имеет плотность 0,744 кг/м³. Согласно результатам хроматографического анализа, Астраханский стабильный газовый конденсат состоит из линейных алканов – 43,3 % масс., ациклических изопреноидных алканов – 21,9 % масс., легких ароматических углеводородов - 18,8 % масс., легких нафтеновых углеводородов – 11,0 % масс. Кроме того, в сырье присутствуют серосодержащие соединения (2,49 % масс.). В результате фракционной перегонки получены дистилляты, а именно, бензиновая фракция газового конденсата (44,72 % об.), керосиновая фракция (15,86 % об.), фракция легких газойлей (20,6 % об.), кубовый остаток (13,88 % об.). Потери составили 3,89 % об. Содержание общей серы – 1,138 %, следовательно, согласно ОСТ 5158-79, исследуемый газоконденсат можно отнести к III классу, высокосернистому. Все дистиллятные фракции газового конденсата содержат

Список литературы

1. Поляков Е.Е., Фёдорова Е.А., Стрекозин В.В., Никульникова Н.А., Лукьянова Е.А., Семёнова К.М., Тинакин О.В., Чашникова Л.В. // 0,251–1,425 % масс. общей серы и оказывают коррозионное влияние на медную пластинку. Низкотемпературные показатели соответствуют заявленным требованиям к каждой из дистиллятных фракций и не требуют повышения температурной стойкости.

Таким образом, газовый конденсат Астраханского месторождения, согласно ОСТ 5158-79, имеет шифр ША2Н1Ф1, является высокосернистым. При транспортировке и переработке газоконденсата следует учитывать его высокую коррозионную активность и предпринимать соответствующий комплекс мер по защите технологического и транспортного оборудования. По содержанию парафинов во фракции 200–300 °С, газоконденсат после депарафинизации может быть рекомендован для получения реактивного и зимнего дизельного топлива, жидких н-парафинов.

Вести газовой науки. – 2017. – № 3 (31). – С. 141–150.

ВЛИЯНИЕ УСЛОВИЙ ПРОТЕКАНИЯ РЕАКЦИЙ НА БЫСТРОДЕЙСТВИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ПИРОЛИЗА ЭТАНА

В. В. Козлов

Научный руководитель – к. т. н., доцент И. М. Долганов Национальный исследовательский Томский Политехнический университет 634050, Россия, г. Томск, пр. Ленина 30 uljakopicheva@mail.ru, kozlov.vlr@yandex.ru

Для повышения эффективности современных производств пиролиза применяются усовершенствованного управления технологическим процессом с применением подходов оптимизации в реальном времени. Для применения таких инструментов требуются быстродействующие математические модели происходящих процессов.

Особенности процесса [1] приводят к необходимости выполнения значительного количества расчетных итераций для получения требуемой точности решения, причем минимальный размер шага интегрирования, обеспечивающий заданную точность решения систем обыкновенных дифференциальных уравнений (ОДУ) [2] изменяется в зависимости от условий протекания процесса. Для решения задачи в областях, характеризующихся высокими скоростями реакций, для обеспечения точности, сравнимой с менее напряженными участками реакционного змеевика обычно требуется снижать шаг интегрирования.

На модели описанной в [3] была проведена серия расчетных экспериментов, демонстрирующая различие быстродействия модели при различных условиях протекания реакций в случае использования для решения систем ОДУ метода Рунге-Кутты-Фельберга 5-го порядка [4] с адаптивным шагом интегрирования.

Выполнялись расчеты модельных змеевиков длиной 1000 м при разных температурах на входе в змеевик. Остальные параметры приняты одинаковыми для всех экспериментов и соответствуют этановому режиму работы одной из действующих промышленных печей пиролиза. Параметры экспериментов представлены в Таблице 1.

Сравнивались скорости реакций в змеевиках, точность решения на каждой итерации (см. Рисунок 1 и Рисунок 2), а также количество итераций и время выполнения расчета (см. Таблицу 2).

Таким образом показано, что условия протекания реакций в змеевике значительно влияют на требуемое для расчета количество итераций и, соответственно, затраченное на расчет машинное время.

Полученные результаты определяют одни из основных направлений дальнейшей работы над моделью – выбор более эффективного способа решения систем ОДУ и оптимизация кинетической модели для сокращения количества реакций при сохранении приемлемой точности.

Рис. 1. Профили некоторых скоростей реакций

Рис. 2. Точность решения

Таблица 1	. 1	Парамет	ы	пасчетных	экспе	риментов
таолица і		rapamer	JDI	pue le mbix	JACITO	primentob

Номер эксперимента	Температура на вхо- де в змеевик, К		
1	800		
2	1000		
3	1200		
4	1400		

Таблица 2. Результаты расчетных экспериментов

Номер экс- перимента	Средняя точность решения	Количе- ство ите- раций, шт.	Время вы- полнения расчета, с
1	4,44E–13	3	0,4
2	2,93E-13	432	41,5
3	1,10E-12	3927	77,6
4	5,70E-13	11051	194,9

Список литературы

- 1. Dente M., Ranzi E., Goossens A.G. Detailed prediction of olefin yields from hydrocarbon pyrolysis through a fundamental simulation model (SPYRO®) // Computers & Chemical Engineering. – 1979. – Vol. 3. – P. 61–75.
- 2. Langtangen H.P. Truncation error analysis. *Oslo: University of Oslo, 2013.* – *41.* – *p. 3.*
- 3. Козлов В.В., Долганов И.М., Слободин С.С. Выбор численных методов решения систем обыкновенных дифференциальных уравне-

ний для быстродействующей модели пиролиза углеводородного сырья // Известия Томского политехнического университета. Инжиниринг георесурсов. – 2024. – Т. 335. – \mathcal{N}_{2} 1. – C. 202–211.

4. Fehlberg E. Classical fifth-, sixth-, seventh-, and eight-order Runge-Kutta formulas with stepsize control. – Huntsville : Nasa Technical Report NASA TR R-287, 1968. – 82 p.

ПОЛУЧЕНИЕ КОМПОНЕНТОВ МОТОРНЫХ ТОПЛИВ НА КОМПЛЕКСЕ КАТАЛИЗАТОРОВ ГИДРООЧИСТКИ И ЦЕОЛИТА ТИПА ZSM-5

Ю. С. Кокорина, И. А. Богданов, А. А. Алтынов, Д. В. Соснина Научный руководитель - к.т.н., ассистент ОХИ ТПУ И. А. Богданов

Национальный исследовательский Томский политехнический университет ysk14@tpu.ru

В контексте сырья для производства моторных топлив, растительные масла являются возобновляемыми ресурсами, что важно для снижения зависимости от нефти. Кроме того, производство и использование топлив из растительных масел может снизить выбросы СО, СО и других токсичных газов в атмосферу, что способствует общей борьбе с изменением климата [1].

В данной работе реализована переработка кукурузного, подсолнечного и рапсового масел на комплексе катализаторов гидроочистки и цеолитном катализаторе типа ZSM-5.

Переработка масел осуществлялась на лабораторной каталитической установке с проточным типом реактора на неподвижном слое катализатора. Технологические параметры: давление

7 МПа, температура 375 °C, объёмная скорость подачи сырья 0,08 мл/мин, расход водорода 35 мл/мин. В реактор поочередно были загружены катализаторы в равных объёмах (5+5 см³). Катализаторы размещались так, чтобы растительное масло сначала поступало на катализатор гидроочистки, после чего на цеолитный катализатор. Катализаторы предварительно прокаливали в течение 3-х часов в токе водорода при 375 °С.

В результате переработки растительных масел были получены жидкие продукты с содержанием воды от 16-18 % масс.

Групповой углеводородный состав продуктов каталитической переработки был определен с помощью хроматомасспектрометрического анализа на приборе «Хроматэк Кристалл 5000.2» с колонкой HP-1-MS (30 м; 0,25 мм;

Таблица 1	. Групповой	состав продуктов	каталитической	переработки	растительных	масел

	Содержание, % масс.				
Группа	Продукт из куку- рузного масла	Продукт из подсо- лнечного масла	Продукт из рапсо- вого масла		
Изо-парафины	17,63	18,75	3,14		
Н-парафины	7,58	5,95	3,47		
Нафтены	6,86	6,37	1,81		
Олефины	2,23	2,31	1,99		
Алкины	0,05	0,04	0,00		
Ароматические УВ	48,27	48,58	68,31		
Кислородсодержащие	2,33	2,31	1,45		
Не идентифицированные	15,04	15,69	19,83		

~

o /