порошкообразный осадок в виде кристаллов белого цвета. Были проведены исследования фазового состава полученного вещества с помощью рентгенофазового и термического анализов, которые показали, что основной кристаллической фазой является несквигонит MgCO₃ • 3H₂O. Оптические (с помощью оптического микроскопа) и электронно-микроскопические исследования подтверждают образование гидрокарбонатов

в виде удлиненных столбчатых кристаллов несквигонита.

Таким образом, методом выпаривания при температуре ниже 100 °C из водного раствора бикарбоната магния на основе каустического брусита получили кристаллы гидрокарбоната магния, которые можно использования в качестве антипирена.

Список литературы

- 1. Брехова К.А., Симонов-Емельянов И.Д. Наполнители-антипирены на основе гидроксида магния для полимерных материалов и влияние размера частиц на процесс дегидратации при высоких температурах // Пластические массы. — 2022. — № 7-8. — С. 44-47.
- 2. Fernando J. Rodríguez-Macías, José E. Ortiz-Castillo, Erika López-Lara, Alejandro J. García-Cuéllar, José L. López-Salinas, César A. García-Pérez, Orlando Castilleja-Escobedo and Yadira I. Vega-Cantú Syntheses of Nano-
- structured Magnesium Carbonate Powders with Mesoporous Structures from Carbon Dioxide // Applied Sciences. 2021. V. 11. P. 1141.
- 3. Ling-Li Jiao, Peng-Cheng Zhao, Zhi-Qi Liu, Qing-Shan Wu, Dong-Qiang Yan, Yi-Lan Li, Yu-Nan Chen and Ji-Sheng Li Preparation of Magnesium Hydroxide Flame Retardant from Hydromagnesite and Enhance the Flame Retardant Performance of EVA // Polymers. 2022. V. 14. № 8. P. 1567.

ИСКРОВОЕ ПЛАЗМЕННОЕ СПЕКАНИЕ МЕТАЛЛОМАТРИЧНЫХ КОМПОЗИТОВ НА ОСНОВЕ АЛЮМИНИЯ И КАРБИДА БОРА

А. А. Митин Научный руководитель – ассистент А. Насырбаев МБОУ лицей при ТПУ г. Томска amigomitin@gmail.com

В настоящее время в разных отраслях промышленности получили широкое распространение композиты с металлической матрицей благодаря превосходному сочетанию характеристик: высокому соотношению прочности к весу, хорошей износостойкости и коррозионной стойкости и др. Среди таких материалов выделяются сплавы на основе алюминия, которые являются ключевыми конструкционными материалами современности.

Наиболее часто используемыми керамическими армирующими добавками являются сверхтвердые карбиды вольфрама (WC) [1], кремния (SiC) [2], а также бора (B_4 C) [3]. Сочетание алюминиевой матрицы и частиц карбид бора (B_4 C) позволяет получить изделие с высокой твердостью, прочностью, теплопроводностью, а также с высокой нейтронопоглощающей способностью, что позволяет использовать ке-

рамику в атомной промышленности в качестве контейнеров для отработавшего топлива [3].

Одними из важных задач по получению объемных композитов является сохранение исходной микроструктуры. Перспективным решением является использование метода искрового плазменного спекания, ввиду возможности достижения высоких скоростей спекания (до 1000 °С/мин), что позволяет сохранять исходную микро- и наноструктуру.

В работе проведена серия экспериментов по исследованию влияния содержания карбида бора на свойства получаемого композита. В качестве прекурсоров для спекания использовались коммерческие микронным порошки алюминия и карбида бора, которые смешивались в соотношении $\omega(B_4C)=1,\,5,\,10,\,15$ масс. % в высокоэнергетической шаровой мельнице SPEX 8000M Mixer/Mill в форме из карбида вольфрама и двумя шарами из того же материала.

Алюмоматричные композиты с добавками карбида бора были получены с помощью установки искрового плазменного спекания (SPS 10-4 Thermal Technology) в вакуумной среде со следующими параметрами спекания: T=600 °C, p=50 МПа, скорость нагрева -100 °C /мин, время выдержки -5 мин.

Полученные металломатричные композиты подвергались пробоподготовке на шлифовально-полировальном станке Metkon Forcipol 1V с использованием карбидокремниевых бумаг (240, 320, 600, 800, 1200, 2500, 4000) и полировальных тканей (6, 3, 1, 0,25 мкм) с соответствующими алмазными суспензиями. Плотность материалов была измерена гидростатическим взвешиванием в дистиллированной воде. Микроструктура исходных прекурсоров и полученных композитов исследовалась методом сканирующей электронной микроскопии на микроскопе Hitachi ТМ3000. Для определения фазового состава продуктов спекания был проведен рентгенофазовый анализ методом рентгеновской дифрактометрии на дифрактометре Shimadzu XRD 7000.

Список литературы

1. Gol M.S.G., Malti A., Akhlaghi F. Effect of WC nanoparticles content on the microstructure, hardness and tribological properties of Al-WC nanocomposites produced by flake powder metallurgy // Materials Chemistry and Physics. – 2023. – V. 296. – P. 127252.

Рентгенофазовый анализ позволил установить, что во всей серии экспериментов материал состоит из фаз алюминия (Al - 00-004-0787) и карбида бора ($B_aC - 00-035-798$).

Сравнительный анализ микроснимков продемонстрировал, что спеченные образцы имеют гетерофазную структуру. Частицы карбида бора располагаются на границах зерен алюминия и выступают в качестве армирующего компонента, что должно повысить физико-механические свойства металломатричного композита.

В результате исследования были получены композитные алюмоматричные материалы с содержанием карбида бора $\omega(B_4C)=1,\,5,\,10,\,15$ масс. %. Гидростатическим взвешиванием было определено, что плотность композитов составляет более 90 % от теоретической, а максимальное значение ($\rho=2,695\ \text{г/cm}^3$) достигается при $\omega(B_4C)=5$ %.

Исследование выполнено за счет гранта Российского научного фонда № 23-73-01203, https://www.rscf.ru/project/23-73-01203/

- 2. Han J. et al. Formation mechanism of Al4SiC4 in Al–SiC composite under flowing nitrogen at 1300 °C // Materials Chemistry and Physics. 2023. V. 307. P. 128190.
- 3. Kubota M. Solid-state reaction in mechanically milled and spark plasma sintered Al–B4C composite materials // Journal of Alloys and Compounds. 2010. V. 504. P. S319–S322.

ПРИМЕНЕНИЕ ЛЮМИНОФОРОВ В ТРАССЕРНЫХ ИССЛЕДОВАНИЯХ НЕФТЯНЫХ СКВАЖИН

Г. А. Николаенко

Научный руководитель – руководитель проекта, директор центра одаренных детей «Матрица» К. М. Ляпишев

МАОУ лицей 64 Россиия, Краснодар

В современных условиях применения высокотехнологичных способов добычи нефти и газа, для контроля над разработкой нефтяных залежей, компании все чаще применяют трассерный метод. Он основан на введении в контрольную нагнетательную скважину заданного объема меченой жидкости.

В ходе выполнения проекта мы узнали о применении люминофоров при добыче неф-

ти [1]. В экспериментальной работе применялись органические люминофоры, предоставленные ООО «НПО «СПЕКТР», специализацией организации являются трассерные исследования нефтяных скважин. Для экономической материально-стоимостной оптимизации применения люминофоров в эксплуатации нефтяных скважин, очень актуальным является получение более мелких частиц этих веществ.