Федеральное государственное автономное образовательное учреждение

высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

На правах рукописи

ЗАТОНОВ ИВАН АНДРЕЕВИЧ

ИСТОЧНИК МАГНИТНОЙ ИНДУКЦИИ ДЛЯ ВОСПРОИЗВЕДЕНИЯ СЛАБЫХ МАГНИТНЫХ ПОЛЕЙ ВЫСОКОЙ ОДНОРОДНОСТИ

Специальность 2.2.4 – Приборы и методы измерения

(электрические и магнитные величины)

Диссертация на соискание ученой степени

кандидата технических наук

Научный руководитель – кандидат технических наук,

Баранов Павел Федорович

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ
ГЛАВА 1. ВОСПРОИЗВЕДЕНИЕ СЛАБОГО ПОСТОЯННОГО
МАГНИТНОГО ПОЛЯ
1.1 Востребованность измерений слабого постоянного магнитного поля 13
1.2 Метрологическое обеспечение измерений магнитной индукции
слабых постоянных магнитных полей15
1.3 Общие принципы воспроизведения магнитной индукции слабого
постоянного магнитного поля22
1.3.1 Соленоид 22
1.3.2 Катушки Гельмгольца24
1.3.3 Катушки Максвелла26
1.3.4 Катушки Браунбека28
1.3.5 Катушки Бэкера 30
1.3.6 Катушки МакКихана 32
1.3.7 Катушки Гаррета34
1.3.8 Квадратные катушки Гельмгольца
1.3.9 Катушка Меррита 38
1.3.10 Катушки Рубена 40
1.3.11 Многокатушечные системы
1.4 Выводы по главе 145
ГЛАВА 2. РАСЧЁТ И МОДЕЛИРОВАНИЕ СИСТЕМ КАТУШЕК 47
2.1 Методы расчёта магнитного поля систем катушек 47
2.1.1 Расчёт магнитного поля на основе закона Био-Савара-Лапласа 47
2.1.2 Методика Симпсона для расчёта магнитного поля контура с
током
2.1.3 Расчёт магнитного поля по методике Макдональда 54
2.1.4 Расчет магнитного поля по методике Джексона 54
2.2 Расчет аксиальных катушек55
2.2.1 Расчёт магнитного поля двухкатушечной системы

2.2.2 Расчёт многокатушечных систем	61
2.2.3 Анализ однородности магнитного поля четырехкатушечной	
системы	63
2.2.4 Анализ однородности магнитного поля шестикатушечной	
системы	66
2.2.5 Анализ однородности магнитного поля восьмикатушечной	
системы	69
2.2.6 Анализ однородности магнитного поля десятикатушечной	
системы	71
2.3 Моделирование десятикатушечных систем	76
2.4 Выводы по главе 2	82
ГЛАВА З. РАЗРАБОТКА ИСТОЧНИКА ТОКА ДЛЯ СИСТЕМ	
КАТУШЕК	84
3.1 Требования к источнику тока	84
3.2 Обзор схем реализации источников тока	85
3.2.1 Источники тока на базе ИОН	86
3.2.2 Схема токовой накачки Хауленда	88
3.2.3 Высокоуровневый преобразователь напряжения в ток	90
3.3 Разработка источника тока	93
3.4 Оценка метрологических характеристик источника тока	101
3.5 Выводы по главе 3	108
ГЛАВА 4. ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ СИСТЕМ	
КАТУШЕК С ВЫСОКОЙ СТЕПЕНЬЮ ОДНОРОДНОСТИ	110
4.1 Изготовление аксиальных систем катушек	110
4.2 Оценка однородности магнитного поля десятикатушечных систем.	113
4.2.1 Оценка однородности магнитного поля десятикатушечной	
системы №1	117
4.2.2 Оценка однородности магнитного поля десятикатушечной	
системы №3	127
4.3 Выводы по главе 4	137

ЗАКЛЮЧЕНИЕ	
СПИСОК ЛИТЕРАТУРЫ	
Приложение А. Акты внедрения результатов диссертационно ј	работы 155

введение

Актуальность темы

Измерение и воспроизведение параметров магнитного поля является важной задачей науки и техники. Одной из основных характеристик магнитного поля является магнитная индукция – способность магнитного поля работ. Магнитная индукция, производить ПО сути, характеризует интенсивность магнитного поля и измеряется в Теслах (Тл). Магнитные поля частоте колебаний подразделяются на постоянные (статические), по низкочастотные (до 300 Гц), среднечастотные (от 300 Гц – 100 кГц) и высокочастотные (свыше 100 кГц), а по значению магнитной индукции на сверхсильные (свыше 100 Тл), сильные (от 1 до 100 Тл), средние (от 0,01 до 1 Тл), слабые (менее 0,01 Тл).

Наиболее востребованной областью магнитных измерений является область слабых магнитных полей, что подтверждается анализом актуальных потребностей в биомедицинских исследованиях и медицинской практике, системах квантовых вычислений, фундаментальных исследованиях и оборонном комплексе. Типовой диапазон измерений магнитометров для слабых постоянных магнитных полей составляет от 10–8 до 10–4 Тл; погрешность измерения доходит до долей нТл.

Согласно государственной поверочной схеме, для средств измерений магнитной индукции в качестве рабочих эталонов второго разряда и рабочих средств измерений для воспроизведения магнитной индукции до 10-9 Тл применяются меры магнитной индукции, в которых чаще всего используются катушки Гельмгольца и модификации на их основе для генерации однородного магнитного поля.

Несмотря на простоту изготовления катушек Гельмгольца, к их ключевому недостатку относится достаточно малый объем создаваемого однородного магнитного поля по сравнению со своими геометрическими размерами. Увеличение области однородности магнитного поля требует увеличения габаритных размеров катушек. Увеличить объем однородного поля можно за счет наращивания числа катушек в системе и изменения катушек. Так были спроектированы круглые конструкции катушки Максвелла, Браунбека, Бэкера, МакКихана, Гаррета, квадратные Гельмгольца, Меррита и Рубена др. Однако расчётные параметры (коэффициенты соотношений количества витков и расстояний между катушками) для систем, состоящих более чем из двух катушек имеют большое количество значащих цифр в дробной части, что затрудняет их практическую реализацию и достижение расчетного уровня однородности. Особенно это становится критичным при реализации малогабаритных систем катушек. При том обычно расчеты систем катушек не учитывают влияния сечения провода намотки на однородность магнитного поля, а анализ однородности традиционно проводится только вдоль оси симметрии катушек.

Одним из направлений совершенствования источника магнитной индукции для воспроизведения слабых магнитных полей может быть разработка и исследование систем многих катушек одинакового радиуса, как наиболее простых в изготовлении. В таких системах увеличение объема однородности достигается наращиванием числа отдельных катушек.

Целью диссертационной работы является аналитический расчет; конечно-элементный анализ, практическая реализация и экспериментальные исследования конструкций систем катушек для воспроизведения магнитной индукции слабого постоянного магнитного поля с высокой степенью однородности.

В соответствии с поставленной целью, были сформулированы следующие задачи исследования:

1. Разработка универсальных аналитических выражений для анализа однородности магнитного поля, создаваемого системами катушек;

2. Расчет и анализ конструкций систем катушек с высокой степенью однородности магнитного поля с учетом влияния сечения провода намотки катушек на однородность магнитного поля.

3. Разработка регулируемого источника тока для питания систем катушек.

4. Изготовление и экспериментальные исследования конструкций систем катушек с высокой степенью однородности для воспроизведения магнитной индукции слабого постоянного магнитного поля.

Методы исследования. Теоретическая часть работы выполнена на основе методов теории электромагнитного поля, теории погрешностей, дифференциального и интегрального исчисления, математического моделирования. При расчетах и моделировании использовалось лицензионное программное обеспечение.

Достоверность полученных результатов диссертационной работы подтверждается совпадением с достаточной на практике точностью экспериментальных данных, полученных при апробации систем катушек с применением эталонных средств измерений, с результатами моделирования и теоретических исследований. Экспериментальные исследования проводились в лабораторных условиях с использованием современных прецизионных средств измерений, прошедших периодические поверку и калибровку.

Научная новизна работы

1. Рассчитаны конструкции систем из десяти круглых катушек одинакового радиуса для создания однородного магнитного поля и на основе полученных универсальных аналитических выражений для анализа магнитной индукции и неоднородности магнитного поля в любой точке пространства внутри систем круглых катушек проведена оценка неоднородности магнитного поля создаваемого ими.

2. Выбрано схемотехническое решение и на его основе реализован трехдиапазонный регулируемый источник тока, управляемый напряжением, который совместно с рассчитанными по предложенной модели конструкциями десятикатушечных систем позволяет воспроизводить магнитную индукцию в диапазоне от 10⁻¹⁰ до 10⁻⁴ Тл.

3. Реализованы и экспериментально исследованы рассчитанные конструкции систем из десяти круглых катушек одинакового радиуса, обеспечивающие высокую степень однородности магнитного поля.

Практическая ценность работы. Разработанные в ходе диссертационных исследований конструкции систем из десяти круглых катушек и трехкаскадный регулируемый источник тока, управляемый напряжением, могут найти широкое применение при калибровке и градуировке малогабаритных типов датчиков магнитного поля и магнитометров на их основе, при построении компактных мер магнитной индукции с высокой степенью однородности магнитного поля. Разработанный экспресс-калькулятор может применяться для анализа неоднородности магнитного поля в любой точке пространства внутри систем круглых катушек при их проектировании.

Реализация и внедрение результатов работы. Результаты исследований использованы при выполнении следующих НИР:

• Грант РНФ № 17-79-10083 «Планарный феррозондовый преобразователь для системы магнитного вакуума квантового компьютера», 2017-2019 гг.

• Грант ФЦП № 14.578.21.0232 «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России», «Интеллектуальный инерциальный модуль на основе микроэлектромеханических датчиков с функциями гироскопа, акселерометра и магнитометра для систем ориентации, и навигации транспортных средств с автоматизированным управлением», 2017-2020 гг.

• Грант РФФИ № 20-57-S52001 «Формирование и исследование «фотонных крючков» с помощью компонент микрооптики для задач перспективных информационных технологий», 2020-2021 гг.

• Грант РФФИ № 21-57-10001 «3D-печать светоизгибающих фотонных переключателей в оптическом и терагерцовом спектральных диапазонах», 2021-2022 гг.

8

Результаты работы также используются: в ООО «Эксперт» (г. Томск) при реализации проекта по созданию системы калибровки датчиков магнитного поля и магнитометров; в учебном процессе в отделении Электронной инженерии Томского политехнического университета.

Положения, выносимые на защиту

1. Предложенные универсальные выражения позволяют проводить расчеты магнитной индукции и неоднородности магнитного поля в любой точке пространства внутри систем круглых катушек независимо от их количества.

2. Реализованный трехдиапазонный регулируемый источник тока, управляемый напряжением, обеспечивает питание систем катушек в диапазоне токов от 0,1 мкА до 100 мА при напряжениях на входе от 0,02 В до 2 В с относительной погрешностью коэффициента преобразования менее 0,2 % в диапазоне от 0,1 до 0,2 мкА и менее 0,1 % в остальном диапазоне.

3. Разработанные конструкции систем из десяти круглых катушек радиусом 50 мм позволяют воспроизводить магнитную индукцию с неоднородностью магнитного поля менее 0,02 % в объеме 30 % от радиуса.

Апробация результатов работы. Основные результаты диссертационной работы докладывались и обсуждались на следующих конференциях:

• IV Международный молодёжный форум «Инженерия для освоения космоса», г. Томск, 2016 г.;

• V Международный молодёжный форум «Инженерия для освоения космоса», г. Томск, 2017 г.;

• VIII International Scientific and Practical Conference Information and Measuring Equipment and Technologies (IME&T 2017), г. Томск, 2017 г.;

• XII Всероссийская научная конференция молодых ученых «Наука. Технологии. Инновации» (НТИ-2018), г. Новосибирск, 2018 г.; International Conference on Electrical Engineering, Control and Robotics (EECR 2018), г. Чэнду, Китай, 2018 г.

International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies (EMMFT 2019), г. Воронеж, 2019 г.;

• XV Международная конференция по импульсным лазерам и применениям лазеров – AMPL-2021, г. Томск, 2021 г.;

• XVI Международная IEEE Сибирская конференция по управлению и связи (SIBCON-2022), г. Томск, 2022 г.

Публикации. Основные результаты исследований отражены в 13 публикациях: 2 статьи в изданиях, рекомендованных ВАК, из них две статьи проиндексированы в базах данных WoS и Scopus; 6 статей в трудах международных и российских конференций, проиндексированных в WoS и Scopus; 1 патент РФ на изобретение и 1 свидетельство о государственной регистрации программы для ЭВМ; 3 статьи в рецензируемых научных сборниках трудов международных и российских конференций.

Структура и объем диссертации. Диссертационная работа состоит из введения, четырех глав, заключения, списка литературы из 108 наименования и приложений. Работа содержит 154 страницы основного текста, включая 109 рисунков и 28 таблиц.

В первой главе приведен анализ метрологического обеспечения измерений магнитной индукции слабых постоянных магнитных полей в Российской Федерации. Приводятся основные метрологические характеристики магнитометров для измерения и мер магнитной индукции для воспроизведения слабых магнитных полей, включенных в Государственный реестр средств измерений. Рассматриваются общие принципы воспроизведения магнитной индукции постоянного магнитного поля, сравниваются круглые системы катушек Гельмгольца, Максвелла, Браунбека, Бэкера, МакКихана, Гаррета, квадратные Гельмгольца, Меррита и Рубена др. с точки зрения создания объема однородного магнитного поля, сложности расчета и изготовления. Предлагается проектировать многокатушечные системы одинакового радиуса, как наиболее простые в изготовление и расчете, для воспроизведения слабого магнитного поля с высокой степенью однородности по объему системы.

Во второй главе описаны методы расчёта магнитного поля систем катушек на основе закона Био-Савара-Лапласа, методик Симпсона, Макдональда и Джексона. Для анализа магнитной индукции систем катушек, создающих однородное магнитное поле, предлагается использовать методику на основе закона Био-Савара-Лапласа, так как данная методика позволяет рассчитать магнитную индукцию в любой точке рассматриваемой системы с одинаковой точностью независимо от геометрии конструкции. На основе итерационной методики расчёта многокатушечных систем для генерации однородного магнитного поля приводятся расчёты параметров для четырехкатушечной, шестикатушечной, восьмикатушечной и трех вариантов десятикатушечной систем. Для каждой рассчитанной системы катушек проводится анализ однородности магнитного поля. Для подтверждения результатов анализа однородности проводится конечно-элементное моделирование конструкции катушек.

В третьей главе приводится описание разработки управляемого источника постоянного тока, работающего преимущественно на индуктивную нагрузку для питания систем катушек. Приводится краткий обзор схем построения источников тока. На основе схемного решения компании Texas Instruments по реализации управляемого преобразователя напряжения в ток для заземленной нагрузки спроектирован трехкаскадный прецизионный регулируемый источник тока, управляемый напряжением в диапазоне воспроизведения токов от 0,1 мкА до 100 мА при напряжениях на входе от 0,02 В до 2 В. Проведена оценка влияния разброса номинальных значений сопротивлений резисторов в схеме преобразователя методом Монте-Карло. На основе результатов моделирования подобранны резисторы для практической реализации преобразователя напряжения в ток, изготовлен преобразователь напряжения в ток и проведена оценка его погрешности преобразования. В четвертой главе описан процесс изготовления десятикатушечных аксиальных систем для создания однородного магнитного поля на основе технологии 3D-печати методом послойного наплавления, и приведены результаты экспериментальных исследований однородности магнитного поля изготовленных систем. Для автоматизированной оценки однородности магнитного поля, создаваемого десятикатушечными системами, собран экспериментальный стенд на основе шестиосевого робота-манипулятора Kuka KR4 R600, обеспечивающий линейное перемещение с заданным шагом датчика магнитного поля внутри объема системы катушек.

ГЛАВА 1

ВОСПРОИЗВЕДЕНИЕ СЛАБОГО ПОСТОЯННОГО МАГНИТНОГО ПОЛЯ

В данной главе приведен анализ метрологического обеспечения измерений магнитной индукции слабых постоянных магнитных полей в Российской Федерации. Приводятся основные метрологические характеристики магнитометров для измерения и мер магнитной индукции для воспроизведения слабых магнитных полей, включенных в Государственный реестр средств измерений.

Рассматриваются общие принципы воспроизведения магнитной индукции постоянного магнитного поля, сравниваются круглые системы катушек Гельмгольца, Максвелла, Браунбека, Бэкера, МакКихана, Гаррета, квадратные Гельмгольца, Меррита и Рубена др. с точки зрения создания объема однородного магнитного поля, сложности расчета и изготовления.

Предлагается проектировать многокатушечные системы одинакового радиуса, как наиболее простые в изготовление и расчете, для воспроизведения слабого магнитного поля с высокой степенью однородности по объему системы.

1.1 Востребованность измерений слабого постоянного магнитного поля

Измерение магнитной индукции требуется в таких сферах, как: геофизика [1-4]; аэрономия [5-6]; навигация [7-8]; археология и палеонтология [9-11]; поиск скрытых технических объектов и неразрушающий контроль [12]; техническая диагностика изделий электротехники [13]; медицинская диагностика и терапия [14]; фундаментальные исследования [15-27]. Например, значение магнитной индукции, генерируемое сердцем человека, составляет 1 – 100 пТл [23-27], а мозгом человека составляет единицы фемтотесла [26, 28].

Воспроизведение или, другими словами, генерация магнитного поля применяется:

 в технологическом процессе литья замораживанием [29] для ориентации направления частиц в суспензии. Технология используется при производстве пористой керамики [30], полимеров [31], металлов [32] и композитных структур [33]; при культивировании клеток и клеточных тканей в биореакторах однородное магнитное поле применяется для стимуляции и повышения скорости реакции [34-35];

– при калибровке и градуировке датчиков малых магнитных полей [36-40];

 в корреляционно-экстремальных навигационных системах летательных аппаратов [15, 41-45];

 в системах активного магнитного экранирования, например, квантового компьютера [46], в экспериментах по поиску электрического дипольного момента нейтрона [47];

- в микрожидкостных системах для реализации актюаторов [48];

– в биомедицинских исследования и медицинской практике [14, 49-50] для удаленной адресной доставки лекарственных средств в пораженные участки организма [51], при лечении окклюзии кровеносных сосудов [52-57], построение МРТ томографов и др.

Одним из направлений Стратегии научно-технологического развития Российской Федерации (утверждена Указом Президента Российской Федерации от 28 февраля 2024 г. № 145 «О Стратегии научно-технологического развития Российской Федерации») [58] является переход к персонализированной, предиктивной и профилактической медицине, высокотехнологичному здравоохранению и технологиям здоровьесбережения, в том числе за счет рационального применения лекарственных препаратов (прежде всего антибактериальных), и использования генетических данных и технологий. С учетом тенденций по измерению функциональных параметров человека через измерение магнитной индукции, генерируемой его отдельными органами, развитию технологий адресной, магнитной доставки лекарств [53] актуальной становится проблема измерения сверхслабых магнитных полей (менее 1 нТл), метрологическое обеспечение таких средств измерений и создание технических средств воспроизведения слабых постоянных магнитных полей высокой степени однородности в заданном объеме.

1.2 Метрологическое обеспечение измерений магнитной индукции слабых постоянных магнитных полей

В Государственный реестр средств измерений (Госреестр СИ) [59] включено более 70 единиц магнитометров для измерения слабых постоянных магнитных полей. В таблице 1.1 приведен выборочный перечень таких магнитометров с указанием их основных метрологических характеристик.

Таблица 1.1 – Характеристики магнитометров для измерения слабых постоянных магнитных полей, включенных в Госреестре СИ.

Номер в	Обозначение	Диапазон из-	Погрешность изме-	Примечание
Госре-	типа	мерения маг-	рений	
естре СИ		нитной ин-		
		дукции посто-		
		янного поля,		
		мкТл		
64433-16	SeaSPY	от 20 до 90	±1 нТл	-
79451-20	POS-1, POS-2	от 20 до 100	±1 нТл	-
49265-12	ЭТМ ГВАТ	от 2 до 200	± 200 нТл	трехкомпонентный
31347-06	17M23	от 0,05 до 50	± 50 нТл	трехкомпонентный
68599-17	Техномаг	от 3 до 2000	± (0,05 <i>B</i> +2) мкТл	дифференциальный
61800-15	MT-5	от 0,04 до 100	± 3 нТл	трехкомпонентный
77289-20	QuantumMag	от 20 до 100	± 2 нТл	-
56336-14	ИКЭМ-1	от 0,1 до 64	± 5 %	-
60946-15	МФ-24ФМ	от 1 до 2000	± 5 %	дифференциальный
89429-23	Mag	от 20 до 110	± 0,5 нТл	-
88568-23	КОРД	от 1 до 100	± (0,05 <i>B</i> +0,2) мкТл	дифференциальный
62736-15	ТКМ	от 0,02 до 100	± (0,02 <i>B</i> +0,02) мкТл	трехкомпонентный
44807-10	POS-1,2	от 20 до 100	± 2 нТл	-
38456-08	ДМ-002	от 5 до 600	± (0,05 <i>B</i> +5) мкТл	-
64239-16	155504	от 30 до 60	± 50 нТл	-
82513-21	ИСАТ	от 30 до 60	± 2,5 нТл	-
86688-22	МТП-01	от 0,3 до 20	± 0,3 мкТл	трехкомпонентный

Таким образом, типовой диапазон измерений магнитометров для слабых постоянных магнитных полей составляет от 10⁻⁸ до 10⁻⁴ Тл, погрешность измерения составляет единицы нТл для феррозондовых магнитометров и доли нТл для магнитометров на эффекте Оверхаузера. В соответствии с приказом Федерального агентства по техническому регулированию и метрологии от 2 февраля 2021 года № 64 «Об утверждении Государственного первичного эталона единиц магнитной индукции, магнитного потока, магнитного момента и градиента магнитной индукции», метрологическое обеспечение измерений магнитных величин на территории Российской Федерации базируется на Государственном первичном эталоне единиц магнитной индукции ГЭТ 12-2021, разработанном во ФГУП «ВНИИМ им. Д.И. Менделеева» [60]. ГЭТ 12-2021 является усовершенствованной версией первичного государственного эталона единиц магнитной индукции ГЭТ 12-2021, и совместно с ГОСТ 8.030-2013 «Государственная поверочная схема для средств измерений магнитной индукции» [61] обеспечивают единство измерений магнитной индукции.

Государственная поверочная схема для средств измерений магнитной индукции приведена на рисунке 1.1.

Рисунок 1.1 – Государственная поверочная схема для средств измерений магнит-

ной индукции

В рамках совершенствования государственного эталона ГЭТ 12-2011, был расширен диапазон значений магнитной индукция постоянного поля в области слабых полей с 10⁻⁶ Тл до 10⁻⁸ Тл.

Согласно государственной поверочной схеме для средств измерений магнитной индукции, в качестве рабочих эталонов второго разряда и рабочих средств измерений для воспроизведения магнитной индукции до 10⁻⁹ Тл применяются меры магнитной индукции.

В настоящее время в Госреестр СИ включен ряд мер магнитной индукции, предназначенных для воспроизведения магнитной индукции постоянного и переменного магнитных полей. К таким средствам измерений, например, относятся:

Установка магнитной индукции поверочная УМИП-01, номер в Госреестре 39533-08, изготовитель ФГУ «Новосибирский ЦСМ», г. Новосибирск. В качестве источника магнитного поля используется катушка - соленоид. Значение магнитной индукции в рабочем объеме катушки прямо пропорционально протекающему току. Диапазон воспроизведения единицы магнитной индукции постоянного магнитного поля от 0,01 до 80 мТл, пределы допускаемой относительной погрешности воспроизведения единицы магнитной индукции постоянного поля ± 0,5 %, коэффициент преобразования катушки 16,8 ± 0,05 мТл/А, размеры рабочей области (диаметр × длина) 10 × 10 мм, неоднородность магнитной индукции в рабочей области ± 0,1 %. Для воспроизведения магнитной индукции постоянного магнитного поля, возбуждение постоянного тока в катушке производится от источника постоянного напряжения и тока ТЭС 5010, или от прибора для поверки вольтметров B1-13 (в диапазоне до 100 мА). Ток через катушку измеряется с помощью измерительных шунтов и вольтметра B7-34A. Габаритные размеры (длина/ширина/высота) $350 \times 350 \times 310$ мм, масса 45 кг.

Мера магнитной индукции УКМ-1, номер в Госреестре 28808-05, изготовитель ООО «Энергодиагностика», г. Реутов. Мера представляет собой катушку магнитной индукции в виде соленоида, к которому подключен регулируемый источник тока с цифровой индикацией на лицевой панели воспроизводимого значения магнитной индукции. Диапазон воспроизведения единицы магнитной индукции постоянного магнитного поля от 0,012 до 2,5 мТл, пределы допускаемой относительной погрешности воспроизведения единицы магнитной индукции постоянного магнитного поля \pm 1,5 %, коэффициент преобразования катушки 27,6 \pm 0,5 мТл/А, размеры рабочей области (диаметр × длина) 12 × 20 мм, неоднородность магнитной индукции в рабочей области \pm 0,3 %. Габаритные размеры (длина/ширина/высота) 300 × 300 × 170 мм, масса 4,1 кг.

Mepa магнитной КПВК. Госреестре индукции номер В 28317-04, изготовитель ЗАО «НПЦентр», г. Москва. Мера КІІВК представляет собой двухобмоточную астатическую катушку магнитной индукции, обмотки которой выполнены медным проводом на каркасе из оргстекла. Для подключения источника тока мера имеет клеммы в торцевой части катушки. Максимальное значение воспроизводимой магнитной индукции постоянного магнитного поля 20 мТл, пределы допускаемой относительной погрешности воспроизведения единицы магнитной индукции постоянного магнитного поля ± 0,2 %, коэффициент преобразования катушки 9.5 ± 0.1 мТл/А, размеры рабочей области – сфера диаметром 30 мм, неоднородность магнитной индукции в рабочей области ± 0,1 %. Габаритные размеры (длина/ширина/высота) 160 × 160 × 170 мм, масса 4,1 кг.

Мера магнитной индукции БММИ, номер в Госреестре 57277-14, изготовитель ООО «Криомаг», г. С.-Петербург. Принцип действия БММИ основан на использовании магнитной системы катушек, обеспечивающей преобразование постоянного тока в индукцию магнитного поля. При этом система спроектирована таким образом, что значения магнитной индукции на регламентированном расстоянии от центра меры малы по сравнению с магнитной индукции в её центре. БММИ состоит из восьмисекционной основной катушки и двух вспомогательных двухсекционных катушек, оси которых ортогональны оси основной катушки, и соединительного кабеля для подключения источников питания БММИ.

Фотография внешнего вида БММИ приведена на рисунке 1.2. Диапазон воспроизведения единицы магнитной индукции постоянного магнитного поля от 0,01 до 100 мкТл, пределы допускаемой относительной погрешности воспроизведения единицы магнитной индукции постоянного магнитного поля $\pm 0,02$ %, коэффициент преобразования катушки 185 ± 10 мкТл/А, размеры рабочей области – сфера диаметром 50 мм, неоднородность магнитной индукции в рабочей области $\pm 0,007$ %. Габаритные размеры (длина × ширина × высота) 1010 × 865 × 1590 мм, масса 170 кг.

Рисунок 1.2 – Мера магнитной индукции БММИ

Мера магнитной индукции двухкомпонентная ДПМИ, номер в Госреестре 31831-06, изготовитель АОЗТ «Криомаг», г. С.-Петербург. Мера ДПМИ представляет собой двухкомпонентную катушку магнитной индукции в виде квадратных колец Гельмгольца, обмотки которой выполнены медным проводом на каркасе из текстолита. Воспроизведение значений магнитной индукции в рабочем пространстве меры в направлении вдоль ее оси осуществляется путем пропускания по обмоткам катушки тока известной величины.

Диапазон воспроизведения единицы магнитной индукции постоянного магнитного поля от 0,1 до 10 мкТл, пределы допускаемой относительной погрешности воспроизведения единицы магнитной индукции постоянного магнитного поля ± 1,0 %, коэффициенты преобразования катушек 209,4 \pm 1,4 и 201,6 \pm 1,4 мкТл/А, размеры рабочей области – сфера диаметром 100 мм, неоднородность магнитной индукции в рабочей области \pm 0,7 %. Габаритные размеры (длина × ширина × высота) 875 × 855 × 765 мм, масса 41 кг.

Мера магнитной индукции трехкомпонентная ТММИ, номер в Госреестре 62975-15, изготовитель ОАО «НИИ электроизмерительных приборов» (Электромера), г. Санкт-Петербург. Принцип действия ТММИ основан на электромагнитном методе воспроизведения магнитного поля при пропускании через обмотки колец Гельмгольца электрического тока от трёхканального управляемого источника через последовательно включенные меру электрического сопротивления (шунт измерительный стационарный взаимозаменяемый) и одну из обмоток колец. Значение магнитной индукции пропорционально падению напряжения на мере электрического сопротивления. В состав ТММИ входит катушка магнитной индукции в виде стационарных трехкомпонентных колец Гельмгольца и трёхканальный управляемый источник тока.

Общий вид трехкомпонентных колец Гельмгольца приведен на рисунке 1.3.

Рисунок 1.3 – Трехкомпонентные кольца Гельмгольца меры магнитной индукции ТММИ

Диапазон воспроизведения единицы магнитной индукции постоянного магнитного поля от 0,1 до 100 мкТл, пределы допускаемой абсолютной погрешности воспроизведения приращений магнитной индукции постоянного поля *B* по трем направлениям магнитных осей $\pm (0.02+0.02B)$ мкТл, коэффициенты преобразования катушек 28,4, 27,6, 28,9 нТл/мА, размеры рабочей области – сфера диаметром 30 мм, неоднородность магнитной индукции в рабочей области $\pm 0,1$ %. Габаритные размеры (длина × ширина × высота) 564 × 610 × 610 мм, масса 17,43 кг.

Мера магнитной индукции трехкомпонентная ММИТ, номер в Госреестре 82375-21, изготовитель ОАО «НИИ электроизмерительных приборов» (Электромера), г. Санкт-Петербург. Принцип действия ММИТ основан на электромагнитном методе воспроизведения магнитного поля при пропускании через обмотки колец Гельмгольца электрического тока от управляемого источника тока. Значение магнитной индукции пропорционально значению тока, пропускаемого через обмотки колец Гельмгольца. В состав ММИТ входит катушка магнитной индукции в виде стационарных трехкомпонентных колец Гельмгольца, источник тока управляемый, персональный компьютер с комплектом программного обеспечения и преобразователь интерфейсов.

Общий вид меры ММИТ показан на рисунке 1.4.

Рисунок 1.4 – Общий вид меры ММИТ

Диапазон воспроизведения единицы магнитной индукции постоянного магнитного поля от 0,01 до 100 мкТл, пределы допускаемой абсолютной погрешности воспроизведения приращений магнитной индукции постоянного поля *B* по трем направлениям магнитных осей \pm (0.002+0.002 *B*) мкТл, размеры рабочей области – сфера диаметром 50 мм, неоднородность магнитной индукции в рабочей области \pm 0,06 %. Габаритные размеры (длина × ширина × высота) 1040 × 1030 × 1100 мм, масса 100 кг.

Таким образом воспроизведение магнитной индукции слабых постоянных магнитных полей в мерах магнитной индукции для поверки и калибровки магнитометров осуществляется для значений магнитной индукции свыше 10-100 мкТл на основе соленоида, а для значений магнитной индукции ниже 10-100 мкТл на основе систем соосных катушек, чаще всего катушек Гельмгольца. Для мер на основе соленоида неоднородность магнитной индукции в рабочей области составляет \pm 0,1-0,3 %, при отношении размеров рабочей области к габаритным размерам соленоида \approx 1 к 30. Для мер на основе систем соосных катушек постоя составляет \pm 0,007-0,7 %, при отношении размеров рабочей области к габаритным размеров катушек от \approx 1 к 20 до \approx 1 к 5. Пределы допускаемой относительной погрешности воспроизведения единицы магнитной индукции постоянного магнитного поля варьируются от \pm 2 % до \pm 0,02 % и зависят в первую очередь от характеристик источника тока, питающего катушки.

1.3 Общие принципы воспроизведения магнитной индукции слабого постоянного магнитного поля

1.3.1 Соленоид

Одним из наиболее простых способов создания области однородного магнитного поля является использование соленоида – рисунок 1.5.

Математический расчет параметров соленоида и создаваемое им магнитное поле описано в работе [62].

22

Рисунок 1.5 – Соленоид

Магнитное поле вдоль оси симметрии соленоида (ось *Z*) рассчитывается по формуле:

$$B(z) = \frac{\mu_0 N I}{2} (\cos \alpha_2 - \cos \alpha_1) \tag{1.1}$$

$$\cos \alpha_{1} = \frac{L/2 + z}{\sqrt{\left(L/2 + z\right)^{2} + R^{2}}}$$
(1.2)

$$\cos \alpha_2 = \frac{L/2 - z}{\sqrt{(L/2 - z)^2 + R^2}}$$
(1.3)

где $\mu_0 = 4\pi \cdot 10^{-7}$ – магнитная постоянная, Гн/м;

N-количество витков в соленоиде;

I – сила тока в обмотке соленоида, А;

L – длина соленоида, м;

R – радиус соленоида, м;

 α_1, α_2 – углы между радиус-векторами из точки *z* к крайним виткам соленоида, рад.

Магнитное поле в центре соленоида будет вычисляться по формуле:

$$B_0 = \frac{\mu_0 I N}{L} \tag{1.4}$$

Чтобы расширить область однородности магнитного поля соленоида, приходится увеличивать длину соленоида, что приводит к значительному увеличению его габаритов и индуктивности. Так как требуется обеспечить соблюдение условия, что длина соленоида больше его радиуса минимум в 10 раз, соленоид становится неудобным в применении при размещении в его геометрическом центре датчиков магнитного поля [63-64].

1.3.2 Катушки Гельмгольца

Одним из наиболее часто встречающихся в литературе способов генерации однородного магнитного поля является применение круглых и квадратных катушек Гельмгольца [65-66].

Катушки Гельмгольца получили широкое распространение из-за простоты расчетов и изготовления. Катушки Гельмгольца представляют собой систему, состоящую из двух катушек, в которой величина радиуса катушек равна расстоянию между ними. Геометрия конструкции круглых катушек Гельмгольца приведена на рисунке 1.6.

Рисунок 1.6 – Катушки Гельмгольца

Магнитное поле вдоль оси симметрии катушек Гельмгольца (ось *Z*) рассчитывается по формуле:

$$B(z) = \frac{\mu_0 N I R^2}{2} \left\{ \left[\left(z + h / 2 \right)^2 + R^2 \right]^{-\frac{3}{2}} + \left[\left(z - h / 2 \right)^2 + R^2 \right]^{-\frac{3}{2}} \right\}$$
(1.5)

где h – высота от геометрического центра системы до центра катушки, м.

N – количество витков в катушках;

I – сила тока, протекающего через катушки, А;

R – радиус катушек, м;

Аксиальная компонента $B_z(\rho, \phi, z)$ вектора магнитной индукции в любой точки пространства для катушек Гельмгольца рассчитывается по формуле:

$$B_{z}(\rho,\phi,z) = \frac{\mu_{0}NI}{4\pi} \left[\int_{0}^{2\pi} \frac{R^{2} - \rho R \cos(\theta - \phi) d\theta}{\left[\rho^{2} + R^{2} - 2\rho R \cos(\theta - \phi) + (z + h/2)^{2} \right]^{\frac{3}{2}}} + \int_{0}^{2\pi} \frac{R^{2} - \rho R \cos(\theta - \phi) d\theta}{\left[\rho^{2} + R^{2} - 2\rho R \cos(\theta - \phi) + (z - h/2)^{2} \right]^{\frac{3}{2}}} \right]$$
(1.6)

где ρ , ϕ , *z*-тройка чисел цилиндрической системы координат, м, град, м.

Магнитное поле в геометрическом центре системы (*z*=0) катушек Гельмгольца определяется выражением:

$$B(0) = \frac{\mu_0 I N (4/5)^{\frac{3}{2}}}{2R}$$
(1.7)

Относительная неоднородность магнитного поля вдоль на оси симметрии *z* будет определяться по формуле (1.8):

$$\delta_{z} = \frac{\left(\left| B(z) - B(0) \right| \right)}{B(0)} \cdot 100 \,. \tag{1.8}$$

На рисунке 1.7 приведен график относительной неоднородности δ_z(z/R) магнитного поля, создаваемого катушками Гельмгольца.

Несмотря на простоту изготовления катушек Гельмгольца, к их ключевому недостатку относится достаточно малый объем создаваемого однородного поля в сравнение со своими геометрическими размерами. Увеличение области однородности магнитного поля требует увеличение габаритных размеров катушек.

Увеличить объем однородного поля можно за счет увеличения числа катушек в системе, так были спроектированы катушки Максвелла, Браунбека, Бэкера, МакКихана, Гаррета, Меррита и др [67].

Рисунок 1.7 – Неоднородность δ_z(z/R) магнитного поля, создаваемого катушками Гельмгольца

1.3.3 Катушки Максвелла

Система катушек Максвелла состоит из трех катушек, расположенных параллельно вдоль одной оси. Размеры катушек вписаны в окружность. Конструкция системы приведена на рисунке 1.8.

Рисунок 1.8 – Катушки Максвелла

Соотношение радиуса внешних катушек R к радиусу центральной катушки R_0 определяется выражением:

$$R = \sqrt{\frac{4}{7}}R_0 \tag{1.9}$$

Межосевое расстояние *h* рассчитывается по формуле:

$$h = \sqrt{\frac{3}{7}}R_0 \tag{1.10}$$

Для создания однородного магнитного поля при помощи катушек Максвелла, соотношения количества витков центральной катушки к боковым катушкам должно быть 64 к 49.

Магнитное поле вдоль оси симметрии катушек Максвелла рассчитывается по формуле:

$$B(z) = \frac{\mu_0 N_0 I R_0^2}{2} \left(z^2 + R_0^2 \right)^{-\frac{3}{2}} + \frac{\mu_0 N I R^2}{2} \left\{ \left[\left(z + h \right)^2 + R^2 \right]^{-\frac{3}{2}} + \left[\left(z - h \right)^2 + R^2 \right]^{-\frac{3}{2}} \right\}$$
(1.11)

Аксиальная компонента $B_z(\rho, \phi, z)$ вектора магнитной индукции в любой точки пространства для катушек Максвелла рассчитывается по формуле:

$$B_{z}(\rho,\phi,z) = \frac{\mu_{0}NI}{4\pi} \left[\int_{0}^{2\pi} \frac{R^{2} - \rho R\cos(\theta - \phi)d\theta}{\left[\rho^{2} + R^{2} - 2\rho R\cos(\theta - \phi) + (z + h)^{2}\right]^{\frac{3}{2}}} + \int_{0}^{2\pi} \frac{R^{2} - \rho R\cos(\theta - \phi)d\theta}{\left[\rho^{2} + R^{2} - 2\rho R\cos(\theta - \phi) + (z - h)^{2}\right]^{\frac{3}{2}}} + (1.12) + \int_{0}^{2\pi} \frac{R^{2} - \rho R\cos(\theta - \phi) + (z - h)^{2}}{\left[\rho^{2} + R^{2} - 2\rho R\cos(\theta - \phi) + (z - h)^{2}\right]^{\frac{3}{2}}} \right]$$

Магнитное поле в геометрическом центре определяется согласно выражению:

$$B_{0} = \frac{\mu_{0} N_{0} I R_{0}^{2}}{2} R_{0}^{2-\frac{3}{2}} + \mu_{0} N I R^{2} \left(h^{2} + R^{2}\right)^{-\frac{3}{2}}$$
(1.13)

На рисунке 1.9 приведен график относительной неоднородности δ_z(z/R) магнитного поля, создаваемого катушками Максвелла.

Рисунок 1.9 – Неоднородность δ_z(z/R) магнитного поля, создаваемого катушками Максвелла

1.3.4 Катушки Браунбека

Дальнейшее увеличение однородности ведет к добавлению четвертой катушки в систему. Одним из примеров таких катушек являются катушки Браунбека. В данной системе катушки большего радиуса R_1 располагаются на расстоянии h_1 от центра, в то время как боковые катушки меньшего радиуса R_2 размещаются на расстоянии h_2 . Все катушки вписаны в поверхность эллипсоида [67-68]. Геометрия катушек Браунбека приведена на рисунке 1.10.

Рисунок 1.10 – Катушки Браунбека

При проектировании катушек Браунбека необходимо выдержать ряд соотношений. Зависимость расстояния от радиуса внешних катушек определяется выражением:

$$h_2 = 1,107 \cdot R_2 \tag{1.14}$$

Радиусы внутренних катушек соотносятся с радиусом внешних пар катушек согласно следующему выражению:

$$R_1 = 1,309 \cdot R_2 \tag{1.15}$$

Отношение расстояния от центра системы до центра внутренних пар катушек к радиусу внешних катушек:

$$h_1 = 0,364 \cdot R_2 \tag{1.16}$$

Зависимость расстояния h_1 к радиусу внутренних катушек:

$$h_{\rm l} = 0,278 \cdot R_{\rm l} \tag{1.17}$$

Соотношение числа витков у катушек Браунбека одинаковое. Магнитное поле вдоль оси симметрии катушек Браунбека рассчитывается по формуле:

$$B(z) = \frac{\mu_0 N I R_1^2}{2} \left\{ \left[\left(z + h_1 \right)^2 + R_1^2 \right]^{-\frac{3}{2}} + \left[\left(z - h_1 \right)^2 + R_1^2 \right]^{-\frac{3}{2}} \right\} + \frac{\mu_0 N I R_2^2}{2} \left\{ \left[\left(z + h_2 \right)^2 + R_2^2 \right]^{-\frac{3}{2}} + \left[\left(z - h_2 \right)^2 + R_2^2 \right]^{-\frac{3}{2}} \right\}$$
(1.18)

Аксиальная компонента $B_z(\rho, \phi, z)$ вектора магнитной индукции в любой точки пространства для катушек Браунбека рассчитывается по формуле:

1

$$B_{z}(\rho,\phi,z) = \frac{\mu_{0}NI}{4\pi} \left[\int_{0}^{2\pi} \frac{R_{1}^{2} - \rho R_{1}\cos(\theta - \phi)d\theta}{\left[\rho^{2} + R_{1}^{2} - 2\rho R_{1}\cos(\theta - \phi) + (z + h_{1})^{2}\right]^{\frac{3}{2}}} + \int_{0}^{2\pi} \frac{R_{1}^{2} - \rho R_{1}\cos(\theta - \phi)d\theta}{\left[\rho^{2} + R_{1}^{2} - 2\rho R_{1}\cos(\theta - \phi) + (z - h_{1})^{2}\right]^{\frac{3}{2}}} + \int_{0}^{2\pi} \frac{R_{2}^{2} - \rho R_{2}\cos(\theta - \phi)d\theta}{\left[\rho^{2} + R_{2}^{2} - 2\rho R_{2}\cos(\theta - \phi) + (z - h_{2})^{2}\right]^{\frac{3}{2}}} + \frac{1}{2\pi} \frac{R_{2}^{2} - \rho R_{2}\cos(\theta - \phi) + (z - h_{2})^{2}}{\left[\rho^{2} + R_{2}^{2} - 2\rho R_{2}\cos(\theta - \phi) + (z - h_{2})^{2}\right]^{\frac{3}{2}}} + \frac{1}{2\pi} \frac{R_{2}^{2} - \rho R_{2}\cos(\theta - \phi) + (z - h_{2})^{2}}{\left[\rho^{2} + R_{2}^{2} - 2\rho R_{2}\cos(\theta - \phi) + (z - h_{2})^{2}\right]^{\frac{3}{2}}} + \frac{1}{2\pi} \frac{R_{2}^{2} - \rho R_{2}\cos(\theta - \phi) + (z - h_{2})^{2}}{\left[\rho^{2} + R_{2}^{2} - 2\rho R_{2}\cos(\theta - \phi) + (z - h_{2})^{2}\right]^{\frac{3}{2}}} + \frac{1}{2\pi} \frac{R_{2}^{2} - \rho R_{2}\cos(\theta - \phi) + (z - h_{2})^{2}}{\left[\rho^{2} + R_{2}^{2} - 2\rho R_{2}\cos(\theta - \phi) + (z - h_{2})^{2}\right]^{\frac{3}{2}}} + \frac{1}{2\pi} \frac{R_{2}^{2} - \rho R_{2}\cos(\theta - \phi) + (z - h_{2})^{2}}{\left[\rho^{2} + R_{2}^{2} - 2\rho R_{2}\cos(\theta - \phi) + (z - h_{2})^{2}\right]^{\frac{3}{2}}} + \frac{1}{2\pi} \frac{R_{2}^{2} - \rho R_{2}\cos(\theta - \phi) + (z - h_{2})^{2}}{\left[\rho^{2} + R_{2}^{2} - 2\rho R_{2}\cos(\theta - \phi) + (z - h_{2})^{2}\right]^{\frac{3}{2}}} + \frac{1}{2\pi} \frac{R_{2}^{2} - \rho R_{2}\cos(\theta - \phi) + (z - h_{2})^{2}}{\left[\rho^{2} + R_{2}^{2} - 2\rho R_{2}\cos(\theta - \phi) + (z - h_{2})^{2}\right]^{\frac{3}{2}}} + \frac{1}{2\pi} \frac{R_{2}^{2} - \rho R_{2}\cos(\theta - \phi) + (z - h_{2})^{2}}{\left[\rho^{2} + R_{2}^{2} - 2\rho R_{2}\cos(\theta - \phi) + (z - h_{2})^{2}\right]^{\frac{3}{2}}} + \frac{1}{2\pi} \frac{R_{2}^{2} - \rho R_{2}\cos(\theta - \phi) + \frac{1}{2\pi}$$

Магнитное поле в центре системы катушек Браунбека вычисляется согласно выражению:

$$B_{0} = \mu_{0} N I \left[R_{1}^{2} \left(h_{1}^{2} + R_{1}^{2} \right)^{-\frac{3}{2}} + R_{2}^{2} \left(h_{2}^{2} + R_{2}^{2} \right)^{-\frac{3}{2}} \right]$$
(1.20)

На рисунке 1.11 приведен график относительной неоднородности δ_z(z/R) магнитного поля, создаваемого катушками Браунбека.

Рисунок 1.11 – Неоднородность δ_z(z/R) магнитного поля, создаваемого катушками Браунбека

1.3.5 Катушки Бэкера

Система катушек Бэкера состоит из четырех соосных катушек одинакового диаметра. Геометрия катушек Бэкера представлена на рисунке 1.12. Число витков внешних катушек больше числа внутренних в 2,26044 раза [64, 67]. Расстояния пар катушек от центра определяются согласно выражениям:

$$h_1 = \pm 0,243186 \cdot R \tag{1.21}$$

$$h_2 = \pm 0,940733 \cdot R \tag{1.22}$$

Магнитная индукция вдоль оси симметрии катушек Бэкера определяется выражением:

$$B(z) = \frac{\mu_0 N_1 I R^2}{2} \left\{ \left[\left(z + h_1 \right)^2 + R^2 \right]^{-\frac{3}{2}} + \left[\left(z - h_1 \right)^2 + R^2 \right]^{-\frac{3}{2}} \right\} + \frac{\mu_0 N_2 I R^2}{2} \left\{ \left[\left(z + h_2 \right)^2 + R^2 \right]^{-\frac{3}{2}} + \left[\left(z - h_2 \right)^2 + R^2 \right]^{-\frac{3}{2}} \right\}$$
(1.23)

Рисунок 1.12 – Катушки Бэкера

Аксиальная составляющая вектора магнитной индукции $B_z(\rho, \phi, z)$ вычисляется по формуле:

$$B_{z}(\rho,\phi,z) = \frac{\mu_{0}N_{1}I}{4\pi} \left[\int_{0}^{2\pi} \frac{R^{2} - \rho R\cos(\theta - \phi)d\theta}{\left[\rho^{2} + R^{2} - 2\rho R\cos(\theta - \phi) + (z + h_{1})^{2}\right]^{\frac{3}{2}}} + \frac{1}{2} + \int_{0}^{2\pi} \frac{R^{2} - \rho R\cos(\theta - \phi)d\theta}{\left[\rho^{2} + R^{2} - 2\rho R\cos(\theta - \phi) + (z - h_{1})^{2}\right]^{\frac{3}{2}}} \right] + (1.24) + \frac{\mu_{0}N_{2}I}{4\pi} \left[\int_{0}^{2\pi} \frac{R^{2} - \rho R\cos(\theta - \phi)d\theta}{\left[\rho^{2} + R^{2} - 2\rho R\cos(\theta - \phi) + (z - h_{2})^{2}\right]^{\frac{3}{2}}} + \frac{1}{2} + \int_{0}^{2\pi} \frac{R^{2} - \rho R\cos(\theta - \phi)d\theta}{\left[\rho^{2} + R^{2} - 2\rho R\cos(\theta - \phi) + (z - h_{2})^{2}\right]^{\frac{3}{2}}} \right]$$

Магнитная индукция в центре катушек вычисляется по формуле:

$$B_{0} = \mu_{0} I \left[N_{1} R^{2} \left(h_{1}^{2} + R^{2} \right)^{-\frac{3}{2}} + N_{2} R^{2} \left(h_{2}^{2} + R^{2} \right)^{-\frac{3}{2}} \right]$$
(1.25)

На рисунке 1.13 приведен график относительной неоднородности δ_z(z/R) магнитного поля, создаваемого катушками Бэкера.

Рисунок 1.13 – Неоднородность δ_z(z/R) магнитного поля, создаваемого катушками Бэкера

Данная конструкция катушек обеспечивает объем однородности примерно вдвое больший, чем катушки Гельмгольца.

1.3.6 Катушки МакКихана

Катушки МакКихана схожи по своей конструкции с системой катушек Браунбека. Отличительным свойством является то, что катушки вписаны в окружность, а не в эллипс. Расчет параметров катушки МакКихана приведен в статье [69]. Конструкция геометрии катушек МакКихана представлен на рисунке 1.14.

Соотношение радиусов внешних и внутренних катушек должно удовлетворять выражению:

$$R_2 = 0,6719 \cdot R_1 \tag{1.26}$$

Отношение расстояний от центра системы к радиусам первой и второй пары катушек, а также отношение числа витков, определяется выражениями:

$$h_{\rm l} = \pm 0,2976 \cdot R_{\rm l} \tag{1.27}$$

$$h_2 = \pm 1,188 \cdot R_2 \tag{1.28}$$

$$N_2 = 0,6821 \cdot N_1 \tag{1.29}$$

Рисунок 1.14 – Катушки МакКихана

Магнитная индукция вдоль оси симметрии катушек МакКихана рассчитывается по формуле:

$$B(z) = \frac{\mu_0 N_1 I R_1^2}{2} \left\{ \left[\left(z + h_1 \right)^2 + R_1^2 \right]^{-\frac{3}{2}} + \left[\left(z - h_1 \right)^2 + R_1^2 \right]^{-\frac{3}{2}} \right\} + \frac{\mu_0 N_2 I R_2^2}{2} \left\{ \left[\left(z + h_2 \right)^2 + R_2^2 \right]^{-\frac{3}{2}} + \left[\left(z - h_2 \right)^2 + R_2^2 \right]^{-\frac{3}{2}} \right\}$$
(1.30)

Аксиальная компонента $B_z(\rho,\phi,z)$ вектора магнитной индукции в любой точке пространства для катушек МакКихана рассчитывается по формуле:

/

$$B_{z}(\rho,\phi,z) = \frac{\mu_{0}N_{1}I}{4\pi} \left[\int_{0}^{2\pi} \frac{R_{1}^{2} - \rho R_{1}\cos(\theta - \phi)d\theta}{\left[\rho^{2} + R_{1}^{2} - 2\rho R_{1}\cos(\theta - \phi) + (z + h_{1})^{2}\right]^{\frac{3}{2}}} + \frac{1}{2\pi} \frac{R_{1}^{2} - \rho R_{1}\cos(\theta - \phi)d\theta}{\left[\rho^{2} + R_{1}^{2} - 2\rho R_{1}\cos(\theta - \phi) + (z - h_{1})^{2}\right]^{\frac{3}{2}}} \right] + (1.31)$$

$$+ \frac{\mu_{0}N_{2}I}{4\pi} \left[\int_{0}^{2\pi} \frac{R_{2}^{2} - \rho R_{2}\cos(\theta - \phi)d\theta}{\left[\rho^{2} + R_{2}^{2} - 2\rho R_{2}\cos(\theta - \phi) + (z - h_{2})^{2}\right]^{\frac{3}{2}}} + \frac{1}{2\pi} \frac{R_{2}^{2} - \rho R_{2}\cos(\theta - \phi)d\theta}{\left[\rho^{2} + R_{2}^{2} - 2\rho R_{2}\cos(\theta - \phi) + (z - h_{2})^{2}\right]^{\frac{3}{2}}} \right]$$

На рисунке 1.15 приведен график относительной неоднородности δ_z(z/R) магнитного поля, создаваемого катушками МакКихана.

Рисунок 1.15 – Неоднородность δ_z(z/R) магнитного поля, создаваемого катушками МакКихана

1.3.7 Катушки Гаррета

Для создания однородного магнитного поля также применяются катушки Гаррета, конструкция которых показана на рисунке 1.16. Катушки Гаррета состоят из четырех катушек, попарно разнесённых на равное расстояние от центра симметрии.

Рисунок 1.16 – Катушки Гаррета

Соотношение радиусов внешних и внутренних катушек должно удовлетворять выражению:

$$R_1 = 0,265226 \cdot R_2 \tag{1.32}$$

Число витков внутренних обмоток соотносится с числом витков внешних обмоток согласно выражению:

$$N_1 = 0,024533 \cdot N_2 \tag{1.33}$$

Расстояние от центра определяется выражением:

$$h = \pm 0,4347 \cdot R_2$$
 (1.34)

Магнитная индукция вдоль оси симметрии катушек Гаррета рассчитывается по формуле:

$$B(z) = \frac{\mu_0 N_1 I R_1^2}{2} \left\{ \left[\left(z + h \right)^2 + R_1^2 \right]^{-\frac{3}{2}} + \left[\left(z - h \right)^2 + R_1^2 \right]^{-\frac{3}{2}} \right\} + \frac{\mu_0 N_2 I R_2^2}{2} \left\{ \left[\left(z + h \right)^2 + R_2^2 \right]^{-\frac{3}{2}} + \left[\left(z - h \right)^2 + R_2^2 \right]^{-\frac{3}{2}} \right\}$$
(1.35)

Аксиальная составляющая вектора магнитной индукции $B_z(\rho,\phi,z)$ определяется по формуле:

$$B_{z}(\rho,\phi,z) = \frac{\mu_{0}N_{1}I}{4\pi} \left[\int_{0}^{2\pi} \frac{R_{1}^{2} - \rho R_{1}\cos(\theta - \phi)d\theta}{\left[\rho^{2} + R_{1}^{2} - 2\rho R_{1}\cos(\theta - \phi) + (z + h)^{2}\right]^{\frac{3}{2}}} + \frac{1}{2} + \int_{0}^{2\pi} \frac{R_{1}^{2} - \rho R_{1}\cos(\theta - \phi)d\theta}{\left[\rho^{2} + R_{1}^{2} - 2\rho R_{1}\cos(\theta - \phi) + (z - h)^{2}\right]^{\frac{3}{2}}} \right] + \frac{1}{4\pi} \left[\int_{0}^{2\pi} \frac{R_{2}^{2} - \rho R_{2}\cos(\theta - \phi)d\theta}{\left[\rho^{2} + R_{2}^{2} - 2\rho R_{2}\cos(\theta - \phi) + (z - h)^{2}\right]^{\frac{3}{2}}} + \frac{1}{4\pi} + \int_{0}^{2\pi} \frac{R_{2}^{2} - \rho R_{2}\cos(\theta - \phi)d\theta}{\left[\rho^{2} + R_{2}^{2} - 2\rho R_{2}\cos(\theta - \phi) + (z - h)^{2}\right]^{\frac{3}{2}}} \right]$$

$$(1.36)$$

На рисунке 1.17 приведен график относительной неоднородности δ_z(z/R) магнитного поля, создаваемого катушками Гаррета.

Рисунок 1.17 – Неоднородность δ_z(z/R) магнитного поля, создаваемого катушками Гаррета

По своей сути катушки Гаррета являются примером построения компенсационных систем для воспроизведения однородного магнитного поля, в которых неоднородность первой пары катушек компенсируется второй парой другого диаметра, находящейся на том же расстояние от геометрического центра, что и первая пара.

1.3.8 Квадратные катушки Гельмгольца

На ряду с круглыми системами катушек применяют и квадратные, на рисунке 1.18 приведена конструкция геометрии квадратных катушек Гельмгольца.

Рисунок 1.18 – Квадратные катушки Гельмгольца
Для квадратных катушек Гельмгольца соотношение расстояния между катушками определяется как:

$$h = 0,27225 \cdot d \tag{1.37}$$

где *d* – длина стороны катушки, м.

Магнитное поле вдоль оси симметрии квадратных катушек Гельмгольца рассчитывается по формуле.

$$B(z) = \frac{\mu_0 N I d^2}{4\pi} \left(\frac{1}{\left[d^2 / 4 + (z+h)^2 \right] \sqrt{d^2 / 2 + (z+h)^2}} + \frac{1}{\left[d^2 / 4 + (z-h)^2 \right] \sqrt{d^2 / 2 + (z-h)^2}} \right)$$
(1.38)

На рисунке 1.19 приведен график относительной неоднородности δ_z(z/(R=d)) магнитного поля, создаваемого квадратными и круглыми катушками Гельмгольца.

Рисунок 1.19 – Неоднородность δ_z(z/(R=d)) магнитного поля, создаваемого квадратными (а) и круглыми (б) катушками Гельмгольца

Дальнейшем совершенствованием квадратных систем катушек являются трех- и четырехкатушечные системы Меррита [70] и пятикатушечная система Рубена [71].

1.3.9 Катушка Меррита

При высокой сложности изготовления, катушки Меррита обеспечивают большую область однородности, чем квадратные катушки Гельмгольца. На рисунке 1.20 представлена трёхкатушечная система Меррита.

Рисунок 1.20 – Трехкатушечная система Меррита

Внешние катушки равноудалены от центральной катушки на расстояние h. Соотношения расстояния h к длине стороны катушки d должно удовлетворять выражению:

$$h = 0,410558 \cdot d \tag{1.39}$$

При этом отношение ампер-витков внутренней катушки относится к числу витков внешних катушек следующим образом:

$$N_1 = 0,512797 \cdot N_2 \tag{1.40}$$

С учетом выражения (1.39) и условием равенства тока в катушках, магнитное поле вдоль оси симметрии трехкатушечной системы Меррита рассчитывается по формуле:

$$B(z) = \frac{\mu_0 I d^2}{4\pi} \left\{ \frac{N_1}{\left[\frac{d}{4}^2 + z^2\right]} \sqrt{\frac{d}{2}^2 + z^2} + \frac{N_2}{\left[\frac{d}{4}^2 + (z+h_1)^2\right]} \sqrt{\frac{d}{2}^2 + (z+h_1)^2} + \frac{N_2}{\left[\frac{d}{4}^2 + (z-h_2)^2\right]} + \frac{N_2}{\left[\frac{d}{4}^2 + (z-h_2)^2\right]} \sqrt{\frac{d}{2}^2 + (z-h_2)^2} \right\}$$
(1.41)

На рисунке 1.21 представлена четырехкатушечная система Меррита.

Рисунок 1.21 – Четырехкатушечная система Меррита

Соотношение расстояния от центра системы до центра внутренних катушек *h*₁ к длине стороны катушки *d* определяется как:

$$h_1 = 0,128106 \cdot d \,. \tag{1.42}$$

Расстояния от центра системы до центра внешних катушек h_2 относится к длине стороны катушки d согласно выражению:

$$h_2 = 0,505492 \cdot d \,. \tag{1.43}$$

Соотношение количества витков внутренних катушек *N*₁ к внешним катушкам *N*₂ определяется выражением:

$$N_1 = 0,423511 \cdot N_2. \tag{1.44}$$

С учетом выражения (1.43) и условием равенства тока в катушках, магнитное поле вдоль оси симметрии четырехкатушечной системы Меррита рассчитывается по формуле:

$$B(z) = \frac{\mu_0 I d^2}{4\pi} \left\{ \frac{N_1}{\left[\frac{d^2}{4} + (z+h_1)^2\right] \sqrt{\frac{d^2}{2} + (z+h_1)^2}} + \frac{N_1}{\left[\frac{d^2}{4} + (z-h_1)^2\right] \sqrt{\frac{d^2}{2} + (z-h_1)^2}} + \frac{N_2}{\left[\frac{d^2}{4} + (z+h_2)^2\right] \sqrt{\frac{d^2}{2} + (z+h_2)^2}} + \frac{N_2}{\left[\frac{d^2}{4} + (z-h_2)^2\right] \sqrt{\frac{d^2}{2} + (z-h_2)^2}} \right\}$$
(1.45)

На рисунке 1.22 приведен график относительной неоднородности $\delta_z(z/(R=d))$ магнитного поля, создаваемого трёх- и четырехкатушечными системами Меррита.

Рисунок 1.22 – Неоднородность δ_z(z/(R=d)) магнитного поля, создаваемого трёх- и четырехкатушечными системами Меррита

Одна из областей применения катушек Меррита описана в статье [72], в которой в рамках пилотного проекта ARRIMORA проводились исследования влияния низкочастотного магнитного поля на организм человека.

1.3.10 Катушки Рубена

Система катушек Рубена является усовершенствованной версией четырехкатушечкной системы Меррита. На рисунке 1.23 приведена геометрия катушек Рубена. Данная система состоит из пяти катушек, одна их которых расположена в геометрическом центре системы, две внутренние на расстоянии 1/4 длины стороны катушки *d*, а две внешние на расстоянии 1/2 длины стороны катушки *d*. Отношение витков катушек такой системы должно быть пропорционально следующим числам [71]:

$$N_1 / N_2 / N_3 = 10 / 4 / 19$$
 (1.45)

Рисунок 1.23 – Пятикатушечная система Рубена

Магнитное поле вдоль оси симметрии катушек Рубена рассчитывается по формуле:

$$B(z) = \frac{\mu_0 I d^2}{4\pi} \left(\frac{N_1}{\left[\frac{d}{4}^2 + z^2\right]} \sqrt{\frac{d}{2}^2 + z^2} + \frac{N_2}{\left[\frac{d}{4}^2 + \left(z + \frac{d}{4}\right)^2\right]} \sqrt{\frac{d}{2}^2 + \left(z + \frac{d}{4}\right)^2} + \frac{N_2}{\left[\frac{d}{4}^2 + \left(z - \frac{d}{4}\right)^2\right]} \sqrt{\frac{d}{2}^2 + \left(z - \frac{d}{4}\right)^2} + \frac{N_3}{\left[\frac{d}{4}^2 + \left(z + \frac{d}{2}\right)^2\right]} \sqrt{\frac{d}{2}^2 + \left(z + \frac{d}{2}\right)^2} + \frac{N_3}{\left[\frac{d}{4}^2 + \left(z - \frac{d}{2}\right)^2\right]} \sqrt{\frac{d}{2}^2 + \left(z - \frac{d}{2}\right)^2}} \right)$$
(1.47)

На рисунке 1.24 приведен график относительной неоднородности δ_z(z/(R=d)) магнитного поля, создаваемого катушками Рубена.

На рисунке 1.25 приведены графики относительной неоднородности δ_z(z/R=d) магнитного поля, создаваемого круглыми катушками Гельмгольца, круглыми системами трех катушек Максвелла и четырех катушек Браунбека, Бэкера, МакКихана, Гаррета, квадратными четырехкатушечной системой Меррита и пятикатушечной системой Рубена.

Рисунок 1.24 – Неоднородность δ_z(z/(R=d)) магнитного поля, создаваемого катушками Рубена

Системы катушек: (а) – Гельмгольца; (б) – Максвелла; (в) – Браунбека; (г) – Бэкера; (д) – МакКихана; (е) – Гаррета; (ж) – Меррита; (и) – Рубена.

Рисунок 1.25 – Неоднородность $\delta_z(z/(R=d))$ магнитного поля, создаваемого систе-

мами катушек

По сравнению с круглыми системами катушек для создания однородного магнитного поля, квадратные системы являются более сложными в расчете и изготовлении, так как расчетные коэффициенты соотношений количества витков и расстояний между катушками имеют большое количество значащих цифр в дробной части. Таким образом, при практической реализации объем однородности магнитного поля будет меньше расчетного. Круглые системы катушек дают большую однородность, чем квадратные системы, при близких габаритных размерах.

Помимо круглых и квадратных систем аксиальных катушек, в литературе встречаются аксиальные треугольные системы [73] и системы радиальных катушек [74], объем однородности магнитного поля которых сопоставим с круглыми и квадратными системами катушек.

Наиболее простым с точки зрения расчетов и дальнейшей практической реализации является создание системы катушек одинаково радиуса. Увеличение объема однородности в такой системе добиваются увеличением числа отдельных катушек. Примером такой системы являются катушки Бэкера или улучшенные катушки Максвелла, исследованные в работе [75].

1.3.11 Многокатушечные системы

В работе [76] представлен алгоритм расчета многокатушечных систем одинакового радиуса, и показана принципиальная возможность изготовления восьмикатушечной системы аксиальных катушек радиусом 55 мм.

Алгоритм заключается в следующем: при расчёте систем, состоящих из n пар симметрично расположенных от центра системы катушек, необходимо вычислить n неизвестных расстояний h от симметричной пары катушек до центра системы и (n - 1) неизвестных коэффициентов k, определяющих число витков в соответствующих парах катушек как kN.

Для вычисления неизвестных параметров многокатушечной системы необходимо выражение вида:

43

$$B(z) = 0.5\mu_0 INR^2 \left\{ \left[R^2 + (z+h_1)^2 \right]^{-3/2} + \left[R^2 + (z-h_1)^2 \right]^{-3/2} + k_1 \left[R^2 + (z+h_2)^2 \right]^{-3/2} + k_1 \left[R^2 + (z-h_2)^2 \right]^{-3/2} + \dots \right]$$

$$\dots + k_{n-1} \left[R^2 + (z+h_n)^2 \right]^{-3/2} + k_{n-1} \left[R^2 + (z-h_n)^2 \right]^{-3/2} \right\},$$
(1.48)

для заданного числа пар симметрично распложенных катушек разложить в ряд Тейлора, и составить систему нелинейных дифференциальных уравнений вида:

$$\begin{cases} B^{(2)}(z=0) = 0\\ \dots & .\\ B^{(4n-2)}(z=0) = 0 \end{cases}$$
(1.49)

Точное решение системы нелинейных дифференциальных уравнений (1.49) приводит к вещественным результатам с большим количеством знаков в дробной части.

На практике любая система катушек может быть реализована только с целым числом витков, а с технологической точки зрения расстояния от пар катушек до центра системы должно быть кратными заданному уровню точности изготовления.

Итерационная методика предполагает, что после точного решения системы уравнений (1.49), параметры первой пары катушек округляются с заданной точностью, и расчёт повторяется для меньшего числа параметров. Шаги методики повторяются до тех пор, пока не будут рассчитаны параметры всех пар катушек с целым числом витков и расстояниями до центра системы с заданной точностью.

Неоднородность магнитного поля в изготовленной авторами [76] восьмикатушечной системе на расстояниях одной трети радиуса от центра системы не превышает 0,16 %. Внешний вид системы аксиальных катушек показан на рисунке 1.26.

Рисунок 1.26 – Внешний вид восьмикатушечной системы аксиальных катушек

1.4 Выводы по главе 1

1. Для воспроизведения магнитной индукции слабых магнитных полей применяются источники и меры магнитной индукции. Анализ средств измерений, внесенных в Государственный реестр средств измерений, показал, что в мерах магнитной индукции чаще всего используются катушки Гельмгольца и модификации на их основе.

2. Несмотря на простоту изготовления катушек Гельмгольца, к их ключевому недостатку относится достаточно малый объем создаваемого однородного магнитного поля в сравнение со своими геометрическими размерами. Увеличение области однородности магнитного поля требует увеличение габаритных размеров катушек. Увеличить объем однородного поля можно за счет увеличения числа катушек в системе и изменения конструкции катушек. Так были спроектированы круглые катушки Максвелла, Браунбека, Бэкера, МакКихана, Гаррета, квадратные Гельмгольца, Меррита и Рубена др. Однако расчётные параметры (коэффициенты соотношений количества витков и расстояний между катушками) для систем, состоящих более чем из двух катушек, имеют большое количество значащих цифр в дробной части, что затрудняет их практическую реализацию и достижение расчетного уровня однородности. Особенно это становится критичным при реализации малогабаритных систем катушек. При этом, обычно расчеты систем катушек не

учитывают влияния сечения провода намотки на однородность магнитного поля, а анализ однородности традиционно приводится только вдоль оси симметрии катушек.

3. Одним из направлений совершенствования источников и мер магнитной индукции для воспроизведения слабых магнитных полей может быть расчет многокатушечных систем одинакового радиуса, как наиболее простых в изготовлении. В таких системах увеличение объема однородности достигается увеличением числа отдельных катушек.

4. В ходе диссертационной работы должны быть проведены: аналитический расчет; конечно-элементный анализ, практическая реализация и экспериментальные исследования конструкций систем катушек для воспроизведения магнитной индукции слабого постоянного магнитного поля с высокой степенью однородности.

В соответствии с поставленной целью были сформулированы следующие задачи исследования:

 разработка универсальных аналитических выражений для анализа однородности магнитного поля, создаваемого системами катушек;

 расчет и анализ конструкций систем катушек с высокой степенью однородности магнитного поля с учетом влияния сечения провода намотки катушек на однородность магнитного поля;

– разработка регулируемого источника тока для питания систем катушек;

 изготовление и экспериментальные исследования конструкций систем катушек с высокой степенью однородности для воспроизведения магнитной индукции слабого постоянного магнитного поля.

ГЛАВА 2

РАСЧЁТ И МОДЕЛИРОВАНИЕ СИСТЕМ КАТУШЕК

В настоящей главе описаны методы расчёта магнитного поля систем катушек на основе закона Био-Савара-Лапласа, методик Симпсона, Макдональда и Джексона. Для анализа магнитной индукции систем катушек, создающих однородное магнитное поле, предлагается использовать методику на основе закона Био-Савара-Лапласа, так как данная методика позволяет рассчитать магнитную индукцию в любой точке рассматриваемой системы с одинаковой точностью независимо от геометрии конструкции.

На основе итерационной методики расчёта многокатушечных систем для генерации однородного магнитного поля приводятся расчёты параметров для четырехкатушечной, шестикатушечной, восьмикатушечной и трех вариантов десятикатушечной систем. Для каждой рассчитанной системы катушек проводится анализ однородности магнитного поля. Для подтверждения результатов анализа однородности проводится конечноэлементное моделирование конструкции катушек.

2.1 Методы расчёта магнитного поля систем катушек

2.1.1 Расчёт магнитного поля на основе закона Био-Савара-Лапласа

Согласно закону Био-Савара-Лапласа [77-79], элемент проводника *dl* с током *I* (рисунок 2.1) создает в некоторой точке магнитное поле с индукцией:

$$d\vec{B} = \frac{\mu_0 I}{4\pi} \frac{\left\lfloor d\vec{l} \times \vec{r} \right\rfloor}{r^3}, \qquad (2.1)$$

где dl – вектор, совпадающий с элементом проводника;

 \vec{r} – радиус вектор, проведенный от элемента проводника dl до точки пространства, где производится измерение магнитного поля.

Рисунок 2.1 – Элемент проводника с током

Из рисунка 2.1 видно, что вектор магнитной индукции $d\vec{B}$ направлен перпендикулярно к плоскости, проходящей через элемент проводника $d\vec{l}$, и точку, в которой вычисляется магнитное поле. Вращение вокруг $d\vec{l}$ в направлении $d\vec{B}$ связано с $d\vec{l}$ правилом винта.

Модуль $d\vec{B}$ определяется как:

$$dB = \frac{\mu_0 I}{4\pi} \frac{dl\sin\alpha}{r^2},$$
(2.2)

где α – угол между векторами $d\vec{l}$ и \vec{r} .

Для прямого проводника с током бесконечной длины, показанного на рисунке 2.2, применим формулу 2.1 и вычислим магнитную индукцию, создаваемую этим проводником.

Рисунок 2.2 – Проводник с током бесконечной длины

Определим, чему равны модули векторов $d\vec{l}$ и \vec{r} :

$$r = \frac{b}{\sin \alpha},\tag{0.1}$$

$$dl = \frac{r \, d\alpha}{\sin \alpha} = \frac{b \, d\alpha}{\sin^2 \alpha} \,, \tag{0.2}$$

где *b* – расстояние между проводником и точкой, в которой производится вычисление магнитного поля.

Подставив выражения (2.3) и (2.4) в (2.2) получим:

$$dB = \frac{\mu_0 I}{4\pi} \frac{b \, d\alpha \sin \alpha \sin^2 \alpha}{b^2 \sin^2 \alpha} = \frac{\mu_0 I}{4\pi} \frac{1}{b} \sin \alpha \, d\alpha \,. \tag{2.5}$$

Поскольку рассматривается проводник бесконечной длины, то для получения индукции магнитного поля необходимо интегрировать угол α в диапазоне от 0 до π :

$$B = \int dB = \frac{\mu_0 I}{4\pi} \frac{1}{b} \int_0^{\pi} \sin \alpha \, d\alpha \,. \tag{2.6}$$

Выражение (2.6) позволяет произвести расчёт величины магнитной индукции в любой точке для прямого бесконечного проводника с током.

Рассмотрим магнитное поле, создаваемое контуром с током радиуса R (круговой ток). Каждый элемент $d\vec{l}$, по которому течет ток I, создает в центре индукцию, перпендикулярную плоскости контура – рисунок 2.3.

Рисунок 2.3 – Магнитная индукция в центре контура с током

Таким образом векторное сложение $d\vec{B}$ сводится к сложению их модулей:

$$B = \int dB = \frac{\mu_0 I}{4\pi} \frac{\sin\left(\frac{\pi}{2}\right)}{R^2} \oint dl = \frac{\mu_0 I}{4\pi} \frac{1}{R^2} 2\pi R = \frac{\mu_0 I}{2} \frac{1}{R}.$$
 (2.7)

Определим, чему равен вектор магнитной индукции \vec{B} на оси кругового тока на расстоянии *r* от центра. Векторы $d\vec{B}$ перпендикулярны к плоскостям, проходящим через соответствующий элемент контура $d\vec{l}$, и точку, в которой производится расчет магнитного поля. Таким образом, векторы $d\vec{B}$ образуют симметричный конический веер, как показано на рисунке 2.4.

Рисунок 2.4 – Магнитная индукция вдоль оси симметрии контура с током

Найдем модуль результирующего вектора dB_{II} , который формируется за счёт сложения векторов $d\vec{B}$:

$$dB_{\rm II} = dB\sin\beta = dB\frac{R}{b} = \frac{\mu_0 I}{4\pi} \frac{dl}{b^2} \frac{R}{b} = \frac{\mu_0 I}{4\pi} \frac{R}{b^3} \frac{dl}{b^3}.$$
 (2.8)

Заменим *b* на $\sqrt{R^2 + r^2}$ и проинтегрируем по всему контуру:

$$B = \int dB_{\rm II} = \frac{\mu_0 I}{4\pi} \frac{R}{b^3} \oint dl = \frac{\mu_0 I}{2} \frac{R^2}{\left(R^2 + r^2\right)^{\frac{3}{2}}}.$$
 (2.9)

Формула (2.9) позволяет произвести оценку магнитной индукции, создаваемой контуром с током на оси симметрии.

Существует несколько методов расчёта магнитного поля вне оси симметрии катушек [69]. Наиболее распространенным методом является расчет на основе закона Био-Савара-Лапласа [69, 79]. В декартовой системе координат магнитная индукция для контура с током определяется согласно выражению:

$$\vec{B}(x, y, z) = \frac{\mu_0}{4\pi} \oint \frac{I \, d\vec{l} \times \vec{r}}{\left|\vec{r}\right|^3} = B_x \, \hat{i} + B_y \, \hat{j} + B_x \, \hat{k} \,, \qquad (2.10)$$

где B_x , B_y и B_z – компоненты вектора магнитной индукции в декартовой системе координат;

 \hat{i} , \hat{j} , \hat{k} – единичные векторы в декартовой системе координат.

Для упрощения записи введём постоянную величину:

$$B_{const} = \frac{\mu_0 N I R}{4\pi}, \qquad (2.11)$$

где N – число витков в контуре с током.

Также введём переменную *F*_z, которая представляет собой модуль квадрата радиус-вектора *r*.

$$F_{z} = z^{2} + (x - R\cos\theta)^{2} + (y - R\sin\theta)^{2}.$$
 (2.12)

С учетом выражений (2.10-2.12), компоненты вектора магнитной индукции вычисляются по формулам:

$$B_{x} = R B_{const} \int_{0}^{2\pi} \frac{z \cos \theta}{F_{z}^{3/2}} d\theta.$$
 (2.13)

$$B_{y} = R B_{const} \int_{0}^{2\pi} \frac{z \sin \theta}{F_{z}^{3/2}} d\theta. \qquad (2.14)$$

$$B_{z} = R B_{const} \int_{0}^{2\pi} \frac{R - x\cos\theta - y\sin\theta}{F_{z}^{3/2}} d\theta. \qquad (2.15)$$

Применение закона Био-Савара-Лапласа позволяет производить расчёт компонентов вектора магнитной индукции для любой конфигурации систем катушек. Увеличение количества элементов контура *dl* позволяет повышать

точность расчётов, которая в свою очередь будет ограничиваться только мощностью вычислительной техники.

Помимо расчёта по формулам на основе закона Био-Савара-Лапласа, в литературе также встречается ряд других методик расчёта магнитных полей [80-83], таких как: методика Симпсона, методика Макдональда, методика Джексона и др.

2.1.2 Методика Симпсона для расчёта магнитного поля контура с током

В работе [83] представлена простая аналитическая модель с применением эллиптических интегралов, которая позволяет произвести расчёт магнитного поля для кругового контура с током. Модель также применима для расчёта соленоидов произвольных размеров путем аппроксимации отдельных петель. Векторный потенциал \vec{A}_{ϕ} для контура с током в сферических координатах определяется выражением:

$$\vec{A}_{\varphi}(r,\theta) = \frac{\mu_0 I R}{4\pi} \int_0^{2\pi} \frac{\cos\varphi \, d\varphi}{\sqrt{R^2 + r^2 - 2R r \sin\theta \cos\varphi}} = \frac{\mu_0}{4\pi} \frac{4I R}{\sqrt{R^2 + r^2 + 2R r \sin\theta}} \left[\frac{(2-k^2)K(k^2) - 2E(k^2)}{k^2} \right],$$
(2.16)

где r, θ и ϕ – сферические координаты;

 $K(k^2)$ и $E(k^2)$ – эллиптические интегралы первого и второго рода соответственно;

 k^2 – аргумент эллиптического интеграла.

Аргумент эллиптического интеграла k^2 определяется как:

$$k^{2} = \frac{4Rr\sin\theta}{R^{2} + r^{2} + 2Rr\sin\theta}.$$
 (2.17)

Для постоянного магнитного поля компоненты вектора магнитной индукции рассчитываются согласно выражениям:

$$\vec{B}_r = \frac{1}{r\sin\theta} \frac{\partial}{\partial\theta} \left(\sin\theta \vec{A}_{\varphi}\right), \qquad (2.18)$$

$$\vec{B}_{\theta} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \, \vec{A}_{\varphi} \right), \tag{2.19}$$

$$\vec{B}_{\varphi} = 0. \qquad (2.20)$$

Для упрощения введем следующие обозначения:

$$\alpha^2 = R^2 + r^2 - 2Rr\sin\theta, \qquad (2.21)$$

$$\beta^{2} = R^{2} + r^{2} + 2Rr\sin\theta, \qquad (2.22)$$

$$k^{2} = 1 - \frac{\alpha^{2}}{\beta^{2}}, \qquad (2.23)$$

$$C = \frac{\mu_0 I}{\pi}.$$
 (2.24)

С учетом выражений (2.18-2.24), компоненты вектора магнитной индукции будут определяться согласно формулам:

$$B_r = \frac{CR^2\cos\theta}{\alpha^2\beta}E(k^2), \qquad (2.25)$$

$$B_{\theta} = \frac{C}{2\alpha^2\beta\sin\theta} \Big[\Big(r^2 + R^2\cos 2\theta \Big) E\Big(k^2\Big) - \alpha^2 K\Big(k^2\Big) \Big].$$
(2.26)

Данные выражения применимы для расчета систем катушек с бесконечно тонким проводником, а также для расчета соленоидов произвольной длины. Магнитное поле соленоида может быть легко рассчитано путем аппроксимации результирующей магнитной индукции как суммы индукций отдельных контуров с током [84].

Представленные выше выражения сводятся к известным предельным случаям и удовлетворяют уравнениям Максвелла, а именно закону Гаусса для магнитного поля. Расчет уравнений может быть выполнен при помощи любого высокоуровневого языка программирования. При расчёте необходимо учитывать эллиптические интегралы первого и второго рода. Аналитические выражения по определению магнитной индукции, создаваемой контуром с током в декартовых и цилиндрических координатах, были опубликованы в работах [85-86].

2.1.3 Расчёт магнитного поля по методике Макдональда

Кирк Макдональд вывел выражения для внеосевых значений магнитной индукции азимутально-симметричного магнитного поля кругового контура с током на основе аксиальной составляющей [81]. Компоненты магнитного поля определяются выражениями:

$$B_{z}(\rho, z) = \sum_{n=0}^{\infty} (-1)^{n} \frac{a_{0}^{2n}(z)}{(n!)^{2}} \left(\frac{\rho}{2}\right)^{2n}, \qquad (2.27)$$

$$B_{\rho}(\rho, z) = \sum_{n=0}^{\infty} (-1)^{n+1} \frac{a_0^{(2n+1)}(z)}{(n+1)(n!)^2} \left(\frac{\rho}{2}\right)^{2n+1}, \qquad (2.28)$$

$$a_0^{\ n} = \frac{d^n a_0}{dz^n};$$

$$a_0(z) = B_z(0,0,z).$$
(2.29)

С учетом выражения (2.9) для аксиальной составляющей магнитного поля кругового контура с током, появляется возможность аппроксимации поля в любой точке вне оси симметрии поля. Выведенные выражения точны на оси симметрии поля, но приблизительны вне оси. Точность аппроксимации растёт с увеличением порядка разложения ряда.

2.1.4 Расчет магнитного поля по методике Джексона

Предположим, что магнитное поле оценивается вблизи оси симметрии или далеко от кругового контура с током. Компоненты поля можно разложить следующим образом [82]:

$$B_{r} = \frac{\mu_{0}IR^{2}\cos\theta}{2(R^{2}+r^{2})^{\frac{3}{2}}} \left[1 + \frac{15R^{2}r^{2}\sin\theta}{4(R^{2}+r^{2})^{2}} + \dots\right]$$
(2.30)

$$B_{\theta} = -\frac{\mu_0 I R^2 \sin \theta}{2(R^2 + r^2)^{\frac{5}{2}}} \left[2R^2 - r^2 + \frac{15R^2 r^2 \sin \theta (4R^2 - 3r^2)}{8(R^2 + r^2)^2} + \dots \right] \quad (2.31)$$

При этом $R \gg r$, $R \ll r$ или $\theta \ll 1$ в сферических координатах (r, φ, θ). При невыполнении условия точность данной методики является неудовлетворительной, и она применяться не может.

Помимо описанных методик расчёта магнитных полей для контура с током, существуют другие подходы, описанные в работе [69], имеющие свои преимущества и недостатки. Однако для анализа магнитной индукции систем катушек, создающих однородное магнитное поле, наиболее подходящей является методика на основе закона Био-Савара-Лапласа, поскольку данная методика позволяет рассчитать магнитную индукцию в любой точке рассматриваемой системы с одинаковой точностью независимо от геометрии конструкции.

2.2 Расчет аксиальных катушек

2.2.1 Расчёт магнитного поля двухкатушечной системы

Как было отмечено в первой главе, одним из наиболее простых средств генерации однородного магнитного поля является система, состоящая из двух круглых катушек – катушки Гельмгольца.

Рассмотрим в общем виде расчет круговой двухкатушечной системы для генерации однородного магнитного поля, показанной на рисунке 2.5.

Рисунок 2.5 – Круговая двухкатушечная система

Предположим, что ось симметрии двухкатушечной системы коллинеарна оси 0Z, и катушки находятся на расстоянии $\pm h$ от центра координат.

С учетом выражения (2.1), расчет магнитной индукции пары круглых катушек производится согласно формуле:

$$\vec{B}(x, y, z) = \frac{\mu_0}{4\pi} \oint \frac{I \ d\vec{l}_1 \times \vec{r}_1}{\left|\vec{r}_1\right|^3} + \frac{\mu_0}{4\pi} \oint \frac{I \ d\vec{l}_2 \times \vec{r}_2}{\left|\vec{r}_2\right|^3}, \qquad (2.32)$$

где $d\vec{l}_1$, \vec{r} , $d\vec{l}_2$ и \vec{r}_2 – вектора, соответствующие катушкам с координатами по оси симметрии z=h и z=-h.

При расчёте поля в декартовых координатах результирующий вектор магнитной индукции можно выразить по формуле:

$$\vec{B}(x, y, z) = B_x \hat{i} + B_y \hat{j} + B_z \hat{k} = (B_{x_1} + B_{x_2})\hat{i} + (B_{y_1} + B_{y_2})\hat{j} + (B_{z_1} + B_{z_2})\hat{k}.$$
(2.33)

Упростим выражение (2.33) и запишем:

$$\vec{B}(x, y, z) = \sum_{m=1}^{n} \left(B_{x_m} \, \hat{i} + B_{y_m} \, \hat{j} + B_{z_m} \, \hat{k} \right).$$
(2.34)

Выражение (2.34) является универсальным для любого числа аксиальных катушек. В случае описания двухкатушечной системы коэффициент *n* равен 2.

Введём следующие обозначения для модуля квадрата радиус-вектора r, соответствующих катушкам, расположенным в положительной (F_{m+}) и отрицательной (F_{m-}) части координат:

$$F_{m+} = (z + h_m)^2 + (x - R\cos\theta)^2 + (y - R\sin\theta)^2; \qquad (2.35)$$

$$F_{m-} = (z - h_m)^2 + (x - R\cos\theta)^2 + (y - R\sin\theta)^2.$$
 (2.36)

С учетом выражений 2.11 и 2.32 выразим компоненты вектора магнитной индукции:

$$B_{x_m} = B_{const} \int_{0}^{2\pi} \left(\frac{(z+h_m)\cos\theta}{F_{m+}^{3/2}} + \frac{(z-h_m)\cos\theta}{F_{m-}^{3/2}} \right) d\theta; \qquad (2.37)$$

$$B_{y_m} = B_{const} \int_0^{2\pi} \left(\frac{(z+h_m)\sin\theta}{F_{m+}^{3/2}} + \frac{(z-h_m)\sin\theta}{F_{m-}^{3/2}} \right) d\theta; \qquad (2.38)$$

$$B_{z_m} = B_{const} \int_{0}^{2\pi} \left(\frac{R - x\cos\theta - y\sin\theta}{F_{m^+}^{3/2}} + \frac{R - x\cos\theta - y\sin\theta}{F_{m^-}^{3/2}} \right) d\theta. \quad (2.39)$$

С учетом формулы (2.11) магнитное поле вдоль оси симметрии двухкатушечной системы будет определяться согласно выражению:

$$B(z) = 0.5\mu_0 INR^2 \left\{ \left[\left(z - h \right)^2 + R^2 \right]^{-\frac{3}{2}} + \left[\left(z + h \right)^2 + R^2 \right]^{-\frac{3}{2}} \right\}.$$
 (2.40)

Для расчета расстояния *h* между парой катушек для достижения генерации максимально однородного магнитного поля используется методика разложения в ряд Тейлора, подробно описанная в работе [65].

В общем виде разложение выражения (2.40) в ряд Тейлора будет записываться следующим образом:

$$B(z)|_{|z| \le h} = B_{z}(z=0) + \frac{dB_{z}}{dz}|_{z=0} \cdot z + \frac{1}{2!} \frac{d^{2}B_{z}}{dz^{2}}|_{z=0} \cdot z^{2} + \frac{1}{3!} \frac{d^{3}B_{z}}{dz^{3}}|_{z=0} \cdot z^{3} + \frac{1}{4!} \frac{d^{4}B_{z}}{dz^{4}}|_{z=0} \cdot z^{4} + \dots$$
(2.41)

Поскольку выражение (2.40) является чётной функцией, то её производные нечётного порядка являются нечётными функциями и обращаются в нуль.

Подставив выражение (2.40) в (2.41) получим:

$$B(z) = \frac{\mu_0 I N R^2}{\left(h^2 + R^2\right)^{\frac{3}{2}}} + \frac{3\mu_0 I N R^2 \left(-4h^2 + R^2\right)}{2\left(h^2 + 4R^2\right)^{\frac{7}{2}}} \cdot z^2 + \frac{15\mu_0 I N R^2 \left(8h^4 - 12h^2 R^2 + R^4\right)}{8\left(h^2 + R^2\right)^{\frac{11}{2}}} \cdot z^4 + \dots$$

$$(2.42)$$

Приравняем вторую производную к нулю и выразим отношение радиуса *R* к расстоянию *h*:

$$\frac{d^2 B_z}{d z^2}(0) = \frac{3\mu_0 I N R^2 \left(-4h^2 + R^2\right)}{2\left(h^2 + 4R^2\right)^{\frac{7}{2}}} \cdot z^2 = 0;$$

$$h = \frac{R}{2}.$$
(2.43)

Таким образом, максимальная однородность магнитного поля, создаваемого круговой двухкатушечной системой, будет при расположении катушек на расстояние *R*/2 от центра системы – катушки Гельмгольца, а магнитное поле вдоль оси симметрии будет определяться согласно выражению:

$$B(z) = 0.5\mu_0 INR^2 \left\{ \left[\left(z - \frac{R}{2} \right)^2 + R^2 \right]^{-\frac{3}{2}} + \left[\left(z + \frac{R}{2} \right)^2 + R^2 \right]^{-\frac{3}{2}} \right\}.$$
 (2.44)

Магнитная индукция в геометрическом центре (*z*=0) такой системы будет определяться как:

$$B(0) = \frac{8\mu_0 I N}{5\sqrt{5}\sqrt{R^2}}.$$
 (2.45)

Для аналитической оценки неоднородности магнитного поля, создаваемого круглыми системами катушек, в программном обеспечение Matlab был написан экспресс-калькулятор, реализующий расчет магнитной

индукции по формулам (2.34-2.39) и неоднородности магнитного поля по формуле (2.46):

$$\delta_{z} = \frac{\left(B(z) - B(0)\right)}{B(0)} \cdot 100.$$
 (2.46)

Фрагмент кода программы экспресс-калькулятора для расчета и анализа круглых катушек Гельмгольца показан на рисунке 2.6.

На рисунке 2.7 приведена зависимость неоднородности магнитного поля круглых катушек Гельмгольца вдоль оси Z, рассчитанная аналитически в соответствии с выражением (2.46). Здесь и далее на графиках значения координаты по оси Z и по оси r приведены к радиусу катушки R, если не указанно иное.

Editor - F:\Dropbox\Затонов\Pacчет катушек\Matlab\Circular coil\ll_Helmholtz_TableData.m				
II_Helmholtz_TableData.m 🗶 III_coils_TableData.m 🗶 🕂				
а=0.05;% Радиус катушек, м				
; — N=10; % количество витков в первой паре катушек				
– h=a/2; % Растояние между первой парой катушек,м				
и — mu0=4*pi*le-7; % Марнитная постоянная				
— I=le-3; % Ток через катушки, А				
<pre>const=(a*mu0*I*N)/(4*pi);</pre>				
<pre>x=linspace(-1*a,1*a,41);</pre>				
<pre>y=linspace(-1*a,1*a,41);</pre>				
<pre>z=linspace(-1*a,1*a,41);</pre>				
[X, Z] = meshgrid(x, z);				
<pre>[Y,Z]=meshgrid(y,z);</pre>				
<pre>Bx2=0;By2=0;Bz2=0;</pre>				
- Bx22=0;By22=0;Bz22=0;				
for th=0:pi/20:2*pi				
t2=const./ (sqrt((X-a*cos(th)).^2 + (Y-a*sin(th)).^2 + (Z-h).^2)).^(3);				
= Bx2 = Bx2+t2.*((Z-h)*cos(th));				
By2 = By2+t2.*((Z-h)*sin(th));				
<pre>Bz2 = Bz2+t2.*(a-X*cos(th)-Y*sin(th));</pre>				
<pre>t22=const./ (sqrt((X-a*cos(th)).^2 + (Y-a*sin(th)).^2 + (Z+h).^2)).^(3);</pre>				
$= Bx22 = Bx22+t22.*((Z+h)*\cos(th));$				
<pre>- By22 = By22+t22.*((Z+h)*sin(th));</pre>				
<pre>Bz22 = Bz22+t22.*(a-X*cos(th)-Y*sin(th));</pre>				
end Lend				

Рисунок 2.6 – Фрагмент кода программы экспресс-калькулятор для расчета и

анализа круглых катушек Гельмгольца

На рисунке 2.8 представлен контурный график неоднородности магнитного поля круглых катушек Гельмгольца в диапазоне от 0 до 1 % с шагом 0,1 %.

Рисунок 2.8 – Контурный график неоднородности магнитного поля круглых

катушек Гельмгольца с шагом 0,1 %

60

На рисунке 2.9 представлен контурный график неоднородности магнитного поля круглых катушек Гельмгольца в диапазоне от 0 до 0,1 % с шагом 0,01 %.

Рисунок 2.9 – Контурный график неоднородности магнитного поля круглых катушек Гельмгольца с шагом 0,01 %

Анализ полученных данных показывает, что круглые катушки Гельмгольца обеспечивают неоднородность вдоль оси симметрии в 0,1 % на расстоянии Z/R равном ±17,3 %. Неоднородность до 0,01 % обеспечивается на расстоянии ±9,8 %.

2.2.2 Расчёт многокатушечных систем

Основываясь на итерационной методике расчета многокатушечных систем для генерации однородного магнитного поля, описанной в первой главе, рассчитаем системы круглых катушек, состоящие более чем из одной пары. Все расчёты будем проводить для катушек с заданным радиусом 50 мм при номинальном токе через систему катушек 1 мА, и количестве витков в первой паре катушек N равным 10, с требуемым уровнем неоднородности менее 0,01% на расстояниях $\pm R/2$ от геометрического центра вдоль аксиальной оси системы (ось Z).

Из-за округления параметров катушек и при увеличении числа катушек в системе, итерационная методика расчёта может привести не к единственному конечному результату, а к нескольким, каждый из которых удовлетворяет начальным условиям по заданной области однородности магнитного поля.

Система уравнений (1.48) численно решалась в среде РТС Mathcad Prime 6.0. В таблицах 2.1 – 2.3 приведены результаты расчетов параметров для четырехкатушечной, шестикатушечной и восьмикатушечной системы соответственно.

Таблица 2.1 – Рассчитанные параметры четырехкатушечной системы

Номер пары	Расстояние от центра	Число витков в парах
катушек	системы до пар катушек, мм	катушек
1	10,0	10
2	45,0	26

Таблица 2.2 – Рассчитанные параметры шестикатушечной системы

Номер пары	Расстояние от центра	Число витков в парах
катушек	системы до пар катушек, мм	катушек
1	9,0	10
2	29,0	11
3	64,0	34

Таблица 2.3 – Рассчитанные параметры восьмикатушечной системы

Номер пары	Расстояние от центра	Число витков в парах
катушек	системы до пар катушек, мм	катушек
1	13,5	10
2	42,0	12
3	80,5	17
4	147,5	34

В таблице 2.4 приведён расчёт для трех вариантов десятикатушечной системы.

	-			
Номер пары	Расстояние от центра	Число витков в парах		
катушек	системы до пар катушек, мм	катушек		
Десятикатушечная система № 1				
1	10,0	10		
2	19,0	20		
3	50,0	19		
4	65,0	40		
5	218,0	203		
Десятикатушечная система № 2				
1	10,0	10		
2	19,0	20		
3	50,0	19		
4	65,0	40		
5	164,0	55		
Десятикатушечная система № 3				
1	10,0	10		
2	19,0	20		
3	50,0	19		
4	63,0	38		
5	153,0	39		

Таблица 2.4 – Рассчитанные параметры десятикатушечных системы

Далее проведем анализ неоднородности магнитного поля, создаваемого каждой рассчитанной многокатушечной системой [87].

2.2.3 Анализ однородности магнитного поля четырехкатушечной системы

Магнитная индукция, генерируемая четырехкатушечной аксиальной системой, определяется согласно выражению:

$$\vec{B}(x, y, z) = \frac{\mu_0}{4\pi} \left(\oint \frac{I \, d\vec{l}_1 \times \vec{r}_1}{\left|\vec{r}_1\right|^3} + \dots + \oint \frac{I \, d\vec{l}_4 \times \vec{r}_4}{\left|\vec{r}_4\right|^3} \right).$$
(2.49)

Расчёт магнитной индукции производится по формулам (2.34-2.39), а неоднородности магнитного поля в соответствии с формулой (2.46) в программном обеспечении Matlab.

На рисунке 2.10 показана зависимость неоднородности магнитного поля рассчитанной четырехкатушечной системы вдоль оси *Z*. На рисунке 2.11

показана зависимость неоднородности магнитного поля рассчитанной четырехкатушечной системы вдоль оси Z в увеличенном масштабе.

Рисунок 2.10 – Неоднородность магнитного поля четырехкатушечной системы

На рисунке 2.12 представлен контурный график неоднородности магнитного поля четырехкатушечной системы в диапазоне от 0 до 1 % с шагом 0,1 %.

Рисунок 2.11 – Неоднородность магнитного поля четырехкатушечной системы в увеличенном масштабе

Рисунок 2.12 – Контурный график неоднородности магнитного поля четырехкатушечной системы с шагом 0,1 %

На рисунке 2.13 представлен контурный график неоднородности магнитного поля четырехкатушечной системы в диапазоне от 0 до 0,1 % с шагом 0,01 %.

Рисунок 2.13 – Контурный график неоднородности магнитного поля четырехкатушечной системы с шагом 0,01 %

Анализ полученных данных показывает, что четырехкатушечная система обеспечивает неоднородность вдоль оси симметрии в 0,1 % на расстоянии Z/R равном ±53 %. Неоднородность до 0,01 % обеспечивается на расстоянии ±23,5 %.

2.2.4 Анализ однородности магнитного поля шестикатушечной системы

Магнитная индукция, создаваемая шестикатушечной аксиальной системой, определяется как:

$$\vec{B}(x, y, z) = \frac{\mu_0}{4\pi} \left(\oint \frac{I \ d\vec{l}_1 \times \vec{r}_1}{\left|\vec{r}_1\right|^3} + \dots + \oint \frac{I \ d\vec{l}_6 \times \vec{r}_6}{\left|\vec{r}_6\right|^3} \right).$$
(2.50)

Расчёт магнитной индукции и неоднородности магнитного поля осуществляется аналогично расчетам для четырехкатушечной системы.

66

На рисунке 2.14 приведена зависимость неоднородности магнитного поля рассчитанной шестикатушечной системы вдоль оси *Z*.

Рисунок 2.14 – Неоднородность магнитного поля шестикатушечной системы

На рисунке 2.15 показана зависимость неоднородности магнитного поля рассчитанной шестикатушечной системы вдоль оси Z в увеличенном масштабе.

Рисунок 2.15 – Неоднородность магнитного поля шестикатушечной системы в увеличенном масштабе

На рисунке 2.16 представлен контурный график неоднородности магнитного поля шестикатушечной системы в диапазоне от 0 до 1 % с шагом 0,1 %.

Рисунок 2.16 – Контурный график неоднородности магнитного поля шестикатушечной системы с шагом 0,1 %

На рисунке 2.17 представлен контурный график неоднородности магнитного поля шестикатушечной системы в диапазоне от 0 до 0,1 % с шагом 0,01 %.

Рисунок 2.17 – Контурный график неоднородности магнитного поля шестикатушечной системы с шагом 0,01 %

Анализ полученных данных показывает, что шестикатушечная система обеспечивает неоднородность вдоль оси симметрии в 0,1 % на расстоянии Z/R равном ±41 %. Неоднородность до 0,01 % обеспечивается на расстоянии ±29,5 %.

2.2.5 Анализ однородности магнитного поля восьмикатушечной системы

Магнитная индукция, генерируемая восьмикатушечной аксиальной системой, определяется согласно выражению:

$$\vec{B}(x, y, z) = \frac{\mu_0}{4\pi} \left(\oint \frac{I \ d\vec{l}_1 \times \vec{r}_1}{|\vec{r}_1|^3} + \dots + \oint \frac{I \ d\vec{l}_8 \times \vec{r}_8}{|\vec{r}_8|^3} \right).$$
(2.51)

Расчёт магнитной индукции и неоднородности магнитного поля аналогичен расчетам в разделах 2.2.3 и 2.2.4.

На рисунке 2.18 приведена зависимость неоднородности магнитного поля рассчитанной восьмикатушечной системы вдоль оси *Z*.

Рисунок 2.18 – Неоднородность магнитного поля восьмикатушечной системы

На рисунке 2.19 показана зависимость неоднородности магнитного поля рассчитанной восьмикатушечной системы вдоль оси Z в увеличенном масштабе.

На рисунке 2.20 представлен контурный график неоднородности магнитного поля восьмикатушечной системы в диапазоне от 0 до 1 % с шагом 0,1 %.

Рисунок 2.20 – Контурный график неоднородности магнитного поля

восьмикатушечной системы с шагом 0,1 %

70

На рисунке 2.21 представлен контурный график неоднородности магнитного поля восьмикатушечной системы в диапазоне от 0 до 0,1 % с шагом 0,01 %.

Рисунок 2.21 – Контурный график неоднородности магнитного поля восьмикатушечной системы с шагом 0,01 %

Анализ полученных данных показывает, что восьмикатушечная система обеспечивает неоднородность магнитного поля вдоль оси симметрии в 0,1 % на расстоянии Z/R равном ±52 %. Неоднородность до 0,01 % обеспечивается на расстоянии ±34 %.

2.2.6 Анализ однородности магнитного поля десятикатушечной системы

Магнитная индукция, создаваемая десятикатушечной аксиальной системой, определяется как:

$$\vec{B}(x, y, z) = \frac{\mu_0}{4\pi} \left(\oint \frac{I \ d\vec{l}_1 \times \vec{r}_1}{\left|\vec{r}_1\right|^3} + \dots + \oint \frac{I \ d\vec{l}_{10} \times \vec{r}_{10}}{\left|\vec{r}_{10}\right|^3} \right).$$
(2.52)

Дальнейший расчёт магнитной индукции производится по формулам (2.34-2.39), а неоднородности магнитного поля в соответствии с формулой (2.46).

На рисунке 2.22 приведены зависимости неоднородности магнитного поля рассчитанных десятикатушечных систем вдоль оси *Z*.

На рисунке 2.23 показана зависимость неоднородности магнитного поля рассчитанных десятикатушечных систем вдоль оси Z в увеличенном масштабе.

Рисунок 2.23 – Неоднородность магнитного поля десятикатушечных систем в увеличенном масштабе
На рисунках 2.24-2.26 представлены контурные графики неоднородности магнитного поля соответственно десятикатушечных систем №1, №2 и №3 в диапазоне от 0 до 1 % с шагом 0,1 %.

На рисунках 2.27-2.29 представлены контурные графики неоднородности магнитного поля соответственно десятикатушечных систем №1, №2 и №3 в диапазоне от 0 до 0,1 % с шагом 0,01 %.

Рисунок 2.24 – Контурный график неоднородности магнитного поля

Рисунок 2.25 – Контурный график неоднородности магнитного поля десятикатушечной системы №2 с шагом 0,1 %

Рисунок 2.26 – Контурный график неоднородности магнитного поля

десятикатушечной системы №3 с шагом 0,1 %

Рисунок 2.27 – Контурный график неоднородности магнитного поля десятикатушечной системы №1 с шагом 0,01 %

Рисунок 2.28 – Контурный график неоднородности магнитного поля

десятикатушечной системы №2 с шагом 0,01 %

Рисунок 2.29 – Контурный график неоднородности магнитного поля десятикатушечной системы №3 с шагом 0,01 %

В таблице 2.5 приведены сводные данные по неоднородности магнитного поля вдоль оси симметрии для рассчитанных систем катушек.

Количество катушек в системе	Расстояние <i>Z/R</i> при неоднородности 0,1 %, %	Расстояние <i>Z/R</i> при неоднородности 0,01 %, %
2	±17,3	$\pm 9,8$
4	$\pm 53,0$	$\pm 23,5$
6	$\pm 41,0$	$\pm 29,5$
8	$\pm 52,0$	$\pm 34,0$
10 №1	$\pm 57,2$	$\pm 32,0$
10 №2	$\pm 57,0$	$\pm 30,0$
10 №3	$\pm 61,0$	±50,4

Таблица 2.5 – Расстояние Z/R при заданном уровне неоднородности

2.3 Моделирование десятикатушечных систем

Использованная методика расчёта систем катушек не учитывает влияние сечения провода намотки катушек, а также ширины и толщины катушек на однородность магнитного поля [88].

С целью уточнения результатов аналитических расчётов, десятикатушечные системы были промоделированы в среде конечноэлементного анализа COMSOL Multiphysics, позволяющей проанализировать влияние геометрических размеров катушек на однородность магнитного поля [89 - 90].

Геометрия моделей десятикатушечных систем, созданная в среде конечно-элементного анализа COMSOL Multiphysics, представлена на рисунке 2.30. При создании геометрии принято, что все катушки наматываются в один слой проводом сечением 0,025 мм² (диаметр 0,18 мм). Ширина и высота каждой катушки задавались исходя из сечения провода и числа витков. Катушки располагались на рассчитанных расстояниях от центра системы до центра катушки.

Для корректного анализа моделей требуется задание граничных условий. В качестве граничного условия в моделях систем катушек выступает сфера диаметром 600 мм, показанная на рисунке 2.31.

 № 1
 № 2
 № 3

 Рисунок 2.30 – Геометрия десятикатушечных систем № 1, № 2 и № 3

Рисунок 2.31 – Создание граничных условий

Диаметр сферы подбирался таким образом, чтобы её размер не влиял на значения индукции магнитного поля внутри системы катушек.

Для каждого объекта модели был задан материал. В качестве материала для катушек была выбрана медь. В качестве материала сферы, окружающей десятикатушечную систему, был выбран воздух.

Для задания физики моделирования был выбран модуль «Magnetic Fields».

Одним из важнейших параметров при конечно-элементном анализе является создание сетки модели [92]. Чем мельче конечные элементы, тем точнее расчёт [91, 93]. Построение сетки было проведено в ручном режиме с параметром «Finer». Ручной режим даёт больше возможностей и позволяет самостоятельно подобрать плотность построения сетки конечных элементов в зависимости от поставленной задачи. Конечные элементы для всех катушек задавались таким образом, чтобы их размеры совпадали. На рисунке 2.32 показан фрагмент катушек с созданной сеткой конечных элементов.

Рисунок 2.32 – Фрагмент катушек с сеткой конечных элементов

Обязательным пунктом для проведения моделирования является задание условий решателя. Для проведения моделирования использовался стационарный решатель «Stationary Solver».

Результаты конечно-элементного анализа геометрии рассчитанных десятикатушечных систем приведены на рисунках 2.33 и 2.34.

Десятикатушечная система №3

Рисунок 2.33 – Распределения магнитного поля в десятикатушечных

системах вдоль оси Z

Десятикатушечная система №3

Рисунок 2.34 – Неоднородность магнитного поля десятикатушечных систем вдоль оси Z

На рисунке 2.35 представлено сравнение значений неоднородности, полученных в результате расчетов и моделирования.

80

Рисунок 2.35 – Сравнение результатов расчета и моделирования неоднородности магнитного поля десятикатушечных систем вдоль оси Z

81

В таблицах 2.6 и 2.7 приведены сравнительные данные по неоднородности магнитного поля рассчитанных и промоделированных десятикатушечных систем.

Таблица 2.6 – Расстояние Z/R при уровне неоднородности 0,1 %.

№ 1 2 3	Расстояние Z/R при	Расстояние Z/R при		
	расчете, %	моделировании, %		
1	±57,2	±56,4		
2	$\pm 57,0$	$\pm 57,0$		
3	±61,0	$\pm 60,9$		

Таблица 2.7 – Расстояние Z/R при уровне неоднородности 0,01 %.

<u>№</u> 1	Расстояние Z/R	Расстояние Z/R при		
	при расчете, %	моделировании, %		
1	$\pm 32,0$	±36,0		
2	$\pm 30,0$	$\pm 29,5$		
3	$\pm 50,4$	$\pm 37,0$		

Из распределения магнитного поля и графических зависимостей на рисунках 2.33, 2.34 и 2.35, а также данных, приведенных в таблицах 2.6 и 2.7, следует, что результаты конечно-элементного анализа десятикатушечных систем практически совпали с результатами аналитических расчетов.

Поскольку наибольшую однородность обеспечивают десятикатушечные системы № 1 и № 3, то именно их целесообразно реализовать на практике для дальнейшего исследования.

2.4 Выводы по главе 2

1. Проведен анализ методов расчёта магнитного поля систем катушек на основе закона Био-Савара-Лапласа, методик Симпсона, Макдональда и Джексона. Предложено использовать методику на основе закона Био-Савара-Лапласа для анализа магнитного поля проектируемых систем катушек, так как данная методика позволяет рассчитать магнитную

индукцию в любой точке рассматриваемой системы с одинаковой точностью, независимо от геометрии конструкции.

2. Проведен расчет четырехкатушечной, шестикатушечной, восьмикатушечной и трех вариантов десятикатушечных систем для генерации однородного магнитного поля. Для аналитической оценки неоднородности магнитного поля, создаваемого рассчитанными системами катушек, в программном обеспечение Matlab была написана программа, реализующая анализ магнитной индукции и неоднородности магнитного поля.

3. Увеличение числа катушек в системе приводит к увеличению области однородности магнитного поля внутри системы. Анализ неоднородности магнитного поля показал, что десятикатушечные системы позволяют обеспечить неоднородность на уровне 0,02 % на расстояниях $\pm R$ от центра системы вдоль аксиальной оси системы.

4. Для учета влияния сечения провода намотки катушек и, соответственно, ширины и толщины катушек на однородность магнитного поля, десятикатушечные системы были промоделированы в среде конечноэлементного анализа COMSOL Multiphysics. Результаты моделирования подтвердили и уточнили аналитические расчеты. Десятикатушечные системы № 1, № 2 и № 3 обеспечивают неоднородность на уровне 0,02 % на расстояниях от центра системы $\pm R/2$ (50 % от радиуса системы) вдоль аксиальной оси системы, при этом неоднородность на уровне 0,01 % обеспечивается на расстояниях ± 36 %, $\pm 29,5$ %, ± 37 % от радиуса системы вдоль аксиальной оси для исполнения № 1, № 2 и № 3 соответственно.

5. Так как наибольшую однородность по результатам расчетов и моделирования обеспечивают десятикатушечные системы № 1 и № 3, то их целесообразно реализовать на практике для дальнейшего исследования.

83

ГЛАВА 3

РАЗРАБОТКА ИСТОЧНИКА ТОКА ДЛЯ СИСТЕМ КАТУШЕК

В данной главе приводится описание разработки управляемого источника постоянного тока, работающего преимущественно на индуктивную нагрузку для питания систем катушек. Приводится краткий обзор схем построения источников тока. На основе схемного решения компании Texas Instruments по реализации управляемого преобразователя напряжения в ток для заземленной нагрузки реализован трехдиапазонный прецизионный регулируемый источник тока, управляемый напряжением в диапазоне воспроизведения токов от 0,1 мкА до 100 мА при напряжениях на входе от 0,02 В до 2 В. Проведена оценка влияния сопротивлений разброса номинальных значений резисторов В схеме преобразователя методом Монте-Карло. На основе результатов моделирования подобранны резисторы для практической реализации преобразователя напряжения в ток, изготовлен преобразователь напряжения в ток и проведена оценка его погрешности преобразования.

3.1 Требования к источнику тока

Источники тока относятся к базовым функциональным блокам и широко применяются в архитектуре средств измерений, а также при построении различных электронных устройств. Несмотря на то, что серийно выпускается целый ряд как интегральных схем источников тока, так и лабораторных источников тока, для питания системы катушек требуется разработка специального, управляемого, высокостабильного источника постоянного тока, работающего преимущественно на индуктивную нагрузку.

Разрабатываемый лабораторный источник постоянного тока должен удовлетворять следующим требованиям:

– Стабильность выходного тока: исходя из выражения (2.52) величина магнитной индукции, создаваемой системой катушек, находится в прямой зависимости от величины Ампер-витков. Для обеспечения постоянного по времени магнитного поля, источник тока, питающий систему катушек, должен обеспечивать стабильный выходной ток не хуже заданного уровня однородности.

– Программное или аппаратное управление регулировкой выходного тока в заданном диапазоне токов с требуемым шагом изменения тока.

– Низкий уровень электромагнитных помех. Источник тока должен генерировать как можно меньше электромагнитных помех, которые могут влиять на магнитное поле, воспроизводимое системой катушек, и на другое измерительное оборудование.

 Компактность и надежность: источник тока должен быть компактным и надежным, чтобы упростить интеграцию с системой катушек и уменьшить риск отказа оборудования.

 Соответствие стандартам безопасности: источник тока должен соответствовать отечественным и международным стандартам безопасности для электронного оборудования.

Результаты расчетов и конечного элементного анализа показали, что коэффициент преобразования десятикатушечных систем составляет приблизительно 1 мА / 1 мкТл. Таким образом, диапазон выходного тока для источника тока должен составлять от 100 мА до 100 нА для обеспечения воспроизведения магнитной индукции в диапазоне от 100 мкТл до 0,1 нТл с помощью рассчитанных десятикатушечных систем.

3.2 Обзор схем реализации источников тока

В настоящее время в качестве прецизионных лабораторных источников тока применяются многофункциональные калибраторы, например, производства компании Fluke [94-95]. Такие калибраторы обеспечивают постоянный ток от 0 до десятков Ампер с разрешением от 1 нА, однако высокая стоимость, свыше 50 000 \$, и ограничения по работе на индуктивную нагрузку делают их применение неприемлемым для системы катушек.

Первые схемы источников тока реализовывались на биполярных транзисторах: известны схемы источников тока на биполярных транзисторах

85

Виллара, схемы токовых зеркал Уилсона, каскодные источники тока Уайта, каскодные токовые зеркала и их различные модификации. В качестве альтернативы биполярным транзисторам источники тока реализуют на полевых транзисторах. В типовых схемах источников тока на биполярных или полевых транзисторах выдвигаются высокие требования к идентичности транзисторов по их электрическим характеристикам, требуются сложные схемотехнические решения по построению управляемого источника тока в широком диапазоне токов, включая схемы коррекции, компенсации и стабилизации параметров источника тока.

Дальнейшее развитие компонентой базы привело к появлению интегральных микросхем источников тока, например, LM134. К недостаткам микросхем – источников тока следует отнести зависимость выходного тока от температуры и низкий диапазон регулирования.

Другим схемотехническим решением является построение источника тока на операционных усилителях [96] и источниках опорного напряжения (ИОН) [97].

3.2.1 Источники тока на базе ИОН

На рисунке 3.1 показана схема источника тока на основе двухвыводного ИОН.

Рисунок 3.1 – Источник тока на основе двухвыводного ИОН

В схеме на рисунке 3.1 выходное напряжение ИОН действует между инвертирующем входом операционного усилителя (ОУ) и его выходом, благодаря наличию отрицательной обратной связи выходное напряжение ИОН будет также поддерживаться между неинвертирующем входом ОУ и его выходом. Соответственно, ток через токозадающий резистор R_s и, следовательно, нагрузку R_l будет неизменным, независимо от изменения сопротивления нагрузки R_l .

Выходной ток будет определятся в соответствии со следующей формулой:

$$I_{\rm out} = \frac{V_{\rm ref}}{R_{\rm s}} \tag{3.1}$$

Однако для малых токов необходимо учитывать параметры самого ОУ, такие как: напряжение смещения V_{os} и ток смещения I_b . В таком случае выражение (3.1) примет следующий вид:

$$I_{\rm out} = \frac{\left(V_{\rm ref} + V_{\rm os}\right)}{R_{\rm s}} + I_{\rm b}$$
(3.2)

Конденсатор *C*₁ в схеме на рисунке 3.1 применен для шунтирования ИОН в области высоких частот и обеспечения стабильности работы всей схемы.

Также к недостатку схемы следует отнести то, что нагрузка подключается к источнику отрицательного напряжения, а не к точке нулевого потенциала.

На рисунке 3.2 показана схема источника тока на основе трехвыводного ИОН.

В данной схеме ОУ используется в качестве повторителя напряжения, который в общей точки ИОН поддерживает напряжение, равное напряжению на нагрузке R_l . Таким образом, выходное напряжение ИОН дублируется в виде падения напряжения на токозадающем резисторе R_s и не зависит от напряжения на нагрузке R_l . Ток через нагрузку определяется в соответствии с выражением (3.2).

К недостаткам обеих рассмотренных схем относится то, что выходной ток определяется фиксированным напряжением ИОН, и может только регулироваться за счет изменения номинала сопротивления R_s .

Рисунок 3.2 – Источник тока на основе трехвыводного ИОН

3.2.2 Схема токовой накачки Хауленда

На рисунке 3.3 показана схема источника тока, управляемого напряжением.

Рисунок 3.3 – Несимметричный источник тока, управляемый напряжением

Схема на рисунке 3.3 позволяет генерировать положительный выходной ток через нагрузку *R*_{*l*}, пропорциональный отрицательному входному напряжению.

Значение выходного тока определяется номиналом сопротивления *R*_s и заданным коэффициентом усиления ОУ, и не зависит от напряжения на нагрузке:

$$I_{\rm out} = -\frac{V_{\rm in}R_3}{R_1R_{\rm s}} \tag{3.3}$$

Нагрузка может быть подключена к точке нулевого потенциала или к любой другой точке с напряжением, согласованным с напряжениями питания ОУ.

Улучшенным вариантом схемы на рисунке 3.3 является схема источника тока Хауленда, представленная на рисунке 3.4.

Рисунок 3.4 – Схема токовой накачки Хауленда

Данная схема позволяет на выходе получить знакопеременный ток, пропорциональный входному дифференциальному напряжению:

$$I_{\text{out}} = \frac{V_{\text{in}}R_3}{R_1R_8} \tag{3.4}$$

Подстроечный резистор применяется для балансировки контура обратной связи, которая в свою очередь позволяет увеличить выходное сопротивление всей схемы. Обратная связь также позволяет стабилизировать ток через сопротивление R_s и нагрузку R_l , независимо от напряжения на нагрузке.

Повысить точность работы схемы можно при помощи замены подстроечного резистора на второй ОУ, как показано на рисунке 3.5.

Рисунок 3.5 – Схема токовой накачки Хауленда повышенной точности

Схемы на основе токовой накачки Хауленда нашли широкое применение в качестве схем смещения и стабилизации, регулируемых источников тока измерительных систем, в схемах питания датчиков и тд. [98-101].

Основным недостатком всех рассмотренных схем Хауленда и аналогичных является то, что выходной ток ограничен нагрузочной способностью ОУ. А ОУ с высокой нагрузочной способностью обладают невысокими метрологическими характеристиками.

3.2.3 Высокоуровневый преобразователь напряжения в ток

На рисунке 3.6 представлена схема высокоуровневого преобразователя напряжения в ток для заземленной нагрузки, разработанная компанией Texas Instruments [102].

Преобразователь напряжения в ток реализован по двухкаскадной схеме, которая позволяет управлять преобразователем от заземленного источника напряжения [103]. Первый каскад состоит из ОУ и полевого n-канального транзистора, и обеспечивает преобразование входного управляющего сигнала от заземленного источника напряжения в сигнал управления операционным усилителем второго каскада. Выход ОУ второго каскада воздействует на затвор р-канального полевого транзистора, через который протекает ток нагрузки.

Рисунок 3.6 – Схема высокоуровневого преобразователя напряжения в ток

Выходной ток схемы определяется из соотношения управляющего напряжения V_{IN} и номиналов трех токозадающих резисторов R_1 , R_2 и R_3 в соответствии с формулой:

$$I_{\rm out} = \frac{V_{\rm in} R_2}{R_1 R_2}$$
(3.5)

Соотношение между значением напряжения V_{in} и номиналом сопротивления R_1 задает ток, протекающий в цепи первого каскада. Коэффициент усиления по току при передаче сигнала от первого каскада во второй определяется соотношением номиналов сопротивлений R_2 и R_3 .

Первый каскад преобразователя напряжения в ток за счет протекания тока через резистор R_2 и соответственно падения напряжения на нем формирует управляющий сигнал для второго каскада. Протекание тока по первому каскаду обеспечивается резистором R_1 , включенным последовательно с п-канальным полевым транзистором. Падение напряжения на резисторе R_1 создает потенциал на инвертирующем входе первого операционного усилителя DA_1 . За счет отрицательной обратной связи ток на выходе операционного усилителя DA_1 поддерживается таким образом, чтобы падение напряжения V_{R1} на резисторе R_1 было равным входному управляющему напряжению, действующему на неинвертирующем входе ОУ DA_1 .

$$V_{\rm in} = V_{R1} \tag{3.6}$$

Ток на выходе первого каскада преобразователя протекает только внутри схемы и не передается в нагрузку. Работа, которую совершает ток первого каскада, приводит к прямому снижению КПД всей схемы. Для того, чтобы обеспечить КПД не ниже 98,5 %, необходимо, чтобы потери мощности в первом каскаде не превышали 1 %, так как 0,5 % мощности рассеивается током покоя операционных усилителей. Соответственно, при максимально заданном выходном токе схемы через нагрузку в 100 мА, ток первой ступени I_{R1} не должен превышать 1 мА, тогда сопротивление резистора R_1 можно рассчитать по формуле (3.7):

$$R_1 = \frac{V_{\rm in}}{I_{R1}} \tag{3.7}$$

При максимальном управляющем напряжение V_{in} , равном 2 В, и токе первой ступени I_{R1} , сопротивление резистора R_1 составит 2 кОм.

Ток I_{R2} , протекающий через резистор R_2 , в идеальном случае равен току через резистор R_1 , разницей между этими токами, возникающей из-за влияния транзистора VT_1 , можно пренебречь при расчетах. Падение напряжения V_{R2} на резисторе R_2 создает потенциал на неинвертирующем входе второго ОУ - DA2, устанавливая режим его работы.

Резистор R_3 подключен последовательно с истоком р-канального полевого транзистора VT_2 для формирования падение напряжения V_{R3} , пропорционального выходному току преобразователя. Напряжением V_{R3} запитывается инвертирующий вход ОУ DA_2 , в итоге формируется отрицательная обратная связь, обеспечивающая поддержания равенства напряжений V_{R3} и V_{R2} .

Так как напряжением V_{R3} вычитается из выходного напряжения на нагрузки, его следует обеспечить минимальным, например, если необходимо обеспечить напряжение на нагрузке 4,5 В при токе через нагрузку 100 мА, то напряжение V_{R3} не должно превышать 0,5 В. Номинал сопротивления резистор R_2 рассчитывается по формуле:

$$R_2 = \frac{V_{R3}}{I_{R2}}$$
(3.8)

Выходной ток практически равен току I_{R3} , влиянием транзистора VT_2 можно пренебречь, тогда сопротивление резистора R_3 рассчитывается в соответствии с выражением:

$$R_3 = \frac{V_{R3}}{I_{\text{OUT}}} \tag{3.9}$$

3.3 Разработка источника тока

На базе схемы, представленной в работе [102], был спроектирован трехдиапазонный прецизионный регулируемый источник тока, управляемый напряжением. Схемотехническая модель спроектированного источника тока в среде моделирования NI Multisim представлена на рисунке 3.7. Для стабилизации работы схемы и минимизации высокочастотных помех дополнительно между выходом каждого ОУ и затвором соответствующего транзистора установлен резистор, отсекающий ОУ от емкостной нагрузки цепи затвора, а также конденсатор, формирующий отрицательную обратную связь для высокочастотной помехи.

Рисунок 3.7 – Схемотехническая модель источника тока

Номиналы элементов источника тока рассчитаны таким образом, чтобы при изменении входного управляющего напряжения от 20 мВ до 2 В выходной ток первого каскада регулировался в диапазоне от 0,1 до 10 мкА; ток второго каскада

регулировался в диапазоне от 10 до 1000 мкА; ток третьего каскада регулировался в диапазоне от 1 до 100 мА.

В результате компьютерного моделирования схемы источника тока получены зависисмости выходного тока каждого каскада от заданного входного напряжения – таблица 3.1.

Входное		Выходной ток	
напряжение, В	Каскад 1, мкА	Каскад 2, мкА	Каскад 3, мА
0	0,000436	0,04338	0,00434
0,02	0,099936	9,993	0,999337
0,04	0,199937	19,993	1,999
0,06	0,299937	29,993	2,999
0,08	0,399937	39,993	3,999
0,1	0,499937	49,993	4,999
0,2	0,999939	99,994	9,999
0,4	2,0	200,004	20,001
0,6	3,0	299,994	29,999
0,8	4,0	399,994	39,999
1,0	5,0	499,994	49,999
1,2	6,0	599,995	59,999
1,4	7,0	699,995	69,999
1,6	8,0	799,995	79,999
1,8	9,0	899,995	80,000
2,0	10,0	999,992	99,993

Таблица 3.1 – Зависимость выходного тока от входного напряжения

Данные моделирования, представленные в таблицы 3.1, получены при использовании идеальных пассивных компонентов в схеме преобразователя напряжения в ток.

Для оценки влияния разброса значений номиналов пассивных компонентов был применен метод Монте-Карло. Для всех пассивных компонентов был установлен допуск на отличие значения от номинального в 0,1 %, проведено по 50 симуляций для каждого заданного значения входного управляющего напряжения, измеряли выходной ток, после чего рассчитывались такие показатели, как: относительная погрешность, среднее значение относительной погрешности и среднее значение среднеквадратического отклонения относительной погрешности в соответствии с выражениями (3.10-3.12).

$$\delta_i = \frac{\left|I_{\text{HOM}} - I_{\text{BUX}i}\right|}{I_{\text{HOM}}} \cdot 100 \tag{3.10}$$

где *I*_{ном} – номинальный выходной ток источника тока, A;

 $I_{\text{вых }i} - i$ -ое измеренное значение выходного тока, A;

i – номер результата измерений.

$$\overline{\delta} = \frac{1}{n} \sum_{i=1}^{n} \delta_i \tag{3.11}$$

где *n*-количество проведённых измерений.

$$\overline{S} = \sqrt{\frac{\sum_{i=1}^{n} \left(\delta_{i} - \overline{\delta}\right)^{2}}{n(n-1)}}$$
(3.12)

В таблице 3.2 приведены результаты моделирования методом Монте-Карло влияния изменения номиналов пассивных компонентов на коэффициент преобразования источника тока.

Таблица 3.2 – Результаты моделирования погрешности преобразования источника тока

Drownoo	Выходной ток								
входное	Каскад 1	Каскад 1	Каскад 2	Каскад 2	Каскад 3	Каскад 3			
напряжение, в	$\overline{\delta}$, %	<i>Ī</i> , %	$\overline{\delta}$, %	<i>Ī</i> , %	$\overline{\delta}$, %	<i>Ī</i> , %			
0,01	0,127	0,008	0,118	0,008	0,130	0,008			
0,02	0,065	0,006	0,073	0,007	0,085	0,007			
0,03	0,055	0,006	0,055	0,006	0,052	0,004			
0,04	0,055	0,005	0,054	0,005	0,064	0,006			
0,05	0,053	0,006	0,058	0,006	0,045	0,005			
0,06	0,059	0,006	0,037	0,004	0,044	0,005			
0,07	0,043	0,004	0,053	0,005	0,039	0,004			
0,08	0,054	0,006	0,049	0,006	0,047	0,005			
0,09	0,052	0,006	0,053	0,005	0,046	0,005			
0,1	0,048	0,005	0,048	0,005	0,041	0,005			
0,2	0,043	0,005	0,043	0,004	0,044	0,005			
0,3	0,043	0,004	0,041	0,003	0,044	0,004			
0,4	0,050	0,006	0,046	0,005	0,045	0,005			

Duoguoo	Выходной ток								
Бходное	Каскад 1	Каскад 1	Каскад 2	Каскад 2	Каскад 3	Каскад 3			
напряжение, в	δ, %	\bar{S} , %	δ, %	\bar{S} , %	δ, %	\bar{S} , %			
0,5	0,047	0,006	0,041	0,004	0,042	0,004			
0,6	0,041	0,005	0,040	0,004	0,044	0,004			
0,7	0,046	0,005	0,041	0,005	0,047	0,005			
0,8	0,043	0,005	0,038	0,004	0,040	0,004			
0,9	0,044	0,005	0,043	0,005	0,039	0,003			
1	0,040	0,004	0,042	0,004	0,041	0,004			
1,1	0,047	0,005	0,044	0,005	0,042	0,005			
1,2	0,045	0,006	0,040	0,005	0,036	0,004			
1,3	0,047	0,005	0,039	0,004	0,045	0,004			
1,4	0,040	0,004	0,047	0,005	0,051	0,006			
1,5	0,038	0,004	0,044	0,005	0,038	0,004			
1,6	0,046	0,005	0,044	0,005	0,044	0,005			
1,7	0,053	0,005	0,045	0,005	0,046	0,005			
1,8	0,045	0,005	0,045	0,006	0,049	0,006			
1,9	0,052	0,005	0,040	0,004	0,041	0,005			
2	0,047	0,005	0,040	0,005	0,044	0,004			

Продолжение таблицы 3.2

На рисунках 3.16 - 3.18 приведены графики относительной погрешности при задаваемых значениях выходного тока первого каскада источника тока.

Рисунок 3.16 – Относительная погрешность коэффициента преобразования источника тока от 0,05 до 10 мкА (первый каскад)

Рисунок 3.18 – Относительная погрешность коэффициента преобразования источника тока в диапазоне от 0,5 до 100 мА (третий каскад)

Из результатов моделирования следует, что погрешность коэффициента преобразования источника тока не превышает 0,1 % для первого каскада в диапазоне токов 0,1 до 10 мкА, для второго каскада в диапазоне токов 10 до 1000 мкА, для третьего каскада в диапазоне токов 1 до 100 мА.

На рисунках 3.8 - 3.10 приведены полученные в результате моделирования методом Монте-Карло зависимости выходного тока от номинального значения для первого, второго и третьего каскадов соответственно.

Рисунок 3.8 – Зависимость выходного тока первого каскада от номинального

значения тока

Рисунок 3.9 – Зависимость выходного тока второго каскада от номинального значения тока

Рисунок 3.10 – Зависимость выходного тока третьего каскада от номинального значения тока

Из полученных результатов моделирования следует, что источник тока линеен во всем диапазоне от 0,1 мкА до 100 мА.

Максимально ожидаемая погрешность коэффициента преобразования во всем диапазоне была рассчитана на основе правила трех сигма:

$$FSR = \frac{3S_{\text{вых}}}{(I_{\text{вых,макс}} - I_{\text{вых,мин}})} \cdot 100;$$

$$S_{\text{вых}} = \sqrt{\frac{\sum_{i=1}^{n} (I_{\text{вых}i} - \overline{I}_{\text{вых}})^{2}}{(n-1)}},$$
(3.13)

и составила 0,16 %.

Таким образом результаты моделирования подтвердили работоспособность схемы в заданных диапазонах выходного тока. Выходной ток изменяется линейно в зависимости от входного управляющего напряжения.

По результатам моделирования была спроектирована принципиальная электрическая схема источника тока, представленная на рисунке 3.11.

На основание принципиальной электрической схемы была разработана печатная плата для изготовления макета источника тока. Топология печатной платы представлена на рисунке 3.12. Внешний вид печатной платы источника тока после монтажа показан на рисунке 3.13.

Рисунок 3.12 – Топология печатной платы источника тока

Рисунок 3.13 – Внешний вид печатной платы источника тока

3.4 Оценка метрологических характеристик источника тока

Для оценки метрологических характеристик разработанного источника тока была собрана схема эксперимента, изображенная на рисунке 3.14. Управляющее напряжение задавалось с помощью генератора-калибратора Fluke 5520A, выходной ток измерялся с помощью мультиметра Agilent 3458A, питание схемы источника тока осуществлялось от лабораторного блока питания GPD-74303S, к выходу исследуемого каскада источника тока для создания однородного магнитного поля была подключена восьмикатушечная система, описанная в работе [64]. Таким образом метрологические характеристики источника тока определялись при работе на реальную, высокоиндуктивную нагрузку, а не на холостом ходу.

Рисунок 3.14 – Схема оценки метрологических характеристик источника тока

Входное управляющее напряжение задавалось в диапазоне от 0,01 до 0,1 В с шагом 0,01 В, в диапазоне от 0,1 до 2 В с шагом 0,1 В. Для каждого установленного значения напряжения выходной ток измерялся 5 раз, после чего рассчитывались такие показатели, как: относительная погрешность, среднее значение относительной погрешности и среднеквадратическое отклонение относительной погрешности в соответствии с выражениями (3.10-3.12).

В таблице 3.3 приведены результаты измерений выходного тока и рассчитанные значения погрешности для первого каскада источника тока.

				U U					
Таолина 3.3	5 — Pes	VЛЬТАТЫ	изме	рении	выхо	лного	тока	первого) каскала
		J							

$U_{\rm BX}, {\rm B}$	<i>I</i> _{ном} , мкА			δ, %	<i>S</i> , %			
0,01	0,05	0,050206	0,050213	0,050201	0,050183	0,050189	0,397	0,0246
0,02	0,10	0,100192	0,100167	0,100214	0,100160	0,100196	0,186	0,0221
0,03	0,15	0,150196	0,150159	0,150192	0,150195	0,150179	0,123	0,0104
0,04	0,20	0,200168	0,200171	0,200184	0,200172	0,200172	0,087	0,0031
0,05	0,25	0,250168	0,250169	0,250160	0,250155	0,250180	0,067	0,0038
0,06	0,30	0,300159	0,300164	0,300158	0,300161	0,300151	0,053	0,0016

$U_{\rm BX},{ m B}$	$I_{\text{ном}}$, мкА			<i>I</i> _{вых} , мкА	L		δ, %	<i>S</i> , %
0,07	0,35	0,350162	0,350157	0,350150	0,350153	0,350150	0,044	0,0015
0,08	0,40	0,400118	0,400129	0,400131	0,400127	0,400138	0,032	0,0018
0,09	0,45	0,450126	0,450111	0,450116	0,450147	0,450125	0,028	0,0031
0,1	0,50	0,500129	0,500134	0,500131	0,500122	0,500119	0,025	0,0013
0,2	1,00	1,000107	1,000144	1,000125	1,000124	1,000134	0,013	0,0014
0,3	1,50	1,500108	1,500134	1,500114	1,500118	1,500112	0,008	0,0007
0,4	2,00	2,000618	2,000604	2,000614	2,000611	2,000624	0,031	0,0004
0,5	2,50	2,500727	2,500747	2,500727	2,500719	2,500746	0,029	0,0005
0,6	3,00	3,000862	3,000853	3,000833	3,000847	3,000859	0,028	0,0004
0,7	3,50	3,500965	3,500976	3,500966	3,500946	3,500969	0,028	0,0003
0,8	4,00	4,001063	4,001063	4,001066	4,001038	4,001063	0,026	0,0003
0,9	4,50	4,501152	4,501162	4,501139	4,501143	4,501174	0,026	0,0003
1,0	5,00	5,001249	5,001224	5,001238	5,001219	5,001253	0,025	0,0003
1,1	5,50	5,501332	5,501324	5,501326	5,501320	5,501346	0,024	0,0002
1,2	6,00	6,001388	6,001374	6,001357	6,001362	6,001405	0,023	0,0003
1,3	6,50	6,501471	6,501472	6,501451	6,501425	6,501464	0,022	0,0003
1,4	7,00	7,001499	7,001478	7,001504	7,001477	7,001535	0,021	0,0003
1,5	7,50	7,501504	7,501488	7,501390	7,501356	7,501523	0,019	0,0010
1,6	8,00	8,001418	8,001398	8,001380	8,001337	8,001423	0,017	0,0004
1,7	8,50	8,501432	8,501391	8,501341	8,501405	8,501493	0,017	0,0007
1,8	9,00	9,001396	9,001377	9,001347	9,001334	9,001412	0,015	0,0004
1,9	9,50	9,501319	9,501287	9,501268	9,501253	9,501318	0,014	0,0003
2,0	10,00	10,001271	10,001219	10,001216	10,001197	10,001264	0,012	0,0003

Продолжение таблицы 3.3

На рисунке 3.15 приведен график относительной погрешности при задаваемых значениях выходного тока первого каскада источника тока.

Рисунок 3.15 – Относительная погрешность источника тока в диапазоне от 0,05 до

В таблице 3.4 приведены результаты измерений выходного тока и рассчитанные значения погрешности для второго каскада источника тока.

$U_{\rm bx}, {\rm B}$	<i>I</i> _{ном} , мкА			$I_{\text{вых}}$, мкА			δ, %	<i>S</i> , %
0,01	5,00	5,002738	5,002693	5,002035	5,002214	5,003172	0,051	0,00905
0,02	10,00	10,002160	10,002281	10,002321	10,002290	10,002101	0,022	0,00095
0,03	15,00	15,002120	15,002140	15,002000	15,002310	15,002460	0,015	0,00120
0,04	20,00	20,001490	20,001440	20,001340	20,001340	20,001520	0,007	0,00042
0,05	25,00	25,000790	25,001060	25,000510	25,000590	25,000710	0,003	0,00085
0,06	30,00	30,000050	30,000510	30,000310	30,000240	30,000260	0,001	0,00055
0,07	35,00	34,999180	34,999050	34,998990	34,999420	34,999200	0,002	0,00047
0,08	40,00	39,997830	39,997630	39,997930	39,997770	39,998270	0,005	0,00060
0,09	45,00	44,997290	44,997340	44,997370	44,997630	44,997310	0,006	0,00031
0,1	50,00	49,996690	49,996770	49,996900	49,996950	49,996500	0,006	0,00036
0,2	100,00	99,988600	99,988610	99,988730	99,988910	99,988700	0,011	0,00013
0,3	150,00	149,980600	149,982600	149,981600	149,982000	149,981300	0,012	0,00050
0,4	200,00	200,022900	200,022200	200,023300	200,023200	200,023800	0,012	0,00029
0,5	250,00	250,026500	250,028700	250,028500	250,026900	250,027700	0,011	0,00039
0,6	300,00	300,034400	300,032500	300,032800	300,032500	300,033400	0,011	0,00027
0,7	350,00	350,040400	350,038500	350,038400	350,036800	350,036800	0,011	0,00043
0,8	400,00	400,039900	400,041200	400,041000	400,041400	400,042900	0,010	0,00027
0,9	450,00	450,046300	450,047600	450,047800	450,047100	450,045300	0,010	0,00023
1,0	500,00	500,051200	500,048700	500,050700	500,049100	500,049300	0,010	0,00022
1,1	550,00	550,053500	550,052400	550,052000	550,052800	550,054100	0,010	0,00015
1,2	600,00	600,058100	600,053900	600,055300	600,053800	600,051300	0,009	0,00041
1,3	650,00	650,055200	650,057000	650,058300	650,057300	650,056200	0,009	0,00018
1,4	700,00	700,059200	700,059600	700,061900	700,062300	700,063200	0,009	0,00025
1,5	750,00	750,060900	750,062300	750,060700	750,061900	750,060400	0,008	0,00011
1,6	800,00	800,069200	800,070000	800,063700	800,061400	800,061700	0,008	0,00052
1,7	850,00	850,063600	850,062600	850,062300	850,062300	850,062200	0,007	0,00007
1,8	900,00	900,060100	900,056500	900,053100	900,054200	900,051500	0,006	0,00037
1,9	950,00	950,051800	950,051000	950,049200	950,046400	950,045000	0,005	0,00031
2,0	1000,00	1000,048600	1000,051600	1000,050000	1000,049000	1000,045500	0,005	0,00022

Таблица 3.4 – Результаты измерений выходного тока второго каскада

На рисунке 3.16 приведен график относительной погрешности при задаваемых значениях выходного тока второго каскада источника тока.

Рисунок 3.16 – Относительная погрешность источника тока в диапазоне от 5 до 1000 мкА

В таблице 3.5 приведены результаты измерений выходного тока и рассчитанные значения погрешности для третьего каскада источника тока.

$U_{\rm BX}, { m B}$	<i>I</i> _{ном} , мА			<i>I</i> вых, мкА			δ, %	<i>S</i> , %
0,01	0,50	0,500109	0,500123	0,500070	0,500074	0,500097	0,019	0,0045
0,02	1,00	1,000093	1,000095	1,000089	1,000101	1,000110	0,010	0,0008
0,03	1,50	1,500183	1,500180	1,500214	1,500234	1,500174	0,013	0,0017
0,04	2,00	2,000245	2,000194	2,000228	2,000191	2,000204	0,011	0,0012
0,05	2,50	2,500214	2,500178	2,500205	2,500239	2,500270	0,009	0,0014
0,06	3,00	3,000292	3,000284	3,000295	3,000302	3,000338	0,010	0,0007
0,07	3,50	3,500370	3,500360	3,500344	3,500326	3,500339	0,010	0,0005
0,08	4,00	4,000372	4,000370	4,000346	4,000362	4,000354	0,009	0,0003
0,09	4,50	4,500390	4,500389	4,500397	4,500398	4,500365	0,009	0,0003
0,1	5,00	5,000395	5,000392	5,000411	5,000390	5,000385	0,008	0,0002
0,2	10,00	10,000764	10,000819	10,000773	10,000762	10,000727	0,008	0,0003
0,3	15,00	15,001227	15,001227	15,001067	15,001147	15,001217	0,008	0,0005
0,4	20,00	20,006592	20,006622	20,006512	20,006282	20,006302	0,032	0,0008
0,5	25,00	25,007718	25,007618	25,007618	25,007378	25,007408	0,030	0,0006
0,6	30,00	30,008574	30,008364	30,008094	30,008054	30,007834	0,027	0,0010
0,7	35,00	35,008639	35,008369	35,008089	35,007969	35,007689	0,023	0,0010

Таблица 3.5 – Результаты измерений выходного тока третьего каскада

$U_{\rm BX}, {\rm B}$	$I_{\text{ном}}$, мА		<i>I</i> _{вых} , мкА					
0,8	40,00	40,008365	40,008125	40,008075	40,007695	40,007285	0,020	0,0011
0,9	45,00	45,007890	45,007690	45,007490	45,007150	45,007030	0,017	0,0008
1,0	50,00	50,007116	50,006916	50,006666	50,005936	50,005866	0,013	0,0011
1,1	55,00	55,005322	55,004872	55,004462	55,004322	55,003952	0,008	0,0010
1,2	60,00	60,002877	60,002927	60,002387	60,001907	60,001657	0,004	0,0009
1,3	65,00	65,000813	65,000223	64,999603	64,999233	64,998883	0,001	0,0005
1,4	70,00	69,996928	69,996738	69,996568	69,995638	69,995348	0,005	0,0010
1,5	75,00	74,994514	74,993834	74,993564	74,992874	74,991934	0,009	0,0013
1,6	80,00	79,990860	79,989880	79,989480	79,989080	79,988720	0,013	0,0010
1,7	85,00	84,986905	84,986265	84,985465	84,984555	84,984195	0,017	0,0013
1,8	90,00	89,981891	89,981121	89,979991	89,979391	89,978741	0,022	0,0014
1,9	95,00	94,974916	94,973366	94,972506	94,972526	94,971826	0,028	0,0013
2,0	100,00	99,968072	99,967002	99,966082	99,964852	99,964042	0,034	0,0016

Продолжение таблицы 3.5

На рисунке 3.17 приведен график относительной погрешности при задаваемых значениях выходного тока третьего каскада источника тока.

Рисунок 3.17 – Относительная погрешность источника тока в диапазоне от 0,5 до 100 мА

На рисунках 3.18 – 3.20 приведены зависимости выходного тока от заданного значения для первого, второго и третьего каскадов, соответственно.

Рисунок 3.18 – Зависимость выходного тока от заданного значения тока первого

Рисунок 3.19 – Зависимость выходного тока от заданного значения тока второго

Рисунок 3.20 – Зависимость выходного тока от заданного значения тока третьего

Таким образом относительная погрешность коэффициента преобразования источника тока в диапазоне от 0,05 до 0,2 мкА не превышает 0,2 %, в диапазоне от 0,2 мкА до 100 мА составляет менее 0,1 %.

Для оценки влияния сопротивления нагрузки на выходной ток к выходу третьего каскада источника тока подключали переменный резистор при входном управляющем напряжение 2 В, что соответствует номинальному выходному току 100 мА, изменяли сопротивление резистора в диапазоне от 0 до 50 Ом и с помощью мультиметра Agilent 3458A измеряли выходной ток. Результаты зависимости выходного тока от сопротивления нагрузки приведены на рисунке 3.21.

Рисунок 3.21 – Зависимость выходного тока от сопротивления нагрузки

Из результатов измерений следует, что диапазон допустимых сопротивлений нагрузки составляет от 0 до 42 Ом. В указанном диапазоне относительная погрешность преобразования не превышает 0,1 %.

3.5 Выводы по главе 3

1. Реализован трехдиапазонный прецизионный регулируемый источник тока, управляемый напряжением в диапазоне воспроизведения токов от 0,1 мкА до 100 мА при напряжениях на входе от 0,02 В до 2 В.
2. Методом Монте-Карло проведено моделирование влияния разброса номинальных значений сопротивлений резисторов в принципиальной схеме источника тока на погрешность коэффициента преобразования. На основе результатов моделирования подобранны номиналы резисторов для практической реализации источника тока.

3. Для изготовленного источника тока проведена оценка погрешности коэффициента преобразования. Относительная погрешность коэффициента преобразования источника тока в диапазоне от 0,1 до 0,2 мкА не превышает 0,2 %, в диапазоне от 0,2 мкА до 100 мА составляет менее 0,1 %.

4. Проведена оценка влияния сопротивления нагрузки на погрешность коэффициента преобразования. Источник тока обеспечивает свою работоспособность при сопротивлениях нагрузки от 0 до 42 Ом, в данном диапазоне нагрузок относительная погрешность преобразования не превышает 0,1 %.

Г.ЛАВА 4

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ СИСТЕМ КАТУШЕК С ВЫСОКОЙ СТЕПЕНЬЮ ОДНОРОДНОСТИ

В настоящей главе описан процесс изготовления десятикатушечных аксиальных систем для создания однородного магнитного поля на основе технологии 3D-печати методом послойного наплавления, и приведены результаты экспериментальных исследований однородности магнитного поля изготовленных систем. Для автоматизированной оценки однородности магнитного поля, создаваемого десятикатушечными системами, собран экспериментальный стенд на основе шестиосевого робота-манипулятора Kuka KR4 R600, обеспечивающий линейное перемещение с заданным шагом датчика магнитного поля внутри объема системы катушек.

4.1 Изготовление аксиальных систем катушек

На основании результатов моделирования десятикатушечных систем, для практической реализации и экспериментальных исследований целесообразно выбрать системы катушек № 1 и № 3.

Для изготовления каркасов указанных аксиальных систем катушек была использована технология 3D-печати методом послойного наплавления. Для каждой десятикатушечной системы каркас был разбит на три сектора ввиду технологических ограничений по высоте печати 3D-принтера, а также требований по габаритам к каркасу для возможности выполнения последующей намотки катушек автоматизированным способом.

Габаритный чертеж десятикатушечной системы № 1 и ее 3D-модель привденены на риснуке 4.1. На рисунке 4.2 представлены габаритный чертеж десятикатушечной системы № 3 и ее 3D-модель.

В качестве материала для 3D-печати каркаса методом послойного наплавления использовался полиактид (ПЛА, PLA) – биоразлагаемый, биосовместимый, термопластичный, алифатический полиэфир. Выбор данного материала обусловлен простотой в использовании при 3D-печати. Материал обеспечивает высокое качество поверхности изделия и малую усадку при печати, что позволяет с выской точностью соблюсти заданные геометрические размеры отдельных частей каркаса систем катушек.

При подготовке моделей каркасов к печати были выставлены следующие параметры: высота слоя – 0,1 мм; диаметр сопла 3D-принтера – 0,4 мм; температура сопла 3D-принтера – 220 °C; температура стола 3D-принтера – 50 °C. Итоговое общее время печати моделей каркасов составило 122 часа.

Намотка катушек на каркас производилась эмалированным проводом ПЭТВ-2 диаметром 0,18 мм. Катушки на каждый из трех каркасов наматывались отдельно, с последующим последовательным соединением методом пайки. Намотка производилась на намоточном станке CHC-1.5-300. Сборка систем катушек осуществлялась при помощи латунного крепежа. Выводы от крайних катушек для подключения источника тока были припаяны на приборные разъемы.

Внешний вид изготовленной части каркаса с намотанной катушкой десятикатушечной системы № 1 приведен на рисунке 4.3.

Рисунок 4.3 – Изготовленная часть каркаса с намотанной катушкой десятикатушечной системы № 1

С целью фиксация положения катушек на каркасе витки катушек были пропитаны клеем БФ6.

Внешний вид изготовленного макета десятикатушечной системы № 1 приведен на рисунке 4.4. На рисунке 4.5 представлен внешний вид изготовленного макета десятикатушечной системы № 3.

Рисунок 4.4– Внешний вид макета десятикатушечной системы № 1

Рисунок 4.5– Внешний вид макета десятикатушечной системы № 3

4.2 Оценка однородности магнитного поля десятикатушечных систем

Экспериментальные исследования изготовленных десятикатушечных систем проводились с помощью магнитометра Mag-01H [104], феррозондового датчика магнитного поля HB0391.5-20 [105],

магнитоизмерительного канала HB0300.2 [106], мультиметра Agilent 3458A [107] и синхронного усилителя [108]. Система катушек запитывалась от разработанного источника тока, описанного в главе 3 – рисунок 4.6.

Рисунок 4.6 – Схема для исследования систем катушек

С Fluke помощью генератора-калибратора 5520A задается управляющие напряжение для источника тока. Магнитометром Mag-01H фиксируется магнитное поле в геометрическом центре системы катушек, затем, вместо датчика магнитометра Mag-01H, в центр системы катушек феррозондовый HB0391.5-20, помещается датчик магнитного поля HB0300.2. подключенный магнитоизмерительному каналу К Магнитоизмерительный канал НВ0300.2 обеспечивает возбуждение датчика HB0391.5-20 И кондиционирование выходного сигнала с него. Магнитоизмерительный канал преобразует сигнал с выхода феррозондового датчика в постоянное напряжение, пропорциональное измеряемой магнитной индукции. Напряжение с выхода магнитоизмерительного канала фиксируется при помощи мультиметра Agilent 3458A, также напряжение с выхода феррозондового датчика на удвоенной частоте возбуждения контролируется синхронным усилителем. Питание схемы источника тока и магнитоизмерительного канала осуществляется от лабораторного блока питания GPD-74303S.

Для автоматизированной оценки однородности магнитного поля, создаваемого десятикатушечными системами № 1 и № 3, был собран экспериментальный стенд на основе шестиосевого робота-манипулятора Kuka KR4 R600 – рисунок 4.7.

Рисунок 4.7 – Экспериментальный стенд для оценки однородности магнитного поля

Датчик магнитного поля, помещаемый внутрь системы катушек, был закреплён на капролоновой штанге, зафиксированной во фланце робота-

манипулятора. Многокатушечная система позиционировалась таким образом, чтобы минимизировать влияние внешнего магнитного поля.

В среде RoboDK – рисунок 4.8, была написана управляющая программа по линейному перемещению с помощью робота-манипулятора датчика магнитного поля внутри объема десятикатушечной системы.

Рисунок 4.8 – Фрагмент управляющей программы в среде RoboDK

На источнике тока задавались значения выходного тока, равные 50 мА и 92 мА для исполнения №1 и №3 соответственно. В каждой точке измерений фиксировались внешнее магнитное поле при выключенном источнике тока и магнитное поле при включенном источнике тока. Внешнее магнитное поле измерялось с целью определения его влияния на магнитное поле, создаваемое системой катушек, и корректной оценки однородности поля внутри системы катушек.

Магнитное поле внутри системы катушек измерялось в горизонтальных плоскостях на расстояниях $0, \pm 5, \pm 10, \pm 15, \pm 20, \pm 25, \pm 30, \pm 35, \pm 40$ мм от центра системы. Каждая плоскость образует сечение цилиндра в форме окружности, центр которой принимается за начало отсчета положений точек, в которых измерялось магнитное поле. Позиционирование датчика магнитного поля осуществлялось согласно шаблону, изображённому на

рисунке 4.9. В каждой точке, определяемой шаблоном, магнитное поле измерялось в направлении аксиальной оси системы катушек (ось *Z*).

Рисунок 4.9 – Измерительный шаблон

4.2.1 Оценка однородности магнитного поля десятикатушечной системы №1

Результаты измерения магнитной индукции, создаваемой десятикатушечной системой №1, приведены в таблицах 4.1 – 4.4.

Таблица 4.1 – Магнитная индукция в плоскости десятикатушечной системы №1 (ось WE).

							<i>r</i> , мм						
<i>Z</i> , мм	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
					Маг	нитная	і индуі	кция, м	ıкТл				
-80	49,979	50,196	50,222	50,190	50,147	50,110	50,088	50,088	50,107	50,142	50,178	50,195	50,094
-70	49,541	49,865	50,022	50,074	50,082	50,079	50,071	50,073	50,073	50,077	50,061	50,002	49,854
-60	49,441	49,758	49,921	50,003	50,032	50,043	50,049	50,050	50,043	50,028	49,996	49,919	49,774
-50	49,630	49,827	49,922	49,996	50,011	50,023	50,022	50,023	50,029	50,006	49,990	49,937	49,859
-40	50,022	49,975	49,979	49,994	50,012	50,017	50,023	50,023	50,015	50,011	49,997	49,990	49,994

							<i>r</i> , мм						
<i>Z</i> , мм	-30	-25	-20	-15	-10	-5	0	5					
					Маг	нитная	і индуі	кция, м	ıкТл				
-30	50,219	50,077	50,029	50,015	50,018	50,015	50,018	50,018	50,017	50,011	50,015	50,026	50,073
-20	50,178	50,077	50,040	50,025	50,022	50,012	50,015	50,015	50,022	50,017	50,022	50,034	50,062
-10	49,960	50,018	50,026	50,025	50,023	50,018	50,018	50,018	50,022	50,023	50,023	50,022	50,011
0	49,878	49,978	50,009	50,022	50,026	50,018	50,020	50,018	50,022	50,023	50,017	50,011	49,976
10	49,942	50,005	50,023	50,022	50,023	50,022	50,022	50,022	50,026	50,025	50,025	50,022	50,011
20	50,135	50,073	50,044	50,026	50,026	50,022	50,023	50,022	50,026	50,023	50,029	50,040	50,073
30	50,260	50,103	50,050	50,028	50,028	50,025	50,025	50,023	50,026	50,025	50,028	50,040	50,089
40	50,142	50,038	50,015	50,012	50,023	50,029	50,034	50,034	50,043	50,041	50,038	50,028	50,056
50	49,835	49,939	50,009	50,052	50,050	50,049	50,008	50,008	50,062	50,068	50,028	49,978	49,875
60	49,616	49,874	50,008	50,074	50,107	50,122	50,126	50,126	50,127	50,110	50,071	49,984	49,791
70	49,649	49,958	50,091	50,142	50,156	50,153	50,156	50,154	50,163	50,168	50,153	50,089	49,921
80	50,040	50,214	50,260	50,245	50,210	50,184	50,172	50,175	50,201	50,242	50,285	50,314	50,279

Продолжение таблицы 4.1

Таблица 4.2 – Магнитная индукция в плоскости десятикатушечной системы №1 (ось NS).

							<i>г</i> , мм						
<i>Z</i> , мм	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
					Маг	нитная	і индуі	кция, м	кТл				
-80	49,933	50,119	50,172	50,163	50,131	50,113	50,104	50,107	50,133	50,160	50,180	50,180	50,073
-70	49,520	49,877	50,014	50,062	50,077	50,080	50,086	50,080	50,082	50,083	50,047	49,978	49,780
-60	49,579	49,814	49,943	50,006	50,032	50,044	50,056	50,053	50,043	50,031	49,984	49,899	49,725
-50	49,817	49,913	49,957	49,991	50,017	50,026	50,037	50,029	50,022	50,014	49,975	49,931	49,856
-40	50,086	50,012	50,003	50,005	50,015	50,018	50,026	50,018	50,014	50,006	50,002	50,005	50,017
-30	50,163	50,076	50,035	50,018	50,015	50,015	50,017	50,017	50,011	50,015	50,017	50,034	50,098
-20	50,112	50,055	50,029	50,018	50,022	50,011	50,018	50,011	50,015	50,018	50,018	50,032	50,070
-10	49,952	50,003	50,022	50,017	50,023	50,017	50,018	50,014	50,014	50,017	50,017	50,011	49,996
0	49,898	49,988	50,018	50,022	50,022	50,017	50,020	50,015	50,018	50,017	50,012	50,000	49,967
10	50,000	50,025	50,029	50,026	50,022	50,011	50,018	50,017	50,018	50,018	50,022	50,015	50,011
20	50,174	50,085	50,049	50,028	50,028	50,012	50,022	50,015	50,022	50,022	50,023	50,026	50,082
30	50,217	50,088	50,040	50,026	50,023	50,015	50,028	50,018	50,022	50,018	50,015	50,032	50,086
40	50,052	50,056	50,008	50,003	50,012	50,018	50,038	50,032	50,037	49,988	49,997	49,981	49,993
50	49,732	49,860	49,945	49,996	50,026	50,035	50,041	50,034	50,028	50,014	49,984	49,936	49,842
60	49,487	49,789	49,943	50,023	50,052	50,064	50,067	50,056	50,052	50,043	49,999	49,915	49,753
70	49,567	49,898	50,040	50,100	50,107	50,116	50,086	50,086	50,086	50,086	50,067	50,003	49,838
80	50,034	50,210	50,232	50,222	50,178	50,142	50,112	50,091	50,119	50,150	50,183	50,196	50,154

							<i>r</i> , мм						
<i>Z</i> , мм	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
					Маг	нитная	а индуг	кция, м	ıкТл				
-80	50,014	50,153	50,177	50,150	50,115	50,097	50,091	50,106	50,138	50,174	50,202	50,187	50,022
-70	49,685	49,940	50,035	50,068	50,076	50,077	50,079	50,077	50,080	50,080	50,029	49,916	49,657
-60	49,673	49,113	49,964	50,014	50,034	50,047	50,052	50,047	50,038	50,018	49,948	49,826	49,582
-50	49,833	49,927	49,975	49,999	50,025	50,026	50,025	50,025	50,015	50,003	49,945	49,880	49,738
-40	50,037	50,000	49,999	50,009	50,015	50,022	50,023	50,017	50,009	50,000	49,985	49,985	50,018
-30	50,119	50,046	50,023	50,022	50,012	50,015	50,014	50,014	50,025	50,015	50,022	50,056	50,159
-20	50,086	50,044	50,022	50,014	50,017	50,012	50,015	50,025	50,014	50,023	50,026	50,050	50,125
-10	49,976	50,008	50,022	50,017	50,018	50,014	50,017	50,017	50,014	50,017	50,017	50,009	49,978
0	49,937	50,000	50,012	50,017	50,023	50,015	50,020	50,012	50,022	50,014	50,006	49,985	49,919
10	50,000	50,023	50,025	50,025	50,022	50,015	50,022	50,025	50,021	50,022	50,023	50,006	49,975
20	50,121	50,059	50,034	50,025	50,026	50,014	50,017	50,017	50,022	50,026	50,029	50,050	50,106
30	50,148	50,064	50,035	50,023	50,022	50,015	50,028	50,022	50,025	50,022	50,029	50,068	50,174
40	50,050	50,043	50,022	50,017	50,023	50,023	50,037	50,028	50,028	49,997	50,003	50,005	50,067
50	49,803	49,916	49,987	50,037	50,056	50,068	50,068	50,062	50,053	50,028	49,997	49,936	49,833
60	49,637	49,887	50,006	50,064	50,086	50,094	50,094	50,085	50,080	50,053	50,000	49,890	49,681
70	49,744	49,990	50,094	50,132	50,130	50,133	50,121	50,116	50,119	50,110	50,079	49,978	49,743
80	50,153	50,258	50,258	50,232	50,184	50,154	50,139	50,136	50,166	50,195	50,222	50,205	50,094

Таблица 4.3 – Магнитная индукция в плоскости десятикатушечной системы №1 (ось NWSE).

Таблица 4.4 – Магнитная индукция в плоскости десятикатушечной системы №1 (ось NESW).

							<i>r</i> , мм						
<i>Z</i> , мм	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
					Маг	нитная	і индуі	кция, м	ıкТл				
-80	49,958	50,157	50,199	50,175	50,136	50,115	50,097	50,094	50,122	50,148	50,178	50,186	50,083
-70	49,530	49,871	50,015	50,068	50,080	50,080	50,077	50,076	50,077	50,082	50,052	49,991	49,815
-60	49,506	49,028	49,934	50,003	50,035	50,043	50,053	50,055	50,041	50,026	49,987	49,910	49,750
-50	49,722	49,872	49,942	49,991	50,015	50,028	50,029	50,026	50,026	50,011	49,981	49,936	49,856
-40	50,056	49,993	49,991	50,002	50,011	50,022	50,028	50,015	50,017	50,006	49,999	49,996	50,005
-30	50,189	50,077	50,034	50,025	50,017	50,017	50,018	50,014	50,015	50,012	50,012	50,029	50,082
-20	50,145	50,067	50,031	50,023	50,017	50,023	50,022	50,012	50,018	50,017	50,023	50,029	50,068
-10	49,957	50,008	50,022	50,022	50,018	50,017	50,022	50,017	50,014	50,022	50,018	50,017	50,005
0	49,884	49,979	50,012	50,018	50,026	50,015	50,020	50,018	50,017	50,022	50,014	50,002	49,973
10	49,972	50,014	50,025	50,026	50,025	50,012	50,018	50,011	50,022	50,018	50,018	50,017	50,009
20	50,151	50,079	50,049	50,028	50,026	50,017	50,017	50,017	50,025	50,022	50,022	50,034	50,077
30	50,235	50,094	50,046	50,029	50,026	50,018	50,023	50,018	50,023	50,023	50,025	50,035	50,089
40	50,097	50,049	50,009	50,006	50,017	50,025	50,035	50,034	50,040	50,015	50,017	50,003	50,025
50	49,783	49,898	49,979	50,026	50,050	50,067	50,071	50,068	50,056	50,044	50,003	49,960	49,856
60	49,550	49,830	49,978	50,046	50,079	50,091	50,094	50,091	50,092	50,076	50,037	49,952	49,773
70	49,606	49,931	50,062	50,121	50,133	50,136	50,119	50,122	50,125	50,127	50,106	50,043	49,875
80	50,035	50,214	50,243	50,229	50,193	50,160	50,141	50,136	50,163	50,196	50,235	50,254	50,217

Относительная неоднородность магнитного поля, создаваемого десятикатушечной системой №1, вычислялась в соответствии с выражением (4.1):

$$\delta_{z} = \frac{\left(B_{z=0} - B_{z\neq0}\right)}{B_{z=0}} \cdot 100.$$
(4.1)

Результаты расчета относительной неоднородности магнитной индукции, создаваемой десятикатушечной системой №1, приведены в таблицах 4.5 – 4.8.

Таблица 4.5 – Неоднородность магнитного поля в плоскости десятикатушечной системы №1 (ось WE).

							<i>r</i> , мм						
<i>Z</i> , мм	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
				He	однор	одност	ъ магн	итного	о поля,	%			
-80	0,0814	0,3525	0,4038	0,3405	0,2531	0,1808	0,1356	0,1356	0,1748	0,2441	0,3164	0,3495	0,1476
-70	0,9582	0,3104	0,0030	0,1085	0,1235	0,1175	0,1024	0,1055	0,1055	0,1145	0,0814	0,0362	0,3314
-60	1,1570	0,5243	0,1989	0,0331	0,0241	0,0452	0,0572	0,0603	0,0452	0,0151	0,0482	0,2019	0,4911
-50	0,7804	0,3857	0,1959	0,0482	0,0181	0,0060	0,0030	0,0060	0,0181	0,0271	0,0603	0,1657	0,3224
-40	0,0030	0,0904	0,0814	0,0512	0,0151	0,0060	0,0060	0,0060	0,0090	0,0181	0,0452	0,0603	0,0512
-30	0,3977	0,1145	0,0181	0,0090	0,0030	0,0090	0,0030	0,0030	0,0060	0,0181	0,0090	0,0121	0,1055
-20	0,3164	0,1145	0,0392	0,0090	0,0030	0,0151	0,0090	0,0090	0,0030	0,0060	0,0030	0,0271	0,0844
-10	0,1205	0,0030	0,0121	0,0090	0,0060	0,0030	0,0030	0,0030	0,0030	0,0060	0,0060	0,0030	0,0181
0	0,2832	0,0844	0,0211	0,0030	0,0121	0,0030	0,0000	0,0030	0,0030	0,0060	0,0060	0,0181	0,0874
10	0,1567	0,0301	0,0060	0,0030	0,0060	0,0030	0,0030	0,0030	0,0121	0,0090	0,0090	0,0030	0,0181
20	0,2290	0,1055	0,0482	0,0121	0,0121	0,0030	0,0060	0,0030	0,0121	0,0060	0,0181	0,0392	0,1055
30	0,4791	0,1657	0,0603	0,0151	0,0151	0,0090	0,0090	0,0060	0,0121	0,0090	0,0151	0,0392	0,1386
40	0,2441	0,0362	0,0090	0,0151	0,0060	0,0181	0,0271	0,0271	0,0452	0,0422	0,0362	0,0151	0,0723
50	0,3706	0,1627	0,0211	0,0633	0,0603	0,0572	0,0241	0,0241	0,0844	0,0964	0,0151	0,0844	0,2893
60	0,8075	0,2923	0,0241	0,1085	0,1748	0,2049	0,2109	0,2109	0,2139	0,1808	0,1024	0,0723	0,4580
70	0,7412	0,1235	0,1416	0,2441	0,2712	0,2652	0,2712	0,2682	0,2862	0,2953	0,2652	0,1386	0,1989
80	0,0392	0,3887	0,4791	0,4490	0,3797	0,3284	0,3043	0,3104	0,3616	0,4429	0,5303	0,5876	0,5183

Таблица 4.6 – Неоднородность магнитного поля в плоскости десятикатушечной системы №1 (ось NS).

							<i>r</i> , мм						
<i>Z</i> , мм	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
				He	однор	одност	ъ магн	итного	о поля,	%			
-80	0,1747	0,1988	0,3042	0,2861	0,2229	0,1867	0,1687	0,1747	0,2259	0,2801	0,3193	0,3193	0,1054
-70	1,0000	0,2861	0,0120	0,0843	0,1145	0,1205	0,1325	0,1205	0,1235	0,1265	0,0542	0,0843	0,4789

							<i>r</i> , мм						
<i>Z</i> , мм	-30	-25	-20	-15	-10								
				He	однор	одност	ъ магн	итного	о поля,	%			
-60	0,8825	0,4127	0,1536	0,0271	0,0241	0,0482	0,0723	0,0663	0,0452	0,0211	0,0723	0,2410	0,5904
-50	0,4066	0,2139	0,1265	0,0572	0,0060	0,0120	0,0331	0,0181	0,0030	0,0120	0,0904	0,1777	0,3283
-40	0,1325	0,0151	0,0331	0,0301	0,0090	0,0030	0,0120	0,0030	0,0120	0,0271	0,0361	0,0301	0,0060
-30	0,2861	0,1114	0,0301	0,0030	0,0090	0,0090	0,0060	0,0060	0,0181	0,0090	0,0060	0,0271	0,1566
-20	0,1837	0,0693	0,0181	0,0030	0,0030	0,0181	0,0030	0,0181	0,0090	0,0030	0,0030	0,0241	0,0994
-10	0,1355	0,0331	0,0030	0,0060	0,0060	0,0060	0,0030	0,0120	0,0120	0,0060	0,0060	0,0181	0,0482
0	0,2440	0,0633	0,0030	0,0030	0,0030	0,0060	0,0000	0,0090	0,0030	0,0060	0,0151	0,0392	0,1054
10	0,0392	0,0090	0,0181	0,0120	0,0030	0,0181	0,0030	0,0060	0,0030	0,0030	0,0030	0,0090	0,0181
20	0,3072	0,1295	0,0572	0,0151	0,0151	0,0151	0,0030	0,0090	0,0030	0,0030	0,0060	0,0120	0,1235
30	0,3946	0,1355	0,0392	0,0120	0,0060	0,0090	0,0151	0,0030	0,0030	0,0030	0,0090	0,0241	0,1325
40	0,0633	0,0723	0,0241	0,0331	0,0151	0,0030	0,0361	0,0241	0,0331	0,0633	0,0452	0,0783	0,0542
50	0,5753	0,3193	0,1506	0,0482	0,0120	0,0301	0,0422	0,0271	0,0151	0,0120	0,0723	0,1687	0,3554
60	1,0663	0,4608	0,1536	0,0060	0,0633	0,0873	0,0934	0,0723	0,0633	0,0452	0,0422	0,2108	0,5331
70	0,9066	0,2440	0,0392	0,1596	0,1747	0,1928	0,1325	0,1325	0,1325	0,1325	0,0934	0,0331	0,3645
80	0,0271	0,3795	0,4247	0,4036	0,3163	0,2440	0,1837	0,1416	0,1988	0,2590	0,3253	0,3524	0,2681

Продолжение таблицы 4.6

Таблица 4.7 – Неоднородность магнитного поля в плоскости десятикатушечной системы №1 (ось NWSE).

							<i>r</i> , мм						
<i>Z</i> , мм	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
				He	однор	одност	ъ магн	итного	о поля,	%			
-80	0,0121	0,2651	0,3133	0,2591	0,1898	0,1536	0,1416	0,1717	0,2350	0,3073	0,3645	0,3344	0,0030
-70	0,6688	0,1597	0,0301	0,0964	0,1115	0,1145	0,1175	0,1145	0,1205	0,1205	0,0181	0,2079	0,7260
-60	0,6929	1,8135	0,1115	0,0121	0,0271	0,0542	0,0633	0,0542	0,0362	0,0030	0,1446	0,3886	0,8766
-50	0,3736	0,1868	0,0904	0,0422	0,0090	0,0121	0,0090	0,0090	0,0090	0,0331	0,1506	0,2802	0,5633
-40	0,0331	0,0392	0,0422	0,0211	0,0090	0,0030	0,0060	0,0060	0,0211	0,0392	0,0693	0,0693	0,0030
-30	0,1988	0,0512	0,0060	0,0030	0,0151	0,0090	0,0121	0,0121	0,0090	0,0090	0,0030	0,0723	0,2772
-20	0,1326	0,0482	0,0030	0,0121	0,0060	0,0151	0,0090	0,0090	0,0121	0,0060	0,0121	0,0603	0,2109
-10	0,0874	0,0241	0,0030	0,0060	0,0030	0,0121	0,0060	0,0060	0,0121	0,0060	0,0060	0,0211	0,0844
0	0,1657	0,0392	0,0151	0,0060	0,0060	0,0090	0,0000	0,0151	0,0030	0,0121	0,0271	0,0693	0,2018
10	0,0392	0,0060	0,0090	0,0090	0,0030	0,0090	0,0030	0,0090	0,0015	0,0030	0,0060	0,0271	0,0904
20	0,2018	0,0783	0,0271	0,0090	0,0121	0,0121	0,0060	0,0060	0,0030	0,0121	0,0181	0,0603	0,1717
30	0,2561	0,0874	0,0301	0,0060	0,0030	0,0090	0,0151	0,0030	0,0090	0,0030	0,0181	0,0964	0,3073
40	0,0603	0,0452	0,0030	0,0060	0,0060	0,0060	0,0331	0,0151	0,0151	0,0452	0,0331	0,0301	0,0934
50	0,4338	0,2079	0,0663	0,0331	0,0723	0,0964	0,0964	0,0844	0,0663	0,0151	0,0452	0,1687	0,3736
60	0,7652	0,2651	0,0271	0,0874	0,1326	0,1476	0,1476	0,1295	0,1205	0,0663	0,0392	0,2591	0,6778
70	0,5513	0,0603	0,1476	0,2229	0,2199	0,2259	0,2018	0,1928	0,1988	0,1808	0,1175	0,0844	0,5543
80	0,2651	0,4760	0,4760	0,4248	0,3284	0,2681	0,2380	0,2320	0,2922	0,3495	0,4037	0,3705	0,1476

							<i>r</i> , мм						
<i>Z</i> , мм	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
				He	однор	одност	ъ магн	итного	о поля,	%			
-80	0,1235	0,2741	0,3585	0,3103	0,2320	0,1898	0,1536	0,1476	0,2049	0,2561	0,3163	0,3314	0,1265
-70	0,9791	0,2982	0,0090	0,0964	0,1205	0,1205	0,1145	0,1115	0,1145	0,1235	0,0633	0,0572	0,4097
-60	1,0273	1,9823	0,1717	0,0331	0,0301	0,0452	0,0663	0,0693	0,0422	0,0121	0,0663	0,2199	0,5393
-50	0,5965	0,2952	0,1567	0,0572	0,0090	0,0151	0,0181	0,0121	0,0121	0,0181	0,0783	0,1687	0,3284
-40	0,0723	0,0542	0,0572	0,0362	0,0181	0,0030	0,0151	0,0090	0,0060	0,0271	0,0422	0,0482	0,0301
-30	0,3374	0,1145	0,0271	0,0090	0,0060	0,0060	0,0030	0,0121	0,0090	0,0151	0,0151	0,0181	0,1235
-20	0,2500	0,0934	0,0211	0,0060	0,0060	0,0060	0,0030	0,0151	0,0030	0,0060	0,0060	0,0181	0,0964
-10	0,1265	0,0241	0,0030	0,0030	0,0030	0,0060	0,0030	0,0060	0,0121	0,0030	0,0030	0,0060	0,0301
0	0,2711	0,0813	0,0151	0,0030	0,0121	0,0090	0,0000	0,0030	0,0060	0,0030	0,0121	0,0362	0,0934
10	0,0964	0,0121	0,0090	0,0121	0,0090	0,0151	0,0030	0,0181	0,0030	0,0030	0,0030	0,0060	0,0211
20	0,2621	0,1175	0,0572	0,0151	0,0121	0,0060	0,0060	0,0060	0,0090	0,0030	0,0030	0,0271	0,1145
30	0,4308	0,1476	0,0512	0,0181	0,0121	0,0030	0,0060	0,0030	0,0060	0,0060	0,0090	0,0301	0,1386
40	0,1536	0,0572	0,0211	0,0271	0,0060	0,0090	0,0301	0,0286	0,0392	0,0090	0,0060	0,0331	0,0090
50	0,4730	0,2440	0,0813	0,0121	0,0603	0,0934	0,1024	0,0964	0,0723	0,0482	0,0331	0,1205	0,3284
60	0,9399	0,3796	0,0844	0,0512	0,1175	0,1416	0,1476	0,1416	0,1446	0,1115	0,0331	0,1356	0,4941
70	0,8285	0,1777	0,0844	0,2018	0,2259	0,2320	0,1988	0,2049	0,2109	0,2139	0,1717	0,0452	0,2892
80	0,0301	0,3886	0,4459	0,4188	0,3464	0,2802	0,2410	0,2320	0,2862	0,3525	0,4308	0,4670	0,3946

Таблица 4.8 – Неоднородность магнитного поля в плоскости десятикатушечной системы №1 (ось NESW).

На рисунке 4.10 представлен контурный график неоднородности магнитного поля десятикатушечной системы №1 с шагом 0,02 % – ось WE.

Рисунок 4.10 – График неоднородности магнитного поля десятикатушечной системы №1 с шагом 0,02 % – ось WE

Рисунок 4.11 – График неоднородности магнитного поля десятикатушечной системы №1 с шагом 0,1 % – ось WE

На рисунке 4.12 представлен контурный график неоднородности магнитного поля десятикатушечной системы №1 с шагом 0,02 % – ось NS.

Рисунок 4.12 – График неоднородности магнитного поля десятикатушечной системы №1 с шагом 0,02 % – ось NS

На рисунке 4.13 представлен контурный график неоднородности магнитного поля десятикатушечной системы №1 с шагом 0,1 % – ось NS.

Рисунок 4.13 – График неоднородности магнитного поля десятикатушечной системы №1 с шагом 0,1 % – ось NS

На рисунке 4.14 представлен контурный график неоднородности магнитного поля десятикатушечной системы №1 с шагом 0,02 % – ось NWSE.

Рисунок 4.14 – График неоднородности магнитного поля десятикатушечной системы №1 с шагом 0,02 % – ось NWSE

На рисунке 4.15 представлен контурный график неоднородности магнитного поля десятикатушечной системы №1 с шагом 0,1 % – ось NWSE.

Рисунок 4.15 – График неоднородности магнитного поля десятикатушечной системы №1 с шагом 0,1 % – ось NWSE

На рисунке 4.16 представлен контурный график неоднородности магнитного поля десятикатушечной системы №1 с шагом 0,02 % – ось NESW.

Рисунок 4.16 – График неоднородности магнитного поля десятикатушечной системы №1 с шагом 0,02 % – ось NESW

Рисунок 4.17 – График неоднородности магнитного поля десятикатушечной системы №1 с шагом 0,1 % – ось NESW

На рисунке 4.18 приведена зависимость неоднородности магнитного поля десятикатушечной системы №1 вдоль оси *Z*, измеренная непосредственно в центре системы.

Рисунок 4.18 – Неоднородность магнитного поля десятикатушечной системы №1 вдоль оси *Z*, измеренная в центре системы

Из результатов экспериментального исследования десятикатушечной системы №1 следует, что относительно геометрического центра системы неоднородность магнитного поля не превышает 0,02 % в объеме 30 % от радиуса системы. На расстоянии 50 % от центра системы неоднородность магнитного поля не превышает 0,1 %. Значение магнитной индукции в центре десятикатушечной системы №1 при токе 1 мА составляет 1,11 мкТл и отличается от полученного в результате моделирования на 0,6 %.

4.2.2 Оценка однородности магнитного поля десятикатушечной системы №3

Результаты измерения магнитной индукции, создаваемой десятикатушечной системой №3, приведены в таблицах 4.9 – 4.12.

Таблица 4.9 – Магнитная индукция в плоскости десятикатушечной системы №3 (ось WE).

							<i>r</i> , мм						
<i>Z</i> , мм	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
					Магі	нитная	индук	ция, м	кТл				
-80	100,207	99,815	99,324	98,904	98,594	98,362	98,255	98,339	98,529	98,791	99,166	99,528	99,729
-70	98,257	98,686	98,759	98,673	98,564	98,456	98,299	98,426	98,538	98,636	98,746	98,692	98,270
-60	97,199	98,036	98,343	98,454	98,474	98,454	98,414	98,444	98,478	98,456	98,414	98,178	97,522
-50	97,182	97,882	98,184	98,326	98,401	98,407	98,366	98,405	98,407	98,364	98,272	98,069	97,582
-40	97,886	98,088	98,216	98,291	98,381	98,379	98,372	98,371	98,392	98,343	98,306	98,238	98,116
-30	98,630	98,392	98,326	98,343	98,375	98,362	98,362	98,347	98,368	98,364	98,384	98,444	98,581
-20	98,864	98,534	98,396	98,356	98,362	98,375	98,364	98,349	98,358	98,366	98,441	98,514	98,688
-10	98,564	98,474	98,390	98,362	98,379	98,371	98,366	98,362	98,377	98,364	98,446	98,459	98,480
0	98,146	98,313	98,356	98,360	98,377	98,362	98,360	98,373	98,377	98,369	98,403	98,360	98,229
10	98,013	98,266	98,345	98,356	98,371	98,362	98,362	98,358	98,379	98,364	98,396	98,351	98,214
20	98,351	98,371	98,388	98,366	98,379	98,362	98,358	98,354	98,375	98,377	98,409	98,441	98,459
30	98,810	98,525	98,403	98,369	98,364	98,371	98,364	98,347	98,375	98,379	98,426	98,497	98,679
40	98,909	98,508	98,388	98,349	98,369	98,362	98,349	98,364	98,364	98,356	98,407	98,448	98,609
50	98,354	98,266	98,287	98,306	98,371	98,375	98,369	98,349	98,364	98,351	98,324	98,274	98,208
60	97,471	97,914	98,139	98,287	98,377	98,377	98,379	98,375	98,405	98,396	98,298	98,096	97,721
70	96,967	97,811	98,199	98,326	98,420	98,420	98,284	98,386	98,431	98,414	98,375	98,182	97,623
80	97,383	98,193	98,493	98,529	98,491	98,424	98,282	98,414	98,461	98,551	98,611	98,557	98,227

							<i>r</i> , мм						
<i>Z</i> , мм	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
					Маг	нитная	индук	ция, м	кТл				
-80	99,901	99,713	99,263	98,872	98,506	98,319	98,219	98,270	98,390	98,660	98,972	99,334	99,625
-70	97,966	98,610	98,703	141,460	98,488	98,435	98,296	98,396	98,411	98,533	98,615	98,542	98,189
-60	97,033	97,955	98,283	98,379	98,429	98,420	98,396	98,409	98,392	98,411	98,345	98,077	99,666
-50	97,097	97,816	98,120	98,281	98,332	98,392	98,357	98,381	98,336	98,343	98,236	98,002	97,561
-40	97,987	98,097	98,197	98,274	98,321	98,364	98,347	98,362	98,324	98,334	98,266	98,167	98,097
-30	98,745	98,429	98,341	98,349	98,347	98,349	98,343	98,366	98,343	98,349	98,334	98,373	98,585
-20	98,923	98,548	98,394	98,349	98,345	98,354	98,356	98,364	98,364	98,358	98,409	98,458	98,703
-10	98,555	98,450	98,375	98,345	98,347	98,349	98,362	98,366	98,358	98,364	98,403	98,418	98,499
0	98,105	98,300	98,321	98,341	98,345	98,375	98,360	98,358	98,364	98,364	98,403	98,336	98,251
10	98,011	98,249	98,332	98,349	98,343	98,371	98,364	98,379	98,377	98,379	98,388	98,319	98,229
20	98,360	98,373	98,379	98,343	98,349	98,373	98,356	98,364	98,373	98,377	98,426	98,407	98,467
30	98,775	98,523	98,527	98,345	98,349	98,377	98,341	98,358	98,356	98,371	98,433	98,486	98,715
40	98,876	98,482	98,369	98,330	98,294	98,366	98,336	98,364	98,343	98,343	98,386	98,426	98,645
50	98,283	98,210	98,268	98,274	98,302	98,351	98,328	98,364	98,347	98,343	98,313	98,225	98,204
60	97,416	97,857	98,146	98,266	98,300	98,364	98,334	98,377	98,354	98,334	98,277	98,032	97,686
70	96,919	97,767	98,187	98,345	98,375	98,396	98,284	98,403	98,414	98,423	98,403	98,105	97,516
80	97,465	98,212	98,491	98,527	98,465	98,403	98,260	98,394	98,467	98,551	98,615	98,546	98,142

Таблица 4.10 – Магнитная индукция в плоскости десятикатушечной системы №3 (ось NS).

Таблица 4.11 – Магнитная индукция в плоскости десятикатушечной системы №3 (ось NWSE).

							<i>r</i> , мм						
<i>Z</i> , мм	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
					Маг	нитная	индук	ция, м	кТл				
-80	99,812	99,624	99,219	98,831	98,516	98,326	98,238	98,319	98,489	98,782	99,150	99,572	99,913
-70	98,120	98,658	98,724	120,056	98,510	98,433	98,301	98,429	98,491	98,600	98,688	98,611	98,219
-60	97,283	98,062	98,354	98,420	98,456	98,433	98,409	98,429	98,431	98,433	98,345	98,054	98,437
-50	97,336	97,942	98,193	98,319	98,373	98,399	98,373	98,390	98,364	98,334	98,210	97,940	97,375
-40	98,052	98,165	98,249	98,304	98,366	98,373	98,366	98,375	98,354	98,313	98,238	98,124	97,989
-30	98,660	98,435	98,362	98,343	98,369	98,362	98,351	98,375	98,364	98,341	98,330	98,379	98,611
-20	98,808	98,527	98,414	98,371	98,371	98,364	98,354	98,377	98,379	98,354	98,401	98,499	98,782
-10	98,514	98,459	98,416	98,366	98,371	98,377	98,366	98,379	98,379	98,364	98,396	98,444	98,533
0	98,169	98,334	98,364	98,364	98,371	98,371	98,360	98,369	98,379	98,377	98,381	98,330	98,202
10	98,109	98,296	98,369	98,356	98,364	98,371	98,366	98,366	98,375	98,373	98,366	98,296	98,122
20	98,407	98,407	98,392	98,369	98,366	98,369	98,351	98,362	98,375	98,371	98,405	98,392	98,407
30	98,731	98,516	98,482	98,354	98,364	98,366	98,349	98,369	98,358	98,371	98,416	98,504	98,763
40	98,746	98,465	98,384	98,347	98,326	98,364	98,345	98,366	98,354	98,351	98,386	98,471	98,776
50	98,242	98,246	98,298	98,311	98,330	98,349	98,347	98,369	98,358	98,322	98,302	98,251	98,276
60	97,572	97,972	98,227	98,330	98,356	98,366	98,342	98,379	98,366	98,313	98,206	97,972	97,578
70	97,274	97,977	98,266	98,381	98,401	98,388	98,299	98,416	98,420	98,375	98,279	97,955	97,242
80	97,846	98,381	98,551	98,536	98,467	98,409	98,219	98,409	98,480	98,542	98,555	98,371	97,758

							<i>r</i> , мм						
<i>Z</i> , мм	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
					Магн	итная	индук	ция, м	кТл				
-80	100,061	99,769	99,305	98,898	98,559	98,343	98,244	98,309	98,463	98,733	99,073	99,433	99,682
-70	98,118	98,656	98,733	120,088	98,531	98,448	98,290	98,420	98,478	98,591	98,688	98,621	98,236
-60	97,124	98,000	98,324	98,424	98,461	98,446	98,407	98,437	98,439	98,437	98,388	98,135	98,602
-50	97,146	97,857	98,154	98,313	98,379	98,407	98,368	98,399	98,377	98,356	98,257	98,043	97,574
-40	97,942	98,097	98,210	98,291	98,358	98,375	98,377	98,377	98,364	98,341	98,296	98,206	98,116
-30	98,690	98,414	98,343	98,356	98,354	98,362	98,356	98,362	98,364	98,366	98,366	98,416	98,591
-20	98,895	98,551	98,407	98,358	98,373	98,362	98,356	98,373	98,371	98,375	98,437	98,497	98,698
-10	98,572	98,467	98,388	98,364	98,362	98,369	98,365	98,366	98,375	98,366	98,407	98,441	98,501
0	98,131	98,311	98,347	98,356	98,364	98,373	98,360	98,366	98,371	98,373	98,405	98,360	98,249
10	98,024	98,264	98,345	98,351	98,354	98,373	98,369	98,373	98,373	98,371	98,401	98,341	98,225
20	98,381	98,377	98,386	98,377	98,356	98,373	98,358	98,366	98,375	98,364	98,422	98,433	98,467
30	98,799	98,536	98,474	98,371	98,358	98,364	98,362	98,362	98,366	98,362	98,441	98,499	98,701
40	98,898	98,504	98,384	98,343	98,341	98,373	98,345	98,369	98,364	98,354	98,407	98,448	98,634
50	98,326	98,249	98,289	98,300	98,347	98,371	98,354	98,362	98,364	98,354	98,321	98,259	98,216
60	97,454	97,889	98,154	98,289	98,343	98,379	98,364	98,384	98,386	98,375	98,294	98,067	97,707
70	96,951	97,795	98,197	98,347	98,405	98,421	98,299	98,401	98,435	98,426	98,375	98,148	97,576
80	97,430	98,212	98,497	98,540	98,484	98,418	98,256	98,407	98,469	98,561	98,615	98,557	98,195

Таблица 4.12 – Магнитная индукция в плоскости десятикатушечной системы №3 (ось NESW).

Относительная неоднородность магнитного поля, создаваемого десятикатушечной системой №3, вычислялась в соответствии с выражением 4.1.

Результаты расчета относительной неоднородности магнитной индукции, создаваемой десятикатушечной системой №3, приведены в таблицах 4.13 – 4.16.

Таблица 4.13 – Неоднородность магнитного поля в плоскости десятикатушечной системы №3 (ось WE).

		<i>r</i> , MM													
<i>Z</i> , мм	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30		
				He	еоднор	одност	гь магн	итного	о поля,	%					
-80	1,8778	1,4791	0,9803	0,5533	0,2374	0,0022	0,1067	0,0218	0,1721	0,4379	0,8191	1,1872	1,3920		
-70	0,1046	0,3311	0,4052	0,3180	0,2069	0,0980	0,0625	0,0675	0,1808	0,2810	0,3921	0,3377	0,0915		
-60	1,1807	0,3289	0,0174	0,0959	0,1155	0,0959	0,0545	0,0850	0,1198	0,0980	0,0545	0,1852	0,8518		
-50	1,1981	0,4858	0,1786	0,0349	0,0414	0,0479	0,0065	0,0457	0,0479	0,0044	0,0893	0,2963	0,7908		
-40	0,4814	0,2767	0,1460	0,0697	0,0218	0,0196	0,0121	0,0109	0,0327	0,0174	0,0545	0,1242	0,2483		
-30	0,2745	0,0327	0,0349	0,0174	0,0152	0,0022	0,0022	0,0131	0,0083	0,0044	0,0240	0,0850	0,2244		

							<i>r</i> , мм						
<i>Z</i> , мм	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
				He	еоднор	одност	ть магн	итного	о поля,	%			
-20	0,5119	0,1765	0,0370	0,0044	0,0022	0,0152	0,0044	0,0109	0,0022	0,0065	0,0828	0,1568	0,3333
-10	0,2069	0,1155	0,0305	0,0022	0,0196	0,0109	0,0065	0,0022	0,0174	0,0044	0,0871	0,1002	0,1220
0	0,2178	0,0479	0,0044	0,0000	0,0174	0,0022	0,0000	0,0131	0,0174	0,0087	0,0436	0,0000	0,1329
10	0,3529	0,0959	0,0152	0,0044	0,0109	0,0022	0,0022	0,0022	0,0196	0,0044	0,0370	0,0087	0,1481
20	0,0087	0,0109	0,0283	0,0065	0,0196	0,0022	0,0022	0,0065	0,0152	0,0174	0,0501	0,0828	0,1002
30	0,4575	0,1677	0,0436	0,0087	0,0044	0,0109	0,0044	0,0131	0,0152	0,0196	0,0675	0,1394	0,3246
40	0,5577	0,1503	0,0283	0,0109	0,0087	0,0022	0,0107	0,0044	0,0044	0,0044	0,0479	0,0893	0,2527
50	0,0065	0,0959	0,0741	0,0545	0,0109	0,0152	0,0093	0,0109	0,0044	0,0087	0,0370	0,0871	0,1547
60	0,9040	0,4531	0,2244	0,0741	0,0174	0,0174	0,0196	0,0152	0,0457	0,0370	0,0632	0,2679	0,6492
70	1,4160	0,5577	0,1634	0,0349	0,0610	0,0610	0,0777	0,0261	0,0719	0,0545	0,0152	0,1808	0,7494
80	0,9934	0,1699	0,1351	0,1721	0,1329	0,0654	0,0794	0,0545	0,1024	0,1939	0,2549	0,2004	0,1351

Продолжение таблицы 4.13

Таблица 4.14 – Неоднородность магнитного поля в плоскости десятикатушечной системы №3 (ось NS).

		<i>г</i> , ММ												
<i>Z</i> , мм	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30	
	Неоднородность магнитного поля, %													
-80	1,5671	1,3756	0,9185	0,5202	0,1480	0,0414	0,1437	0,0914	0,0305	0,3047	0,6225	0,9903	1,2863	
-70	0,4005	0,2547	0,3483	43,8186	0,1306	0,0762	0,0646	0,0370	0,0522	0,1763	0,2590	0,1850	0,1741	
-60	1,3495	0,4114	0,0784	0,0196	0,0697	0,0609	0,0370	0,0501	0,0326	0,0522	0,0152	0,2873	1,3277	
-50	1,2842	0,5528	0,2438	0,0805	0,0283	0,0326	0,0029	0,0218	0,0239	0,0174	0,1262	0,3635	0,8119	
-40	0,3787	0,2677	0,1654	0,0871	0,0392	0,0044	0,0131	0,0022	0,0370	0,0261	0,0958	0,1959	0,2677	
-30	0,3918	0,0697	0,0196	0,0109	0,0131	0,0109	0,0174	0,0065	0,0174	0,0109	0,0261	0,0131	0,2285	
-20	0,5724	0,1915	0,0348	0,0109	0,0152	0,0065	0,0044	0,0044	0,0044	0,0022	0,0501	0,1001	0,3483	
-10	0,1981	0,0914	0,0152	0,0152	0,0131	0,0109	0,0022	0,0065	0,0022	0,0044	0,0435	0,0588	0,1415	
0	0,2590	0,0609	0,0392	0,0196	0,0152	0,0152	0,0000	0,0022	0,0044	0,0044	0,0435	0,0239	0,1110	
10	0,3548	0,1132	0,0283	0,0109	0,0174	0,0109	0,0044	0,0196	0,0174	0,0196	0,0283	0,0414	0,1328	
20	0,0000	0,0131	0,0196	0,0174	0,0109	0,0131	0,0044	0,0044	0,0131	0,0174	0,0675	0,0479	0,1088	
30	0,4223	0,1654	0,1698	0,0152	0,0109	0,0174	0,0196	0,0022	0,0044	0,0109	0,0740	0,1284	0,3613	
40	0,5246	0,1241	0,0087	0,0305	0,0675	0,0065	0,0239	0,0044	0,0174	0,0174	0,0261	0,0675	0,2895	
50	0,0784	0,1524	0,0936	0,0871	0,0588	0,0087	0,0326	0,0044	0,0131	0,0174	0,0479	0,1371	0,1589	
60	0,9599	0,5115	0,2177	0,0958	0,0609	0,0044	0,0261	0,0174	0,0065	0,0261	0,0849	0,3330	0,6856	
70	1,4648	0,6029	0,1763	0,0152	0,0152	0,0370	0,0770	0,0435	0,0544	0,0642	0,0435	0,2590	0,8576	
80	0,9098	0,1502	0,1328	0,1698	0,1067	0,0435	0,1014	0,0348	0,1088	0,1937	0,2590	0,1894	0,2220	

<i>Z</i> , мм	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
				He	одноро	одност	ь магн	итного	поля,	%			
-80	1,4764	1,2847	0,8732	0,4791	0,1590	0,0348	0,1241	0,0414	0,1307	0,4290	0,8035	1,2325	1,5787
-70	0,2439	0,3027	0,3702	22,0582	0,1524	0,0740	0,0596	0,0697	0,1328	0,2439	0,3332	0,2548	0,1437
-60	1,0953	0,3027	0,0065	0,0610	0,0980	0,0740	0,0501	0,0697	0,0719	0,0740	0,0152	0,3114	0,0784
-50	1,0409	0,4246	0,1698	0,0414	0,0131	0,0392	0,0131	0,0305	0,0044	0,0261	0,1525	0,4268	1,0017
-40	0,3136	0,1982	0,1132	0,0566	0,0065	0,0131	0,0058	0,0152	0,0065	0,0479	0,1241	0,2395	0,3767
-30	0,3049	0,0762	0,0022	0,0174	0,0087	0,0022	0,0087	0,0152	0,0044	0,0196	0,0305	0,0196	0,2548
-20	0,4551	0,1698	0,0544	0,0109	0,0109	0,0044	0,0065	0,0174	0,0196	0,0065	0,0414	0,1415	0,4290
-10	0,1568	0,1002	0,0566	0,0065	0,0109	0,0174	0,0065	0,0196	0,0196	0,0044	0,0370	0,0849	0,1764
0	0,1938	0,0261	0,0044	0,0044	0,0109	0,0109	0,0000	0,0087	0,0196	0,0174	0,0218	0,0305	0,1611
10	0,2548	0,0653	0,0087	0,0044	0,0044	0,0109	0,0065	0,0065	0,0152	0,0131	0,0065	0,0653	0,2417
20	0,0479	0,0479	0,0327	0,0087	0,0065	0,0087	0,0087	0,0022	0,0152	0,0109	0,0457	0,0327	0,0479
30	0,3767	0,1590	0,1241	0,0065	0,0044	0,0065	0,0109	0,0087	0,0022	0,0109	0,0566	0,1459	0,4094
40	0,3920	0,1067	0,0240	0,0131	0,0348	0,0044	0,0152	0,0065	0,0065	0,0087	0,0261	0,1132	0,4224
50	0,1198	0,1154	0,0631	0,0501	0,0305	0,0109	0,0131	0,0087	0,0022	0,0384	0,0588	0,1111	0,0849
60	0,8013	0,3941	0,1350	0,0305	0,0044	0,0065	0,0182	0,0196	0,0065	0,0479	0,1568	0,3941	0,7948
70	1,1040	0,3898	0,0958	0,0218	0,0414	0,0283	0,0617	0,0566	0,0610	0,0152	0,0827	0,4115	1,1367
80	0,5226	0,0218	0,1938	0,1786	0,1089	0,0501	0,1431	0,0501	0,1219	0,1851	0,1982	0,0109	0,6119

Таблица 4.15 – Неоднородность магнитного поля в плоскости десятикатушечной системы №3 (ось NWSE).

Таблица 4.16 – Неоднородность магнитного поля в плоскости десятикатушечной системы №3 (ось NESW).

	<i>r</i> , MM												
<i>Z</i> , мм	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
				He	одноро	одност	ь магн	итного	поля,	%			
-80	1,7291	1,4329	0,9603	0,5466	0,2025	0,0174	0,1176	0,0523	0,1045	0,3789	0,7252	1,0910	1,3436
-70	0,2461	0,3005	0,3789	22,0901	0,1742	0,0893	0,0712	0,0610	0,1198	0,2352	0,3332	0,2657	0,1263
-60	1,2565	0,3658	0,0370	0,0653	0,1023	0,0871	0,0479	0,0784	0,0806	0,0784	0,0283	0,2287	0,2461
-50	1,2347	0,5117	0,2091	0,0479	0,0196	0,0479	0,0081	0,0392	0,0174	0,0044	0,1045	0,3223	0,7992
-40	0,4246	0,2679	0,1524	0,0697	0,0022	0,0152	0,0174	0,0174	0,0044	0,0196	0,0653	0,1568	0,2483
-30	0,3354	0,0544	0,0174	0,0044	0,0065	0,0022	0,0044	0,0022	0,0044	0,0065	0,0065	0,0566	0,2352
-20	0,5444	0,1938	0,0479	0,0022	0,0131	0,0022	0,0044	0,0131	0,0109	0,0152	0,0784	0,1394	0,3441
-10	0,2156	0,1089	0,0283	0,0044	0,0022	0,0087	0,0051	0,0065	0,0152	0,0065	0,0479	0,0828	0,1437
0	0,2330	0,0501	0,0131	0,0044	0,0044	0,0131	0,0000	0,0065	0,0109	0,0131	0,0457	0,0000	0,1132
10	0,3419	0,0980	0,0152	0,0087	0,0065	0,0131	0,0087	0,0131	0,0131	0,0109	0,0414	0,0196	0,1372
20	0,0218	0,0174	0,0261	0,0174	0,0044	0,0131	0,0022	0,0065	0,0152	0,0044	0,0632	0,0740	0,1089
30	0,4464	0,1786	0,1154	0,0109	0,0022	0,0044	0,0022	0,0022	0,0065	0,0022	0,0828	0,1415	0,3462
40	0,5466	0,1459	0,0240	0,0174	0,0196	0,0131	0,0150	0,0087	0,0044	0,0065	0,0479	0,0893	0,2787
50	0,0348	0,1132	0,0719	0,0610	0,0131	0,0109	0,0065	0,0022	0,0044	0,0065	0,0392	0,1023	0,1459
60	0,9211	0,4791	0,2091	0,0719	0,0174	0,0189	0,0044	0,0240	0,0261	0,0152	0,0675	0,2983	0,6642
70	1,4329	0,5749	0,1655	0,0131	0,0457	0,0623	0,0617	0,0414	0,0762	0,0675	0,0152	0,2156	0,7970
80	0,9451	0,1503	0,1394	0,1829	0,1263	0,0588	0,1060	0,0479	0,1111	0,2047	0,2591	0,2003	0,1677

На рисунке 4.19 представлен контурный график неоднородности магнитного поля десятикатушечной системы №3 с шагом 0,02 % – ось WE. На рисунке 4.20 представлен контурный график неоднородности магнитного поля десятикатушечной системы №3 с шагом 0,1 % – ось WE.

Рисунок 4.19 – График неоднородности магнитного поля десятикатушечной

Рисунок 4.20 – График неоднородности магнитного поля десятикатушечной системы №3 с шагом 0,1 % – ось WE

системы №3 с шагом 0,02 % – ось WE

На рисунке 4.21 представлен контурный график неоднородности магнитного поля десятикатушечной системы №3 с шагом 0,02 % – ось NS.

На рисунке 4.22 представлен контурный график неоднородности магнитного поля десятикатушечной системы №3 с шагом 0,1 % – ось NS.

Рисунок 4.21 – График неоднородности магнитного поля десятикатушечной

системы №3 с шагом 0,02 % – ось NS

Рисунок 4.22 – График неоднородности магнитного поля десятикатушечной

системы №3 с шагом 0,1 % – ось NS

На рисунке 4.23 представлен контурный график неоднородности магнитного поля десятикатушечной системы №3 с шагом 0,02 % – ось NWSE.

На рисунке 4.24 представлен контурный график неоднородности магнитного поля десятикатушечной системы №3 с шагом 0,1 % – ось NWSE.

Рисунок 4.23 – График неоднородности магнитного поля десятикатушечной

системы №2 с шагом 0,02 % – ось NWSE

Рисунок 4.24 – График неоднородности магнитного поля десятикатушечной

системы №3 с шагом 0,1 % – ось NWSE

На рисунке 4.25 представлен контурный график неоднородности магнитного поля десятикатушечной системы №3 с шагом 0,02 % – ось NESW.

На рисунке 4.26 представлен контурный график неоднородности магнитного поля десятикатушечной системы №3 с шагом 0,1 % – ось NESW.

Рисунок 4.25 – График неоднородности магнитного поля десятикатушечной

системы №3 с шагом 0,02 % – ось NESW 60 50 40 30 20 0,90-1,00 0,80-0,90 10 0,70-0,80 0,60-0,70 0 r/R, 0,50-0,60 0,40-0,50 -10 0,30-0,40 0,20-0,30 -20 0.10-0.20 0,00-0,10 -30 -40 -50 -60 -10 0 Z/R, % -80 -70 -60 -50 -40 -30 -20 10 20 30 40 50 60 70 80

Рисунок 4.26 – График неоднородности магнитного поля десятикатушечной системы №3 с шагом 0,1 % – ось NESW

На рисунке 4.27 приведена зависимость неоднородности магнитного поля десятикатушечной системы №3 вдоль оси *Z*, измеренная непосредственно в центре системы.

Рисунок 4.27 – Неоднородность магнитного поля десятикатушечной системы №3 вдоль оси *Z*, измеренная в центре системы.

Из результатов экспериментального исследования десятикатушечной системы №3 следует, что относительно геометрического центра системы неоднородность магнитного поля не превышает 0,02 % в объеме 30 % от радиуса системы, что аналогично результатам, полученным для десятикатушечной системы №1.

На расстоянии 50 % от центра системы неоднородность магнитного поля не превышает 0,02 %. Значение магнитной индукции в центре десятикатушечной системы №3 при токе 1 мА составляет 1,07 мкТл, и отличается от полученного в результате моделирования на 0,4 %.

4.3 Выводы по главе 4

1. По технологии 3D-печати методом послойного наплавления изготовлены каркасы десятикатушечных систем №1 и №3, что позволяет обеспечить технологичность производства систем катушек с приемлемой точностью.

2. Для автоматизированной оценки однородности магнитного поля, создаваемого десятикатушечными системами № 1 и № 3, был собран экспериментальный стенд на основе шестиосевого робота-манипулятора Kuka KR4 R600, в программе RoboDK была написана управляющая программа по линейному перемещению с помощью робота-манипулятора датчика магнитного поля внутри объема десятикатушечной системы.

3. Результаты экспериментального исследования десятикатушечной системы №1 показали, что относительно геометрического центра системы неоднородность магнитного поля не превышает 0,02 % в объеме 30 % от радиуса системы. На расстоянии 50 % от центра системы неоднородность магнитного поля не превышает 0,1 %. Значение магнитной индукции в центре десятикатушечной системы №1 при токе 1 мА составляет 1,11 мкТл, и отличается от полученного в результате моделирования на 0,6 %.

4. Результаты экспериментального исследования десятикатушечной системы №3 показали, что относительно геометрического центра системы неоднородность магнитного поля не превышает 0,02 % в объеме 30 % от радиуса системы. На расстоянии 50 % от центра системы неоднородность магнитного поля не превышает 0,02 %. Значение магнитной индукции в центре десятикатушечной системы №3 при токе 1 мА составляет 1,07 мкТл, и отличается от полученного в результате моделирования на 0,4 %.

5. Таким образом десятикатушечная система №3 является более предпочтительной по сравнению с исполнением №1 как с точки зрения однородности магнитного поля внутри системы, так и с точки зрения меньших габаритных размеров и количества витков в отдельных катушках, что делает ее более технологичной и экономически выгодной в производстве.

6. Разработанные десятикатушечные системы, источник тока, экспериментальный стенд на основе шестиосевого робота-манипулятора Kuka используются для исследования и калибровки датчиков магнитного поля и магнитометров в ООО «Эксперт», а также в учебном процессе отделения электронной инженерии Томского политехнического университета, что подтверждено актами внедрения результатов диссертационной работы (Приложение A).

ЗАКЛЮЧЕНИЕ

1. Разработаны универсальные аналитические выражения для анализа однородности магнитного поля, создаваемого системами круглых катушек и на их основе написан экспресс-калькулятор, позволяющий рассчитать магнитную индукцию и неоднородность магнитного поля в любой точки пространства внутри системы катушек.

2. На основе итерационной методики были рассчитаны параметры десятикатушечных систем круглых катушек с высокой степенью однородности магнитного поля и проведен конечно-элементный анализ конструкцией этих катушек, который позволил подтвердить правильность расчетов с учесть влияние геометрически размеров на однородность магнитного поля.

3. Реализован и экспериментально исследован трехдиапазонный регулируемый источник тока, управляемый напряжением, который обеспечивает питание систем катушек в диапазоне токов от 0,1 мкА до 100 мА при напряжениях на входе от 0,02 В до 2 В с относительной погрешностью коэффициента преобразования менее 0,2 % в диапазоне от 0,1 до 0,2 мкА, менее 0,1 % в остальном диапазоне.

4. Экспериментально показано, что разработанные конструкции систем из десяти круглых катушек радиусом 50 мм позволяют воспроизводить магнитную индукцию с неоднородностью магнитного поля менее 0,02 % в объеме 30 % от радиуса.

5. Разработанная программа, реализующая анализ магнитной индукции и неоднородности магнитного поля рассчитанных систем катушек, методика конечно-элементного анализа систем катушек и созданные конечно-элементные модели многокатушечных систем были использованы при выполнении гранта РНФ 17-79-10083 «Планарный феррозондовый преобразователь для системы магнитного вакуума квантового компьютера».

6. Результаты диссертационной работы были использованы при выполнении НИР: грант ФЦП № 14.578.21.0232 «Исследования и разработки

приоритетным направлениям развития научно-технологического по комплекса России», «Интеллектуальный инерциальный модуль на основе микроэлектромеханических датчиков с функциями гироскопа, акселерометра и магнитометра для систем ориентации, и навигации транспортных средств с автоматизированным управлением», 2017-2020 гг; грант РФФИ № 20-57-S52001 «Формирование и исследование «фотонных крючков» с помощью микрооптики задач перспективных информационных компонент для технологий», 2020-2021 гг; грант РФФИ № 21-57-10001 «3D-печать светоизгибающих фотонных переключателей в оптическом и терагерцовом спектральных диапазонах», 2021-2022 гг.

7. Разработанные десятикатушечные системы, источник тока, экспериментальный стенд на основе шестиосевого робота-манипулятора Kuka используются для исследования и калибровки датчиков магнитного поля и магнитометров в ООО «Эксперт», а также в учебном процессе отделения электронной инженерии Томского политехнического университета, что подтверждено актами внедрения результатов диссертационной работы.

СПИСОК ЛИТЕРАТУРЫ

1. A Novel Calibration Method of Magnetic Compass Based on Ellipsoid Fitting / J. Fang, H. Sun, J. Cao [et al.] // IEEE Transactions on Instrumentation and Measurement. – 2011. – Vol. 60, iss. 6. – P. 2053-2061.

2. Mapping near-surface structures in a geophysical test site using magnetic and electromagnetic induction gradients / A. Rosado-Fuentes, A. Arciniega-Ceballos, E. Hernández-Quintero [et al.] // Journal of Applied Geophysics. – 2023. – Vol. 215. – Art. № 105123.

3. The component compensation of geomagnetic field vector measurement system / H. Pang, X. J. Zhu, M. Pan [et al.] // Journal of Magnetism and Magnetic Materials. – 2015. – Vol. 381. – P. 390-395.

4. Distortion Magnetic Field Compensation of Geomagnetic Vector Measurement System Using a 3-D Helmholtz Coil / Z. Liu, Q. Zhang, M. Pan [et al.] // IEEE Geoscience and Remote Sensing Letters. – 2016. – Vol. 14, iss. 1. – P. 48-51.

 Noriega, G. Adaptive techniques and other recent developments in aeromagnetic compensation / G. Noriega, A. Marszalkowski // First Break. – 2017.
 Vol. 35, iss. 9. – P. 31-38.

6. Magnetic flux density standard for geomagnetometers / V. Y. Shifrin,
E. B. Alexandrov, T. I. Chikvadze [et al.] // Metrologia. – 2000. – Vol. 37, № 3. –
P. 219-227.

7. Геофизическое обеспечение перспективных автономных магнитометрических навигационных систем / В. Т. Минлигареев,
Т. В. Сазонова, В. В. Трегубов [и др.] // Гироскопия и навигация. – 2020. – № 4. – С. 95-105.

8. Goldenberg, F. Geomagnetic Navigation beyond the Magnetic Compass / F. Goldenberg // 2006 IEEE/ION Position, Location, And Navigation Symposium, Coronado, 25-27 Apr. 2006. – IEEE, 2006. – P. 684-694.

9. Slepak, Z. Geophysics in Archeology / Z. Slepak, B. Platov // Practical and Theoretical Aspects of Geological Interpretation of Gravitational, Magnetic and

Electric Fields : Proc. of the 45th Uspensky Int. Geophysical Seminar, Kazan. – Springer, 2019. – P. 303-311.

10. Natural science methods in field archaeology, with the case study of Crimea / T. N. Smekalova, E. B. Yatsishina, A. S. Garipov [et al.] // Crystallography Reports. – 2016. – Vol. 61. – P. 533-542.

 Magnetic polarity stratigraphy and vertebrate paleontology of the upper siwalik subgroup of northern Pakistan / N. D. Opdyke, E. Lindsay, G. D. Johnson [et al.] // Palaeogeography, Palaeoclimatology, Palaeoecology. – 1979. – Vol. 27. – P. 1-34.

Wang, Z. D. A review of three magnetic NDT technologies / Z. D.
 Wang, Y. Gu, Y. S. Wang // Journal of Magnetism and Magnetic Materials. – 2012.
 Vol. 324, iss. 4. – P. 382-388.

Models and Measures for the Diagnosis of Electric Power Equipment
// Models and Measures in Measurements and Monitoring / V. P. Babak, S. V.
Babak, V. S. Eremenko [et al.]; ed. by J. Kacprzyk. – Springer, 2021. – Chap. 4. –
P. 99-126.

14. In vitro exposure apparatus for elf magnetic fields / J. Schuderer, W.
Oesch, N. Felber [et al.] // Bioelectromagnetics. – 2004. – Vol. 25, iss. 8. – P. 582-591.

15. Bickel, S. H. Small signal compensation of magnetic fields resulting from aircraft maneuvers / S. H. Bickel // IEEE Transactions on Aerospace and Electronic Systems. – 1979. – Vol. AES-15, iss. 4. – P. 518-525.

16. Generation of extremely-low frequency magnetic fields with standard available commercial equipment: Implications for experimental bioelectromagnetics work / R. De Seze, A. Lahitte, J. M. Moreau, B. Veyret // Bioelectrochemistry and Bioenergetics. – 1994. – Vol. 35, iss. 1-2. – P. 127-131.

17. Caputa, K. Computer controlled system for producing uniform magnetic fields and its application in biomedical research / K. Caputa, M. A. Stuchly
// IEEE Transactions on Instrumentation and Measurement. – 1996. – Vol. 45, iss.
3. – P. 701-709.

18. Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system / S. Martel, J. B. Mathieu, O. Felfoul [et al.] // Applied Physics Letters. – 2007. – Vol. 90, iss.
11. – Art. № 114105.

Magnetic Drug Delivery: Where the Field Is Going / M. P. Paige, E.
M. Waleed, A. A. Al-Ghamdi, L. M. Bronstein // Frontiers in Chemistry. – 2018. –
Vol. 6. – Art. № 619.

20. Photonic hook: a new sub-wavelength-scale selfbending light beam / I. V. Minin, I. A. Zatonov, L. Yue [et al.] // Proc. XV Int. Conf. on Pulsed Lasers and Laser Applications, Tomsk, 12-17 Sep. 2021. – SPIE, 2021. – Vol. 12086. – Art. № 1208616.

21. Baranov, P. F. Photonic hook - A new type of self-bending structured light beams / P. F. Baranov, I. A. Zatonov, D. B. Bui // Journal of Physics: Conference Series. – 2020. – Vol. 1614. – Art. № 012106.

22. CO₂ absorption using ferrofluids in a venturi scrubber with uniform magnetic field of a solenoid / M. Khani, M. Haghshenasfard, N. Etesami, M. R. Talaei // Journal of Molecular Liquids. – 2021. – Vol. 334. – Art. № 116078.

23. Magnetism in medicine: a handbook / ed. by W. Andrä, H. Nowak. –Wiley, 2007. – 655 p.

24. Mapps, D. J. Remote magnetic sensing of people / D. J. Mapps // Sensors and Actuators A: Physical. – 2003. – Vol. 106, iss. 1-3. – P. 321-325.

25. Recording fetal and adult magnetocardiograms using hightemperature Superconducting quantum interference device gradiometers / Y. Zhang, N. Wolters, D. Lomparski [et al.] // IEEE Transactions on Applied Superconductivity. – 2003. – Vol. 13, iss. 4. – P. 3862-3866.

26. Коломейцев, А. А. RTD-феррозондовый датчик для измерения сверхслабых магнитных полей : дис. ... канд. тех. наук / Коломейцев Андрей Анатольевич ; Томский политехнический университет. – Томск, 2022. – 195 с.

27. Designing a Planar Fluxgate Using the PCB Technology / A. A. Kolomeitsev, I. A. Zatonov, M. I. Pischanskaya [et al.] // Devices and Methods of Measurements. -2021. - Vol. 12, No 2. - P. 117-123.'

28. Mackert, B. M. Magnetoneurography: theory and application to peripheral nerve disorders / B. M. Mackert // Clinical neurophysiology. – 2004. – Vol. 115, iss. 12. – P. 2667-2676. – DOI: 10.1016/j.clinph.2004.07.028.

29. Freeze casting of iron oxide subject to a tri-axial nested Helmholtzcoils driven uniform magnetic field for tailored porous scaffolds / I. Nelson, L. Gardner, K. Carlson, S. E. Naleway // Acta Materialia. – 2019. – Vol. 173. – P. 106-116.

Deville, S. Ice-templated porous alumina structures / S. Deville, E.
 Saiz, A. P. Tomsia // Acta Materialia. – 2007. – Vol. 55, iss. 6. – P. 1965-1974.

31. Kang, H. W. Fabrication of porous gelatin scaffolds for tissue engineering / H. W. Kang, Y. Tabata, Y. Ikada // Biomaterials. – 1999. – Vol. 20, iss. 14. – 1339-1344.

32. Fabrication of titanium scaffolds with porosity and pore size gradients by sequential freeze casting / H.-D. Jung, S.-W. Yook, H.-E. Kim, Y.-H. Koh // Materials Letters. – 2009. – Vol. 63, iss. 17. – P. 1545-1547.

33. Bioinspired composites from freeze casting with clathrate hydrates / S.
E. Naleway, F. Y. Christopher, M. M. Porter [et al.] // Materials and Design. – 2015.
– Vol. 71. – P. 62-67.

34. Design study for a cellular culture bioreactor coupled with a magnetic stimulation system / A. F. Restrepo, L. J. Martinez, C. R. Pinedo [et al.] // IEEE Latin America Transactions. – 2013. – Vol. 11, iss. 1. – P. 130-136.

35. Effects of Weak Static Magnetic Fields on Endothelial Cells / C. F.
Martino, H. Perea, U. Hopfner [et al.] // Bioelectromagnetics. – 2010. – Vol. 31, iss.
4. – P. 296-301.

36. Zikmund, A. Calibration of the 3-d coil system's orthogonality / A.
Zikmund, P. Ripka // IEEE Transactions on Magnetics. – 2013. – Vol. 49, iss. 1. –
P. 66-68.
37. Bronaugh, E. L. Helmholtz coils for calibration of probes and sensors:
limits of magnetic field accuracy and uniformity / E. L. Bronaugh // Proc. of Int.
Symp. on Electromagnetic Compatibility, Atlanta, 14-18 Aug. 1995. – IEEE, 1995.
– P. 72-76.

38. Calibration of magnetic field meters at 60 hz using a helmholtz coil: constructive aspects and calculation of associated uncertainties / C. F. de Melo, R. L. Araujo, L. M. Ardjomand [et al.] // XVIII IMEKO WORLD CONGRESS Metrology for a Sustainable Development, Rio de Janeiro, 17-22 Sept. 2006. – URL: https://www.imeko.org/publications/wc-2006/PWC-2006-TC4-061u.pdf (usage date: 17.07.2022).

39. Calibration of Helmholtz Coils for the Characterization of MEMS Magnetic Sensor using Fluxgate Magnetometer with DAS1 Magnetic Range Data Acquisition System / F. Ahmad, J. O. Dennis, M. H. Md Khir, N. H. Hamid // Proc. of the 2nd Int. Conf. on Fundamental and Applied Sciences, Kuala Lumpur, 12-14 June 2012. – AIP, 2012. – Vol. 1482, iss. 1. – P. 128-131.

40. Pylvänäinen, T. Automatic and adaptive calibration of 3D field sensors
/ T. Pylvänäinen // Applied Mathematical Modelling. – 2008. – Vol. 32, iss. 4. – P. 575-587.

41. A new compensation method for magnetic field distortions based on a
3-D Helmholtz coil / T. Li, X. Zhao, J. Zhang [et al.] // Measurement Science and Technology. – 2019. – Vol. 30, № 1. – Art. № 015006.

42. A Novel Calibration Method of Magnetic Compass Based on Ellipsoid Fitting / J. Fang, H. Sun, J. Cao [et al.] // IEEE Transactions on Instrumentation and Measurement. – 2011. – Vol. 60, iss. 6. – P. 2053-2061.

43. The component compensation of geomagnetic field vector measurement system / H. Pang, X. J. Zhu, M. Pan [et al.] // Journal of Magnetism and Magnetic Materials. – 2015. – Vol. 381. – P. 390-395.

44. Distortion Magnetic Field Compensation of Geomagnetic Vector Measurement System Using a 3-D Helmholtz Coil / Z. Liu, Q. Zhang, M. Pan [et al.] // IEEE Geoscience and Remote Sensing Letters. – 2016. – Vol. 14, iss.1. – P. 48-51.

45. Noriega, G. Adaptive techniques and other recent developments in aeromagnetic compensation / G. Noriega, A. Marszalkowski // First Break. – 2017.
– Vol. 35, iss. 9. – P. 31-38.

46. Uchaikin, S. Method to produce an uniform magnetic field in a dilution refrigerator / S. Uchaikin, A. Eltony // Journal of Physics: Conference Series. – 2012.
– Vol. 400. – Art. № 052038.

47. Li, T. T. Tri-axial Square Helmholtz coil for Neutron EDM Experiment / T. T. Li. ; The Chinese University of Hong Kong. – 2004. – 23 p. – URL: https://www.phy.cuhk.edu.hk/newwebsite/internshipandjobs/sure/2004/thomasli.p df (usage date: 17.07.2022).

48. Numerical and experimental investigation of a magnetic micromixer under microwires and uniform magnetic field / J. Sun, Z. Shi, M. Li [et al.] // Journal of Magnetism and Magnetic Materials. – 2022. – Vol. 551. – Art. № 169141.

49. Generation of extremely-low frequency magnetic fields with standard available commercial equipment: Implications for experimental bioelectromagnetics work / R. de Seze, A. Lahitte, J. M. Moreau, B. Veyret // Bioelectrochemistry and Bioenergetics. – 1994. – Vol. 35, iss. 1-2. – P. 127-131.

50. Caputa, K. Computer controlled system for producing uniform magnetic fields and its application in biomedical research / K. Caputa, M. A. Stuchly // IEEE Transactions on Instrumentation and Measurement. – 1996. – Vol. 45, iss. 3. – P. 701-709.

51. Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system / S. Martel, J. B. Mathieu, O. Felfoul [et al.] // Applied Physics Letters. – 2007. – Vol. 90, iss. 11. – Art. № 114105.

52. Mathieu, J. B. Magnetic microparticle steering within the constraints of an MRI system: proof of concept of a novel targeting approach / J. B. Mathieu, S. Martel // Biomedical Microdevices. – 2007. – Vol. 9. – P. 801-808.

53. Ha, Y. H. Magnetic propulsion of a magnetic device using three square-Helmholtz coils and a square-Maxwell coil / Y. H. Ha, H. H. Byung, S. Y. Lee // Medical and Biological Engineering and Computing. – 2010. – Vol. 48. – P. 139-145.

54. Spiral-type micro-machine for medical applications / K. Ishiyama, K. I. Arai, M. Sendoh, A. Yamazaki // Journal of Micromechatronics. – 2003. – Vol. 2, iss. 1. – P. 77-86.

55. Realtime MRI-based control of a ferromagnetic core for endovascular navigation / S. Tamaz, R. Gourdeau, A. Chanu [et al.] // IEEE Transactions on Biomedical Engineering. – 2008. – Vol. 55, iss. 7. – P. 1854-1863.

56. Yesin, K. B. Modeling and control of untethered biomicrorobots in a fluidic environment using electromagnetic fields / K. B. Yesin, K. Vollmers, B. J. Nelson // The International Journal of Robotics Research. – 2006. – Vol. 25, iss. 5-6. – P. 527-536.

57. Two dimensional actuation of micro-robot with stationary two-pair coils system / H. Choi, J. Choi, G. Jang [et al.] // Smart Materials and Structures. – 2009. – Vol. 18, № 5. – Art. № 055007.

58. О Стратегии научно-технологического развития Российской Федерации : указ Президента Российской Федерации от 28 февр. 2024 г. № 145 // Кодекс : справ.-правовая система. – Режим доступа: по подписке.

59. Государственный реестр средств измерений // Ростест-Москва : [сайт]. – URL: <u>https://www.rostest.ru/GosreestrSI.php</u> (дата обращения: 16.07.2024).

60. Об утверждении Государственного первичного эталона единиц магнитной индукции, магнитного потока, магнитного момента и градиента магнитной индукции : приказ Росстандарта от 02 февр. 2021 г. № 64 // Кодекс : справ.-правовая система. – Режим доступа: по подписке.

61. ГОСТ 8.030-2013. Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений магнитной индукции, магнитного потока. Магнитного момента и градиента

магнитной индукции = State system for ensuring the uniformity of measurements. State hierarchy scheme for means measuring magnetic flux density, magnetic flux, magnetic moment and gradient of magnetic flux density : межгосударственный стандарт : дата введения 2015-01-01 // Кодекс : справ.-правовая система. – Режим доступа: по подписке.

62. Hanson, R. J. Magnetically Shielded Solenoid with Field of High Homogeneity / R. J. Hanson, F. M. Pipkin // Review of Scientific Instruments. – 1965. – Vol. 36, iss. 2. – P. 179-188.

63. Калантаров, П. Л. Расчет индуктивностей : справ. кн. : 3-е изд., перераб. и доп. / П. Л. Калантаров, Л. А. Цейтлин. – Ленинград : Энергоатомиздат. Ленингр. отд-ние, 1986. – 488 с.

64. Баранова В. Е. Измерение слабого магнитного поля на основе феррозондового датчика : диссертация на соискание ученой степени кандидата технических наук : спец. 05.11.01 / В. Е. Баранова ; Национальный исследовательский Томский политехнический университет (ТПУ) ; науч. рук. С. В. Муравьев. — Томск : [Б. и.], 2015.

65. Alvarez, A. F. R. Study and analysis of magnetic field homogeneity of square and circular helmholtz coil pairs: a taylor series approximation / A. F. R. Alvarez, E. Franco-Mejia, C. R. Pinedo-Jaramillo // 2012 VI Andean Region Int. Conf., Cuenca, 07-09 Nov. 2012. – IEEE, 2012. – Vol. 1. – P. 77-80.

66. Nieskoski, M. D. Comparison of a single optimized coil and a Helmholtz pair for magnetic nanoparticle hyperthermia / M. D. Nieskoski, B. S. Trembly // IEEE Transactions on Biomedical Engineering. – 2014. – Vol. 61, iss. 6. – P. 1642-1650.

67. Глущенко, А. Г. Магнитное поле системы круговых токов / А. Г.
Глущенко, А. А. Глущенко, В. А. Глущенко // Научное обозрение.
Технические науки. – 2023. – № 1. – С. 21-25.

68. Braunbek, W. Die Erzeugung Weitgehend Homogener Magneticfelder
durch Kresstrome / W. Braunbek // Zeitschrift für Physik. – 1934. –
Bd. 88. – S. 399-402.

69. Efficient calculations of magnetic fields of solenoids for simulations / P. Granum, M. L. Madsen, J. T. K. McKenna [et al.] // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. – 2022. – Vol. 1034. – Art. № 166706.

70. Merritt, R. Uniform magnetic field produced by three, four, and five square coils / R. Merritt, C. Purcell, G. Stroink // Review of Scientific Instruments.
– 1983. – Vol. 54, iss. 7. – P. 879-882.

71. Coil Systems to Generate Uniform Magnetic Field Volumes / S. Magdaleno-Adame, J. C. Olivares-Galvan, E. Campero-Littlewood [et al.] // Proc. of the COMSOL Conf., Boston. – 2010. – URL: <u>https://www.researchgate.net</u> /<u>publication/281937086 Coil Systems to Generate Uniform Magnetic Field V</u> <u>olumes</u> (usage date: 16.07.2022).

72. Advanced Research on Interaction Mechanisms of electroMagnetic exposures with Organisms for Risk Assessment (ARIMMORA) : Final Report / Foundation for Research on Information Technologies in Society ; coord. N. Kuster.
– [Zurich, 2015]. – 19 p. – Project No: 282891. – URL: <u>https://arimmora-fp7.eu/uploads/FRPubSum.pdf</u> (usage date: 16.07.2022).

73. A comparative study of the magnetic field homogeneity for circular, square and equilateral triangular helmholtz coils / A. F. Restrepo, E. Franco, H. Cadavid, C. R. Pinedo // 2017 Int. Conf. on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), Mysuru, 15-16 Dec. 2017. – IEEE, 2017. – P. 13-20. – DOI: 10.1109/ICEECCOT.2017.8284514.

74. Bonetto, F. Saddle coils for uniform static magnetic field generation in NMR experiments / F. Bonetto, E. Anoardo, M. Polello // Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering: An Educational Journal. – 2006. – Vol. 29B, iss. 1. – P. 9-19. – DOI: 10.1002/cmr.b.20057.

75. Baranova, V. E. The Helmholtz coils simulating and improved in COMSOL / V. E. Baranova, P. F. Baranov // 2014 Dynamics of Systems, Mechanisms and Machines (Dynamics), Omsk, Nov., 11-13, 2014. – IEEE, 2014. – DOI: 10.1109/Dynamics.2014.7005634.

76. Создание однородного магнитного поля с помощью системы аксиальных катушек для калибровки магнитометров / В. Е. Баранова, П. Ф. Баранов, С. В. Муравьев, С. В. Учайкин // Измерительная техника. – 2015. –№ 5. – С. 52-56.

77. Савельев, И. В. Курс общей физики : учеб. пособие для втузов : в 3 т. / И. В. Савельев. – Москва : Наука, 1982. – Т. 2 : Электричество и магнетизм. Волны. Оптика. – 496 с.

78. Сивухин, Д. В. Общий курс физики : учеб. пособие : в 5 т. / Д. В.
Сивухин. – Москва : Физматлит, 2006. – Т. 3 : Электричество. – 704 с.

79. Grant, I. S. Electromagnetism : 2nd ed. / I. S. Grant, W. R. Phillips. – Wiley, 2008. – 528 p.

80. Simple analytic expressions for the magnetic field of a circular current loop / J. Simpson, J. Lane, C. Immer, R. Yuongquist. – [Cocoa Beach], 2001. – 3 p. – (Prepr. / NASA Kennedy Space Center). – URL: <u>https://ntrs.nasa.gov/api/citations/20010038494/downloads/20010038494.pdf</u> (usage date: 18.07.2022.

81. McDonald, K. T. Expansion of an axially symmetric, static magnetic field in terms of its axial field / K. T. McDonald ; Princeton University. – Princeton, 2015. – 5 p. – URL: <u>http://kirkmcd.princeton.edu/examples/axial.pdf</u> (usage date: 18.07.2023).

Jackson, J. D. Classical Electrodynamics : 3nd ed. / J. D. Jackson. –
 Wiley, 1998. – 832 p.

83. De Troye, D. J. The Calculation and Measurement of Helmholtz Coil Fields DTIC ADA286081 / D. J. De Troye, R. J. Chase. – 1994. – (Prepr. / Army Research Laboratory, ARL-TN-35).

84. Magnetic Field, Force, and Inductance Computations for an Axially Symmetric Solenoid : Tech. Memorandum : NASA/TM-2013-217918 / J. Lane, R. Youngquist, C. Immer, J. Simpson ; NASA Kennedy Space Center. – [Cocoa Beach], 2001. – 24 p. – URL: <u>https://ntrs.nasa.gov/api/citations/20140002332</u> /downloads/20140002332.pdf (usage date: 18.07.2022). 85. Chu, Y. Numerical Calculation for the Magnetic Field in Current-Carrying Circular Arc Filament / Y. Chu // IEEE Transactions on Magnetics. – 1998.
– Vol. 34, iss. 2. – P. 502-504.

86. Garrett, M. W. Calculation of Fields, Forces, and Mutual Inductances of Current systems by Elliptic Integrals / M. W. Garrett // Journal of Applied Physics. – 1963. – Vol. 34, iss. 9. – P. 2567-2573.

87. Свидетельство о государственной регистрации программ для ЭВМ № 2023689378 Российская Федерация. Экспресс-калькулятор магнитной индукции десятикатушечных систем : № 2023689464 : заявл. 29.12.2023 : опубл. 29.12.2023 / Баранов П. Ф., Затонов И. А. ; заявитель НИ ТПУ. – 1 с.

88. Затонов, И. А. Расчет и моделирование многокатушечных систем генерации сверходнородного магнитного поля / И. А. Затонов, П. Ф. Баранов, А. Коломейцев // Наука. Технологии. Инновации : сб. науч. тр. конф., Новосибирск, 03-07 дек. 2018 г. : в 9 ч. – Новосибирск : Изд-во НГТУ, 2018. – Ч. 6. – С. 119-122.

89. Zatonov, I. Magnetic field computation and simulation of the coil systems using Comsol software / I. Zatonov, P. Baranov, A. Kolomeycev // MATEC Web of Conferences. Vol. 160 : Electrical Engineering, Control and Robotics (EECR 2018) : Int. Conf., Chengdu, 12-14 Jan. 2018. – EDP Sciences, 2018. – Art. № 01006.

90. Zatonov, I. The Numerical Simulation of the Shielded Helmholtz Coils System Magnetic Field / I. Zatonov, P. Baranov // MATEC Web of Conferences. Vol. 155 : Information and Measuring Equipment and Technologies (IME&T 2017) : VIII Int. Scientific and Practical Conf., Tomsk, 22-25 Nov. 2017. – EDP Sciences, 2018. – Art. № 01038.

91. Zatonov, I. Numerical simulation of the betatron magnetic field using ELCUT software / I. Zatonov, M. Shtein // MATEC Web of Conferences. Vol. 48 : Space Engineering : IV Russian Forum for Young Scientists with Int. Participation, Tomsk, 12-14 Apr. 2016. – EDP Sciences, 2016. – Art. № 03007.

92. Затонов, И. А. Исследование тепловой картины поля бетатрона / И. А. Затонов // Инженерия для освоения космоса : сб. науч. тр. V Междунар. молодежного форума, Томск, 18-20 апр. 2017 г. – Томск : Изд-во ТПУ, 2017. – С. 75-81.

93. Затонов, И. А. Применение программного пакета Elcut для подбора параметров магнитного поля бетатрона / И. А. Затонов // Инженерия для освоения космоса : сб. науч. тр. IV Всерос. молодежного форума с междунар. участием, Томск, 12-14 апр. 2016 г. – Томск : Изд-во ТПУ, 2016. – С. 130-135.

94. Многофункциональный калибратор Fluke 5730A // Fluke : [сайт]. – URL: <u>https://flukerussia.com/mnogofunktsionalnie-kalibratori/fluke-5730a/</u> (дата обращения: 19.07.2023).

95. Baranov, P. Dual Phase Lock-In Amplifier with Photovoltaic Modules and Quasi-Invariant Common-Mode Signal / P. Baranov, I. Zatonov, B. B. Duc // Electronics. – 2022. – Vol. 11, iss. 9. – Art. № 1512.

96. Salvatori, S. High-precision voltage-to-current converters based on single-chip gain-selectable amplifiers / S. Salvatori, M. C. Rossi, M. Girolami // Analog Integrated Circuits and Signal Processing. – 2019. – Vol. 99. – P. 491-495.

97. Stitt, R. M. Make a precision current source or current sink : tech. rep.
/ R. M. Stitt // Burr-Brown Application Bulletin. – Tucson, 1994. – 3 p. – URL: https://pearl-hifi.com/06_Lit_Archive/15_Mfrs_Publications/Burr_Brown/Make_Precisoin_Current_Sinks_Sources.pdf (usage date: 19.07.2023).

98. Harrison, L. T. Current sources and voltage references / L. T. Harrison.
– New York : Newnes, Elsevier, 2005. – 580 p. – URL: <u>https://</u> www.sciencedirect.com/book/9780750677523/current-sources-and-voltagereferences#book-description (usage date: 19.07.2023).

99. Pelcia, M. M. Fully integrated programmable Howland current source for sensors excitation / M. M. Pelcia, C. A. dos Reis Filho // Proc. of 4th IEEE int. caracas conf. on devices, circuits and systems, Oranjestad, 17-19 Apr. 2002. – IEEE,

2002. – URL: <u>https://ieeexplore.ieee.org/document/1004016</u> (usage date: 19.07.2023).

100. Poletto, C. J. A high voltage, constant current stimulator for electrocutaneous stimulation through small electrodes / C. J. Poletto, C. L. Van Doren // IEEE Transactions on Biomedical Engineering. – 1999. – Vol. 46, iss. 8. – P. 929-936.

101. Murnane, M. AN-968 Current sources: Options and circuits / M. Murnane // Analog Devices : [site]. – URL: <u>https://www.analog.com/media/en/</u> technical-documentation/applicationnotes/an-968.pdf (usage date: 27.03.2023).

102. Wells, C. High-Side Voltage-to-Current (V-I) Converter / C. Wells, D.
F. Chan // Texas Instruments : [site]. – URL: <u>https://www.ti.com/lit/pdf/slau502</u> (usage date: 15.03.2023).

103. Baranov, P. Phase Compensation of Voltage Follower / P. Baranov, I. Zatonov, O. Stukach // 2022 Int. Siberian Conf. on Control and Communications (SIBCON), Tomsk, 17-19 Nov. 2022. – IEEE, 2022. – DOI: 10.1109/SIBCON56144.2022.10002979.

104. Bartington Fluxgate Magnetometer, 1-axis // GMW Associates : [site].
– URL: <u>https://gmw.com/product/mag-01h/</u> (usage date: 19.07.2023).

105. Датчик индукции магнитного поля HB0391.5-20 // Магнитные приборы : [сайт]. – URL: <u>https://www.magnetic.spb.ru/products/31087087</u> (дата обращения: 19.07.2023).

 106. Преобразователь индукции магнитного поля конфигурируемый

 HB0300
 //
 Магнитные приборы: [сайт].
 –
 URL:

 https://www.magnetic.spb.ru/products/31137020
 (дата обращения: 19.07.2023).

107. Agilent technologies. Мультиметр 3458А. Руководство по эксплуатации // Альфа-Прибор : Измерительное оборудование : [сайт]. – URL: <u>https://alphapribor.ru/upload/iblock/a67/a674ac05bc695fc0621d41a1acb9d009.pdf</u> (дата обращения: 19.07.2024).

108. Затонов, И.А. Патент № 2786062 С1, МПК G01R 19/10, H03F 3/191. Аналоговый синхронный усилитель: № 2021136651: заявл. 10.12.2021: опубл. 16.12.2022 / П.Ф. Баранов, И.А. Затонов; заявитель Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет».

Приложение А. Акты внедрения результатов диссертационной работы

(справочное)

Министерство науки и высшего образования Российской Федерации федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет» (ТПУ)

> «УТВЕРЖДАЮ» и.о. проректора по образовательной деятельности ФГАОУ ВО НИ ТПУ М.А. Соловьев «___» ____ 2024 г.

АКТ

о внедрении в учебный процесс результатов диссертационной работы на соискание учёной степени кандидата технических наук Затонова Ивана Андреевича на тему «Источник магнитной индукции для воспроизведения слабых магнитных полей высокой однородности»

Комиссия в составе: председателя – руководителя основной образовательной программы по направлению 11.03.04 «Электроника и наноэлектроника», к.т.н., доцента отделения Электронной инженерии Инженерной школы неразрушающего контроля и безопасности ТПУ Ивановой В.С., к.т.н., заместителя начальника отдела организации набора ТПУ Силушкина С.В., к.т.н., доцента отделения Электронной инженерии Инженерной школы неразрушающего контроля и безопасности ТПУ Коломейцева А. составила настоящий акт в том, что результаты диссертационной работы Затонова Ивана Андреевича «Источник магнитной индукции для воспроизведения слабых магнитных полей высокой однородности» внедрены в учебный процесс, а именно:

 разработанные универсальные аналитические выражения для анализа однородности магнитного поля;

- изготовленные конструкции систем из десяти катушек;

используются:

 при проведении лабораторных работ «Основы проектирования электронных устройств» в рамках подготовки бакалавров по направлению 11.03.04 «Электроника и наноэлектроника»;

 при выполнении УИРС, НИРМ, ВКР студентами отделения Электронной инженерии Инженерной школы неразрушающего контроля и безопасности.

к.т.н., доцент

Заместителя начальника отдела организации набора, к.т.н.

к.т.н., доцент

В.С. Иванова

С.В. Силушкин

А. Коломейцев

«УТВЕРЖДАЮ» Директор 000 «Эксперт» А.А. Альбах 2024 г.

(Эксперт))

АКТ

о внедрении результатов диссертационной работы на соискание учёной степени кандидата технических наук Затонова Ивана Андреевича на тему «Источник магнитной индукции для воспроизведения слабых магнитных полей высокой однородности»

Комиссия в составе: Председатель: Альбах Анастасия Александровна, директор ООО «Эксперт»

Члены комиссии:

Белкин Денис Сергеевич, заместитель директора ООО «Эксперт» Жуйков Артем Анатольевич, инженер ООО «Эксперт»

составила настоящей акт о том, что результаты диссертационной работы Затонова Ивана Андреевича «Источник магнитной индукции для воспроизведения слабых магнитных полей высокой однородности»:

- Десятикатушечные системы для воспроизведения магнитного поля.
- Источник тока для питания десятикатушечных систем.
- Экспериментальный стенд на основе шестиосевого робота-манипулятора Kuka.

Используются в ООО «Эксперт» для исследования и калибровки датчиков магнитного поля и магнитометров.

Данный акт не является основанием для предъявления претензий, связанных с авторским правом.

Директор ООС «Эксперт»

Заместитель директора ООО «Эксперт»

А.А. Альбах Д.С.Белкин А.А. Жуйков

Инженер ООО «Эксперт»