиной была разработана и успешно применяется для исследования и прогнозирования показателей процесса каталитического риформинга математическая модель, учитывающая превращения 69 индивидуальных углеводородов и их групп [3]. Возможность вовлечения в переработку сырья вторичного происхождения обуславливает необходимость совершенствования реакционной схемы и существующей модели. Таким образом, целью данного исследования стала разработка реакционной схемы процесса каталитического риформинга бензиновых фракций различного происхождения и создание на ее основе кинетической модели для расширенного списка реакций и компонентов.

Первым этапом исследований стало определение состава сырьевых потоков, которые могут быть направлены на переработку на установках риформинга (Таблица 1). Для сравнения были выбраны экспериментальные образцы гидроочищенной нафты риформинга с разных промышленных установок (образцы 1–5), тяжелая нафта с установки гидрокрекинга (образец 6), а также образцы нафты газоконденсатных месторождений (образец 7) с целью расширения сырьевой базы компонентов. Индивидуальный и групповой состав представленных образцов был исследован методом газовой хроматографии в соответствии с [4]. Установлено, сырье риформинга может содержать в своем составе олефиновые углеводороды (0,10–0,81 % масс.).

Таблица 1

Группы углеводоро-	Содержание углеводородов, % масс.									
дов ¹	Сырьё 1	Сырьё 2	Сырьё 3	Сырьё 4	Сырьё 5	Сырьё 6	Сырьё 7			
Алканы нормального строения										
н-П1−н-П4	_	_	-	0,08	-	-	6,37			
н-П5−н-П8	16,0	15,0	17,4	14,8	14,7	9,38	21,99			
н-П 9— н- П11	7,71	10,07	5,11	5,05	5,96	0,42	2,07			
н-∏12+	0,01	0,03	0,01	0,02	0,04	—	0,16			
Алканы изомерного строения										
и-П4	_	_	_	0,01	_	—	2,10			
и-П5-и-П8	12,7	13,9	16,7	15,1	14,3	30,64	24,35			
и-П9-и-П11	15,97	18,71	10,62	13,8	9,83	7,46	4,38			
и-П ₁₂₊	0,02	_	-	_	0,06	-	0,02			
Алканы циклического строения										
H5	-	-	0,44	0,41	-	0,04	0,80			
H_6	0,06	3,12	7,21	3,40	4,62	4,87	8,37			
H7-H8	27,6	15,1	25,8	23,2	27,7	37,48	19,44			
H9-H12	8,09	12,1	7,91	8,76	10,8	3,79	1,67			
Ароматические углеводороды										
A_6	0,01	0,38	0,33	0,37	0,14	0,40	0,52			
A7–A8	7,09	6,10	4,88	8,69	6,48	5,08	5,02			
A9-A11	4,22	5,24	3,44	5,89	4,23	0,30	1,40			
A12+	0,01	_	0,01	_	0,04	_	0,11			
Олефиновые углеводороды										
O6-O12	0,11	0,10	_	0,49	0,25	0,14	0,81			

Распределение углеводородов по количеству атомов углерода внутри группы углеводородов бензиновой фракции

¹Здесь н-Пj – нормальные алканы, и-Пj – алканы изомерного строения, Hj – нафтены (циклоалканы), Aj – ароматические углеводороды, Oj – олефиновые углеводороды

Опираясь на полученные результаты, был составлен список химических реакций с участием компонентов C1–C12, который содержит 200 реакций с участием 51 компонента. В схему превращений были включены реакции деалкилирования нафтенов, дегидрирования парафинов до олефинов, гидрокрекинг нормальных и изомерных парафинов с уменьшением длины цепи, гидрирования олефинов до парафинов с участием компонентов с углеводородами до С12. Также в схеме отражено участие олефинов в реакциях полимеризации и конденсации, приводящих к образованию кокса на катализаторе.

После этапа разработки расширенной формализованной схемы превращений по справочным данным [5] был выполнен расчет термодинамических параметров рассматриваемых реакций и компонентов. Затем согласно новой схеме превращений были составлены кинетических уравнений реакций, сформированы матрица реакций и уравнение модели реактора. Вычисление констант скоростей производилось по уравнению Аррениуса. Для реализации усовершенствованной модели использована интерпретируемая среда программирования Python. Далее с использованием модели было исследовано влияние температуры на выход риформата (рис. 1).

Анализируя результаты, представленных на рисунке 1, видно, что при увеличении температуры на входе в реакторный блок выход риформата снижается, что объясняется усилением побочных реакций образования легких углеводородных газов в реакциях гидрокрекинга. Низкий выход риформата (79 % масс.) для сырья 7 обусловлен повышенным содержанием легких парафинов, тогда как при переработке нафты гидрокрекинга (сырья 6) достигается высокий выход продукта (до 85 % масс.), что подтверждает благоприятный вклад такого сырья в показатели процесса риформинга. В качестве сравнительной оценки двух математических моделей выполнены расчеты состава риформата при условии переработки одного типа сырья и прочих равных технологических условиях (Таблица 2).

Таблица 2

Компоненты фрак- ции	Распределение компонентов по углеводородным группам, % масс.											
	н-алканы			изоалканы			арены			нафтены		
	Э	P1	P2	Э	P1	P2	Э	P1	P2	Э	P1	P2
C9	0,29	0,32	0,30	0,92	0,62	0,87	9,95	12,39	10,1	0,71	0,65	0,69
C10	0,04	0,16	0,07	0,20	0,08	0,21	2,59	3,10	2,67	0,00	0,05	0,00
C11	0,01	-	0,01	0,02	-	0,01	0,44	-	0,39	0,00	-	0,00
C ₁₂	0,01	-	0,02	0,00	-	0,00	0,38	-	0,42	0,04	-	0,03

Сравнительная характеристика двух математических моделей (Э – экспериментальные данные, P1 – расчетные данные по модели [3], P2 - расчетные данные по усовершенствованной модели²

²Условия проведения расчетов: $T = 470,6^{\circ}$ С, P = 25,1 кгс/см2, расход сырья = 152 м3/ч, расход ЦВСГ = 197500 нм3/час. Состав сырья: н-алканы – 20,6 % масс., изоалканы – 24,1 % масс., нафтены – 43,1 % масс., ароматика – 11,1 % масс.).

Расчеты показали, что новая математическая модель, учитывающая более значительный набор химических реакций с участием C9+ компонентов, оказалась более чувствительной к составу риформата в отношении более тяжелых углеводородов. В то время, как ранее разработанная модель [3] позволяет рассчитывать лишь укрупненный состав C9+ без определения содержания углеводородного ряда покомпонентно.

Исследования выполнены при поддержке Российского научного фонда, проект № 19-71-10015-п.

Литература

- Rahimpour M. R., Jafari M., Iranshahi D. Progress in catalytic naphtha reforming process: A review // Applied energy. 2013. – T. 109. – C. 79-93.
- 2. World Oil Outlook 2023 Organization of the Petroleum Exporting Countries. URL: https://woo.opec.org/pdf-download/
- 3. Ivanchina E. et al. Mathematical modeling and optimization of semi-regenerative catalytic reforming of naphtha // Oil & Gas Science and Technology–Revue d'IFP Energies nouvelles. 2021. T. 76. C. 64.
- ГОСТ Р 52714-2018. Бензины автомобильные. Определение индивидуального и группового углеводородного состава методом капиллярной газовой хроматографии – М.: Стандартинформ, 2018. – 11 с.
- 5. Сталл Д. Вестрам Э. Зинке Г. Химическая термодинамика органических соединений // М.: Издательство «Мир. 1971.