ИЗВЕСТИЯ ТОМСКОГО ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО Том 83 ИНСТИТУТА имени С. М. КИРОВА 1956 г.

ИССЛЕДОВАНИЕ КОНТАКТНЫХ СВОЙСТВ ХРОМО-ОЛОВЯННЫХ КАТАЛИЗАТОРОВ ДЛЯ ОКИСЛЕНИЯ SO, в SO.

Н. П. КУРИН и Н. П. ФИГУРОВСКАЯ

Введение

Современная сернокислотная промышленность характеризуется непрерывным возрастанием удельного веса контактного способа получения серной кислоты. Это объясняется более высокими качествами ее по сравнению с кислотой, получаемой нитрозным способом (высокие концентрации, включая олеум и чистый серный ангидрид), и тем, что проведенные усовершенствования технологических схем и конструкций аппаратов значительно снизили стоимость контактной кислоты.

При контактном способе определяющим технологическую схему, конструкцию контактного аппарата, возможные выходы, а следовательно, и стоимость получаемой кислоты является качество применяемого катализатора.

Долгое время в качестве катализатора применялась платина. Однако платиновые катализаторы, наряду с высокой активностью, обладают двумя серьезными недостатками, а именно: большей чувствительностью к контактным ядам и высокой стоимостью. Это обстоятельство с самого начала развития контактного производства серной кислоты определило попытку замены их более дешевыми окисными катализаторами.

В результате усилий советских химиков (Шокин, Ададуров, Боресков [1, 2, 3] и др.) были разработаны и внедрены в производство высокоактивные ванадиевые контактные массы. Они менее чувствительны к ядам, но так же, как и платиновые, являются довольно дорогими. Ванадий в последнее время также находит все более широкий круг весьма важных потребителей, что, наряду с высокой стоимостью, суживает возможности его применения в сернокислотной промышленности. Поэтому проблема отыскания более дешевых и достаточно активных неплатиновых и неванадиевых катализаторов попрежнему представляет существенный интерес как для практики сернокислотного производства, так и для теории гетерогенного катализа.

Работами ряда советских ученых (И. Е. Ададуров и Д. В. Гернет с сотрудниками [4, 5, 6, 7, 8, 9, 10, 11, 12], В. Ф. Постников, Г. И. Кунин и А. А. Асташева [13] и др.) было установлено, что одним из веществ, обладающим довольно высокими каталитическими свойствами для реакции окисления сернистого газа в серный ангидрид, является окись хрома. Было также выяснено, что каталитические свойства этого вещества можно усилить и стабилизировать путем введения активирующих добавок, в частности двуокиси олова.

Однако указанные исследователи работали с хромо-оловянными катализаторами состава Cr_2O_3 . SnO_2 и только в одной работе [4] приводятся данные относительно каталиватора состава $3Cr_2O_3$. SnO_2 .

Н. П. Курин и Н. Т. Рудюк [14] более подробно изучили каталитическую систему Cr₂O₃ + SnO₂ в широких пределах соотношений между двумя ее исходными компонентами. В этой работе катализаторы готовились мето-

Фиг. 1. Схема установки для изучения контактных свойств неплатиновых катализаторов при окислении SO₂ в SO₃. 1-баллон с жидким SO₂, 2-стеклянный газгольдер со слоем масла для предотвращения растворения SO2 в воде, 3-газгольдеры для воздуха, 4-баллон с азотом, 5-газгольдер для азота, 6-водонапорная склянка с постоянным уровнем воды, 7-шелочной абсорбер для очистки азота, 8 и 9-абсорберы с концентрированной серной кислотой для осушки азота и сернистого газа, 10-щелочной абсорбер для очистки воздуха, 11-абсорбер с концентрированной серной кислотой для осушки воздуха, 12-распределительный щит, 13-реометр для SO2, 14-реометр для воздуха, 15-реометр для азота, 16-реометр для азота, 17-термостат для реометров, 18-вентилятер, 19 газоанализаторы, 20-аспираторы, 21-термостат контактного аппарата, 22-контактный аппарат, 23-электромотор, 24-мешалка, 25-платина-платино-родиевая термопара, 26-бюретки для измерения количества воды; 27-сосуд с H₂SO₄ для уравнивания сопротивления при переключении газового пстока с газоанализаторов в атмосферу; 28—отгонная колба с олеумом; 29—термостат для серного ангидрида; 30—десорбер серного ангидрида; 31-газоанализаторы, 32-абсорбер для SO₃, 33-электронагреватель; 34-сосуд с Р₂О₅; 35-механизм для подъема и опускания термостата; 36-нагреватель; 37-реостаты; 38-амперметр и 39-ртутно-толуоловый терморегулятор.

дом механического смешения продажной высокопрокаленной Cr_2O_3 и SnO_2 и поэтому, хотя и была выяснена общая зависимость активности от содержания SnO_2 в катализаторе, получаемые контактные массы не обладали высокими контактными свойствами.

В этой связи целью настоящего исследования является изучение контактных свойств каталитической системы $Cr_2O_3 + SnO_2$ в широком интервале содержаний SnO_2 при приготовлении контактных масс в наиболее активной форме методом совместного осаждения.

Экспериментальная часть

Приготовление катализаторов

Как было указано выше, для приготовления катализаторов мы применили метод совместного осаждения гидроокисей хрома и олова, обеспечивающий наиболее тесное перемешивание и взаимное активирующее влияние составных компонентов смешанного катализатора.

Совместное осаждение гидроокисей производилось 25-процентным водным раствором аммиака из полунормальных водных растворов азотно-кислого хрома и четырехулористого олова. Катализаторы с большим содержанием Cr_2O_3 готовились из раствора $Cr(NO_3)_3$ и $SnCl_4$ полунормального по отношению к Cr (NO₃)₃; катализаторы, в которых содержание SnO₂ превышало 60¹/₀ (вес.), осаждались из раствора полунормального в отношении SnCl₁. Для предупреждения гидролиза хлорного олова и преждевременного выпадения в осадок его основных солей раствор слегка подкислялся соляной кислотой. Осаждение производилось при температуре 80°. Перед осаждением гидроокисей хрома и олова раствор нейтрализовался небольшим количеством аммиачной воды до появления первых хлопьев осадка, после чего требуемое количество 25-процентного водного раствора аммиака приливалось быстро при энергичном перемешивании всего раствора с помощью механической мешалки. Для полноты осаждения прибавлялся небольшой избыток осадителя. Полученный осадок гидроокисей отстаивался в течение суток, промывался дистиллированной водой до отрицательной реакции на ионы Cl' и NO_3' , отфильтровывался, сушился на воздухе и прессовался в таблетки под давлением 200 кг/см².

Полученные таблетки высушивались в сушильном шкафе при 40° в течение 0,5, 60°-0,5, 80°-0,5, 100°-1,5, 110°-1,5, 150°-1, 200°-1 час.

Высушенные катализаторы из чистой Cr_2O_3 и из $Cr_2O_3 + SnO_2$ имели зелено-черный, а из SnO_2 —белый цвет. Катализаторы обладали достаточной механической прочностью и раздавливались лишь при нагрузке в 20 κ_2/cm^2 .

Таблетки дробились, очобранная просеиванием фракция 1,5—2 мм загружалась в контактный аппарат в количестве 5 см³ и для удаления остатков влаги в течение 3 часов сушилась в токе воздуха (объемная скорость 600) при температуре 350°.

Экспериментальная установка

Для исследования контактных свойств мы выбрали динамический метод, позволяющий в отличие от статического изучать активность катализатора при установившемся стационарном состоянии, когда концентрации исходных, промежуточных и конечных продуктов реакции устанавлив ются постоянными как в поперечном, так и продольном сечениях катализаторной зоны при условиях, близких к изотермическим. Все это крайне необходимо для правильных заключений относительно кинетики процесса окисления SO₂ в SO₃. Несколько ранее на основе указанного метода Н. П. Куриным, С. А. Сиговым и др. [15] была разработана и описана экспериментальная установка для изучения процесса окисления SO₂ в SO₃ в присутствии железо-медных катализаторов. В эту установку мы внесли ряд дополнений, позволивших вести опыты с газовой смесью постоянного и переменного состава.

Схема установки изображена на фиг. 1.

Сернистый газ и азот из баллонов (1) и (4) и воздух из атмосферы перепускались в газгольдеры (2), (5) и (3), откуда под постоянным давлением, создаваемым водой из водонапорной склянки (6), направлялись в абсорберы (7—11), где очищались от примесей путем промывки раствором едкого натрия и концентрированной серной кислотой. Затем с помощью помещенных в воздушный термостат реометров (13—16) производилась дозировка состава газовой смеси, после чего она проходила в змеевик контактного аппарата, где подогревалась до температуры термостата (21), проходила через слой катализатора в контактном аппарате (22) и через уравнительный сосуд (27) отводилась в атмосферу или направлялась в газоанализаторы (19) и аспиратор (20).

Часть газовой смеси для определения содержания сернистого газа в исходном газе отводилась в газоанализаторы (19) и аспиратор (20), расположенные до контактного аппарата. Дозировка исходного газа серным ангидридом производилась путем пропускания части азота через реометр (16) и десорбер (30) с чистым жидким SO₃. Постоянство температуры в автоматически регулируемом водяном термостате (29) обеспечивало постоянство упругости паров SO₃ и состава газа. Для проверки содержания SO₃ в азоте часть его можно было направить в наполненные титрованным раствором едкого натрия газоанализаторы (31).

Фиг. 2. Схема контактного аппарата и термостата.

Необходимый для дозировки чистый SO₃ получался из олеума путем отгонки из колбы (28) в десорбер (30).

Для отвода тепла реакции окисления SO₂ в SO₃ из катализаторной зоны и создания изотермических условий работы необходимо максимально разви-

вать поверхность теплопередачи контактного аппарата и увеличивать скорость теплопередачи. Для этой цели, как это показано на фиг. 2, контактный аппарат изготовлялся из тонкостенной стеклянной трубки диаметром 5 мм и катализатор в нем располагался в два слоя. В пустой части трубки между двумя слоями катализатора частично прореагировавшая газовая смесь перед поступлением во второй слой катализатора более полно отдавала тепло в окружающее пространство, что повышало изотермичность процесса.

Для повышения коэффициента теплопередачи от наружных стенок контактного аппарата термостат заполнялся смесью расплавленных азотнокислых солей натрия и калия, которая с помощью механической мешалки приводилась в энергичное движение.

Прежде чем поступить в контактную зону, газовая смесь проходила через стеклянный змеевик, длина которого была подобрана так, чтобы смесь успела нагреться до температуры жидкости термостата.

Путем регулирования силы нагревательного электротока в термостате температура контактирования поддерживалась постоянной с точностью ± 1° и регистрировалась с помощью платина-платино-родиевой термопары, помещенной в жидкость термостата.

Для предупреждения раздавливания затвердевающим плавом селитры змеевика и контактного аппарата при прекращении работы термостат (21) с помощью подъемного механизма (35) (фиг. 1) опускался вниз. Предотвращение растрескивания стеклянных деталей при возобновлении работы достигалось медленным подъемом (в течение ~ 30 минут) термостата (35) с расплавленной и неперегретой селитрой.

Для вычисления степени окисления SO_2 в SO_3 в присутствии изучаемых катализаторов определялось содержание сернистого газа в газовой смеси до и после контактного аппарата. Анализ на SO_2 производился иодометрическим методом.

Полученные результаты и их обсуждение

По описанным выше методикам были приготовлены и испытаны 13 катализаторов, составы которых приведены в табл. 1.

Таблица 1

Порядковый	Состав катализатора	в весовых процентах	
номер катали- затора	Cr_2O_3	SnO ₂	Соотношение молей
1 2 3 4 5 6 7 8 9 10 11 12 13	100 99,*84 98,776 97,582 93,801 85,823 75,16 66.87 50,92 33,53 20,44 9,160	$\begin{array}{c} 0,616\\ 1,224\\ 2,418\\ 6,199\\ 14,179\\ 24,84\\ 33,13\\ 49,78\\ 66,47\\ 79,86\\ 90,84\\ 100,00\\ \end{array}$	$\begin{array}{c} Cr_{2}O_{3}\\ 163. Cr_{2}O_{3}. SnO_{2}\\ 80. Cr_{2}O_{3}. SnO_{2}\\ 40. Cr_{2}O_{3}. SnO_{2}\\ 15. Cr_{2}O_{3}. SnO_{2}\\ 15. Cr_{2}O_{3}. SnO_{2}\\ 6. Cr_{2}O_{3}. SnO_{2}\\ 3Cr_{2}O_{3}. SnO_{2}\\ 2Cr_{2}O_{3}. SnO_{2}\\ 2Cr_{2}O_{3}. SnO_{2}\\ Cr_{2}O_{3}. SnO_{2}\\ Cr_{2}O_{3}. SnO_{2}\\ Cr_{2}O_{3}. SnO_{2}\\ Cr_{2}O_{3}. SnO_{2}\\ Cr_{2}O_{3}. SnO_{2}\\ Cr_{2}O_{3}. O_{2}\\ SnO_{2}\\ \end{array}$

Состав хромо-оловянных катализаторов

Исследование катализаторов производилось в температурном интервале $350-550^{\circ}$ на газовой смеси, применяемой при промышленном производстве контактной серной кислоты состава $SO_2 - 7,0; O_2 - 11,0$ и $N_2 - 82,0\%$ (объемных) при объемных скоростях 600-2500. Под объемной скоростью под-

разумевается то количество объемов газовой смеси при нормальных условиях, которое проходит через один насыпной объем катализатора в час.

Кроме этого, отработанный катализатор с содержанием 33,13% SnO₂ был дополнительно подвергнут испытанию на газовой смеси переменного состава при изменении начальной концентрации сернистого газа от 2,0 до 14,0, кислорода от 2,0 до 19,0 и серного ангидрида от 1 до 10,0% объемных.

Исследование каждого катализатора начиналось с установления стационарного состояния. В этот период при заданной температуре газовая смесь пропускалась через контактный аппарат с заданной объемной скоростью до тех пор, пока степень окисления SO_2 в SO_3 не становилась постоянной. Время, затрачиваемое на этот процесс в зависимости от условий исследования, составляло от 2 до 8 часов. Обычно наибольшее время относилось к начальным условиям испытания (объемная скорость V = 600 и $t = 350^{\circ}$), и оно уменьшалось с повышением объемной скорости и температуры.

Фиг. 3. Зависимость степени окисления SO₂ в SO₃ от объемной скорости для катализатора из чистой Cr₂O₂.

Затрату времени на установление стационарного состояния можно объяснить изменением тонкой структуры поверхности хромо-оловянных катализаторов с их частичной сульфатизацией в результате взаимодействия с SO₂,O₂ и SO₃, а также некоторой протяженностью адсорбционно-десорбционных процессов между поверхностью катализатора и газовой фазой, приводящих к установлению стационарно-постоянных концентраций реагирующих веществ и продуктов реакции в каждом сечении контактного аппарата.

Полученные значения степени окисления SO₂ в SO₃ при установившемся стационарном состоянии приведены в табл. 2 и изображены на фиг. 3-14 и 15-26.

Влияние объемной скорости

Из табл. 2 и фиг. 3—14 видно, что при постоянной температуре для всех исследованных катализаторов степень окисления SO_2 в SO_3 с повышением объемной скорости уменьшается. Однако падение степени окисления происходит медленнее, нежели возрастает объемная скорость.

Так для чистой окиси хрома (фиг. 3) при температуре 475° с увеличением объемной скорости в 3,33 раза (с 600 до 2000) степень окисления уменьшается лишь в 1,37 (с 84,4 до 61,4%).

21.4

Таблица 2

Степень окисления SO₂ в SO₃ в присутствии хромо-оловянных катализаторов. Начальный состав газовой смеси SO₂—7,0; O₂—11,0 и N₂—S2,0 % (объем). Общее давление 1 *атм.*

Spa-	иная сть			Степен	нь окис	ления в к	SO ₂ в атализе	SO ₃ x 1 Tope 1	з % пј з %(ве	он с <i>од</i> с)	ержани	и SnOg	2	
Temner	O6pel ckopo	0,00	0,616	1,224	2,418	6,199	14,179	24,84	33,13	49,78	66,47	79,56	90,84	100
350	600 1000 1500 2000 2500	27,0 12,6 	33,0 22,9 15,4 3,6	50,2 44,8 26,0 17,6 17,6	54,3 44,9 38,2 23,0 15,5	41,1 35,0 27,5 21,8 14,5	23,2 14,6 11,5 8,8 —	42,2 20,1 13,4 10,1	34,1 27,4 25,1 20,1 10,8	31,0 25,4 13,8 —	30,75 22,2 11,7 	17,2 5,6	11,1 4,4 —	1,03
400	600 1000 1500 2000 2500	44,0 23,1 14,8 —	57,0 34,2 29,0 19,7 27,0	68,9 52,9 35,0 32,5 26,6	80,2 58,7 48,7 33,8 20,9	63,0 36,6 28,6 24,6 17,9	33,7 30,85 18,2 15,8 17,6	57,3 34,9 27,0 18,3 12,6	69,5 53,6 42,0 32,8 16,3	61,7 46,5 30,0 25,5 23,8	59,0 44,8 32,1 22,7 20,8	31,8 21,3 13,5 9,88	24,75 12,6 7,7 —	1,8
425	600 1000 15 0 2000 2500	22,9 21,4 13,2 —	73,5 56,0 44,8 36,5 36,0	72,1 62,65 51,8 48,4 36,0	77,2 66,0 60,3 48,0 33,5	86,7 70,5 62,2 57,2	50,8 41,8 37,2 34,0 42,0	$\begin{array}{r} 82,5\\60,4\\52,2\\42,0\\34,2\end{array}$	71,5 58,2 49,0 48,5 37,85	62,2 50,0 44,0 43,5 37,0	64,0 58,7 42,5 34,8 33,0	41,8 31,6 22,0 18,5 15,4	38,2 30;0 22,0 16,6 11,4	1,87
450	600 1000 1500 2000 2500	41,3 31,2 28,9 19,2	92,1 78,8 65,6 65,6 56,5	95,7 85,0 75,0 72,0 58,5	96,5 90,2 83,4 67,1 54,8	97,0 93,5 80,4 71,8 65,0	77,0 66.7 70,0 62,0, 52,0	92,9 78,5 67,0 61,4 43,0	97,0 95,9 81,3 71,5 61,0	95,1 86,3 72,0 67,2 61,8	92,2 79,4 69,4 58,2 52,1	$68,8 \\ 54,4 \\ 44,1 \\ 38,5 \\ 31,4$	60,8 47,0 32,5 26,5 22,6	1,90
475	600 1000 1500 2000 2500	84,4 77,5 68,9 61,37	96,8 87,16 92,3 86,2 78,6	95,9 92,8 82,1 73,5 65,3	94,3 93,0 88,0 73,7 58,6	95,0 95,0 92,6 91,0 88,0	95,3 90,0 84,25 77,6 67,6	96,1 95,6 91,1 87,7 83,7	96,3 95,8 95,5 94,8 92,5	96,0 95,0 94,0 94,6 92,5	95,2 -94,3 86,7 81,5	90,75 81,6 69,2 64,0 57,5	81,3 69,3 52,0 44,0 36,4	10,4 4,7 2,6 —
500	600 1000 1500 2000 2500	90,1 89,0 87,0 80,5	93,8 94,0 94,0 —	93,5 90,0 86,8 87,3 80,4	87,9 85,3 84,8 80,2 75,0	93,6 94,0 93,3 92,0	93,4 93,28 93,05 92,7 90,0	93,6 93,5 93,2 92,8 91,8	93,25 93,2 93,1 94,1 93,1	92,25 93,5 92,9 92,5 92,1	92,5 92,8 92,5 92,0 91,7	87,0 85,5 85,0 83,0 82,5	86,0 89,5 78,5 70,0 62,3	7,9 5,0 —
550	600 1000 1500 2000 2500	78,3 77,9 77,0		88,9 86,0 85,9 83,3 83,3	82,5 81,1 80,0 80,0	82,9 80,2 	86,8 86,0 84,2 84,9 	86,2	86,0 85,8 85,56 85,5 81,7	86,3 85,8 84,0 83,7 82,2	84,7 84,5 83,9 —	84,1 84,0 83,25 83,0 82,9	86,0 85, 5 82,5 84,6 83,3	

Аналогичная зависимость наблюдается для температур 350-475° и в присутствии смешанных хромо оловянных катализаторов.

В области более высоких температур (500-550°) уменьшение степени окисления с увеличением объемной скорости выражается еще менее резко. Для целого ряда катализаторов (фиг. 7, 8, 9, 10, 11) изотермы 500 и 550° представляют собой почти прямые, параллельные оси абсцисс.

Понижение степени окисления SO₂ в SO₃ в присутствии изученных катализаторов при повышении объемной скорости можно объяснить уменьшением времени реакции, так как

⊽ пропорционально

$$v \cdot \frac{1}{\frac{T}{273}} [16].$$

215.

Фиг. 4. Зависичость степени окисления SO₂ в SO₃ от объемной скорости для катализатора с содержанием 0,616% SnO₂.

Фиг. 5. Зависимость степени окисления SO₂ в SO₃ от объемной скорости для катализатора с содержанием 1,224% SnO₂.

Фиг. 6. Зависимость степени окисления SO₂ в SO₃ от объемной скорости для катализатора с содержанием 2,418% SnO₂.

Фиг. 7. Зависимость степени окисления SO₂ в SO₃ от объемной скорости для катализатора с содержанием 6,199%.

Фиг. 9. Зависимость степени окисления SO₂ в SO₃ от объемной скорости для катализатора с содержанием 24,849% SnO₂.

Фиг. 10. Зависимость степени окисления SO₂ в SO₃ от объемной скорости для катализатора с содержанием 33,13% SnO₂.

Фит. 14. Зависимость степенн окис-ления SO₂ в S()₃ от объемной ско-рости для катализатора с содержа-нием 90,84% SnO₂.

Степень окисления в %

. 9 ۲ġ Žõei

+

3-

Z

1000 (500 2) Од ЪСМНОЯ СКОрость

<u>скараслть</u>

t-D

Более медленное падение степени окисления (x) SO₂ в SO₃ с возрастанием объемной скорости связано с тем, что, с одной стороны, при увеличении объемной скорости уменьшается время пребывания газа на катализаторе, вызывающее уменьшение x, с другой стороны, при этом увеличиваются действующие концентрации реагирующих веществ в каждом понеречном сечении контактного авпарата, что, учитывая форму кинетических уравнений (1) и (4), оказывает на величину x противоположное действие.

Суммарное влияние обоих факторов приводит к тому, что степень окисления падает в меньшей степени, чем возрастает объемная скорость.

Более медленное падение степени окисления с возрастанием объемной скорости, в особенности при повышенных температурах (475-500°), можно использовать для повышения интенсивности работы контактных аппаратов.

Влияние температуры

Другим важным показателем, определяющим ценность вещества как катализатора для реакции окисления SO₂ в SO₃, является зависимость степени окисления от температуры.

Как известно, реакция $2SO_2 + O_2 = 2SO_3$ сопровождается выделением тепла, и ее равновесие с повышением температуры сдвигается в сторону разложения SO_3 и равновесная степень окисления падает. Поэтому хорошие катализаторы должны обладать способностью обеспечивать высокую скорость окисления SO_2 в SO_3 в области температур $450-550^\circ$. При более высоких температурах (выше 600°) достижение высокой степени окисления SO_2 в SO_3 даже в присутствии хороших катализаторов невозможновследствие сдвига равновесия указанной реакции в обратную сторону. Так, при температурах 600 и 700° и общем давлении 1 ат равновесная степень окисления SO_2 в SO_3 соответственно равна 73.8 и 44,20%.

Как видно из табл. 2 и фиг. 15-26, для всех исследованных нами хромо-оловянных катализаторов наблюдалась следующая температурная зависимость степени окисления SO₂ в SO₃. Если газ пропускается при постоянной объемной скорости, то вначале степень окисления с повышением температуры возрастает, достигает равновесного или близкого к нему значения, а затем начинает падать, следуя за кривой равновесия. Таким образом, кривые $x = f(t)_v$ проходят через максимум, и для каждой объемной скорости наблюдается своя оптимальная температура.

С повышением объемной скорости оптимальные температуры сдвигаются в сторону более высоких значений.

Для чистой окиси хрома и большинства хромо-оловянных катализаторов в области исследованных объемных скоростей оптимальные температуры лежат в пределах $450-500^{\circ}$, и лишь для катализаторов с высоким содержанием двуокиси олова (79,86 и $90,84^{\circ}_{10}$ SnO₂) оптимальные температуры сдвигаются в область $500-550^{\circ}$. Что касается двуокиси олова, то она обладает низкой активностью и оптимальные условия для окисления SO₂ в SO₃ в присутствии этого вещества, повидимому, сдвигаются в сторону еще более высоких температур.

Восходящую часть кривых $x = f(t)_v$ можно объяснить обычным возрастанием скорости реакции окисления SO₂ в SO₃ с повышением температуры, ниспадающая часть этих кривых определяется не уменьшением скоростиреакции, а сдвигом ее равновесия в сторону меньших выходов SO₃ придальнейшем повышении температуры, т. е. здесь качественно наблюдается та же картина, как и для других равновесных экзотермических реакций (например, для реакции синтеза аммиака) [16].

В заключение следует отметить, что оптимальные температуры исследованных нами хромо-оловянных катализаторов близки к области температур, в которой работают промышленные ванадиевые контактные массы.

Степень окисления 0%

300r

Kamanusamap 100% Cz₂ 0₃

É

5-

Y

400 425 450 475 Температура в °C

.

Влняние состава катализатора

Переходя к рассмотрению влияния состава хромо-оловянных катализаторов, следует прежде всего отметить сравнительно высокую каталитическую активность чистой окиси хрома и низкую активность чистой двуокиси олова. Таким образом, каждое из указанных веществ в той или иной степени способно ускорять процесс окисления SO₂ в SO₃ молекулярным кислородом, т. е. является катализатором. Это подтверждается также работами предшественников [17, 14].

Как показали наши исследования (табл. 2, фиг. 27), зависимость степени окисления от содержания SnO_2 в хромо-оловянных катализаторах, полученных методом совместного осаждения, носит сложный характер, определяющийся наличием двух максимумов и одного минимума, причем положение последних зависит не только от содержания SnO_2 , но также отчасти от температуры и объемной скорости.

Так, при объемной скорости 600 для изотерм 350, 400, 425 и 450° максимумы соответствуют катализаторам 2 и 8, содержащим соответственно 2, 418 и 33,13°/₀ (вес.) SnO₂; при тех же условиях минимум на кривых степень окисления = f (°/₀ Sn O₂) наблюдается для катализатора 6, содержащего 14,25°/₀ SnO₂.

При указанной объемной скорости в области более высоких температур (475, 500 и 550°) происходит смещение первого максимума в сторону меньшего содержания двуокиси олова $(0,6158-1,224^0/_0)$, и он менее резко выражен

Следует также отметить то, что второй максимум на кривых степень окисления = f ($^{0}_{/0}$ SnO₂) выражается общирным плато, лежащим для области пониженных температур (350—450°) в пределах 24, 84—66, 47 и для области повышенных температур (475—550°)—в пределах 6—90°/₀ SnO₂.

На протяжении плато степень окисления SO_2 в SO_3 мало меняется с увеличением содержания SnO_2 в катализаторе.

При других объемных скоростях влияние содержания SnO₂ подобно вышеописанному с небольшими отклонениями.

Сравнивая степени окисления, полученные в присутствии чистых Cr_2O_3 , SnO_2 и смешанных хромо-оловянных катализаторов, полученных совместным осаждением, можно видеть, что введение SnO_2 благоприятно отражается на каталитических свойствах системы $Cr_2O_3 + SnO_2$ и для катализаторов 4 и 8 явление коактивации выражено наиболее сильно.

Аналогичный характер изменения каталитических свойств системы $Cr_2O_3 + SnO_2$ в зависимости от содержания SnO_2 ранее наблюдали Курин и Рудюк [14] для катализаторов, полученных методом механического смешения компонентов.

Влняние состава газовой смеси

Как известно [2,3], на процесс окисления SO₂ в SO₃ в присутствии платиновых и ванадиевых катализаторов значительное влияние оказывает состав исходной газовой смеси. В этой связи мы исследовали влияние концентрации кислорода, сернистого газа и серного ангидрида на степень окисления SO₂ в SO₃ в присутствии отработ нного катализатора, содержавшего 31,16% SnO₂ при температурах 400—500° и объемной скорости 1000.

В этих опытах концентрация сернистого газа менялась от 2,0 до 14,0 $(C_{02} = 11,0 = \text{const}, C_{S03} = 0,0)$, кислорода—от 2,0 до 19,0 $(C_{S02} = 7.0 = \text{const}, C_{S03} = 0)$ и серного ангидрида—от 1,0 до 10,0% объемных. $(C_{S02} = 7,0 = \text{const}, C_{02} = 11,0 = \text{const}.)$.

Результаты опытов приведены в табл. 3,4,5, а также изображены на фиг. 28,29 и 30.

Таблица З

Степень окисления SO2 в SO3 в % при содержании кислорода в исходной газовой смеси в % (объемн.) Температура вੰС 2,04.0 7,0 11,0 15,0 19.0 425 21,330,6 45,0 45,4 47,5 92,7 64,0 90,2 82,6 95,0 450 42,1 52,0 94,5 475 58,065,8 96.0 96,178,6 87,5 91,9 93,6 500 64,0

Зависимость степени окисления SO₂ в SO₃ от концентрации кислорода в исходной газовой смеси $C_{SO_2} = 7,0\% = const;$ $C_{SO_3} = 0;$ $C_{N_2} = дополнению до 100\%$ (объемн.)

Таблица 4

Зависимость степени окисления SO₂ в SO₃ от концентрации сернистого газа в исходной газовой смеси. $C_{O_2} = 11,0; \quad C_{SO_3} = 0,0; \quad C_{N_2} = дополнению до 100$ (объемн.)

Температура	Степень окисления SO ₂ в SO ₂ в % при содержании SO ₃ в исходной газовой смеси в % (объеми.)											
в °С	2,0	4,0	7,0	10,0	14.0							
400 425 450 475 500	88,2 97,3 97,3 96,1 91,7	63,0 71,7 97,5 97,4 91,1	25,8 49,4 82,3 94,1 93,6	13,0 30,6 68,3 90,1 93,2	2,1 35,5 49.1 92,5							

Таблица 5

Зависимость степени окисления SO₂ в SO₃ от концентрации SO₃ в исходной газовой смесн $C_{SO_2} = 7,0; C_{O_2} = 11,0; C_{N_2} = дополнению до 100% (объеми.)$

Температура	Степень окисления SO ₂ в SO ₃ в % при содержании SO ₃ в исходной газовой смеси в % (объемн.)										
в «С	1,0	2,0	4,0	7,0	10,0						
425 450 475 550	41,7 47,3 94,4 90,8	34,0 44,0 90,5 90,0	17,3 39,3 76,4 88,0	10,6 16,0 61,8 81,3	12,3 52,7						

Как видно из табл. 3 и фиг. 28, степень окисления SO₂ в SO₃ с повышением концентрации кислорода до некоторого предела возрастает, а затем остается постоянной. При исследованных температурах этот предел достигается при концентрациях кислорода 8—15% (объемных).

Повышение концентрации SO_2 в исходном газе в области температур 400—475° вызывает снижение степени окисления SO_2 в SO_3 (табл. 4 и фиг. 29). Следует отметить, что с повышением температуры снижение степени окислении SO_2 в SO_3 при возрастании концентрации SO_2 в исходном газе замедляется и наконец при температуре 500° степень окисления начинает медленно увеличиваться с ростом концентрации SO_2 . Что касается влияния SO_3 , то, как видно из табл. 5 и фиг. 30, при всех исследованных температурах степень окисления SO_3 в исходном газе.

•

-

Фиг. 28. Зависимость степени окисления SO₂ в SO₃ от концентрации кислорода в исходной газовой смеси.

15. Изв. ТПИ, т. 83

Кинетика и механизм реакции

Рядом исследователей было показано, что кинетика реакции

$$2 \, \mathrm{SO}_2 + \mathrm{O}_2 = 2 \, \mathrm{SO}_3$$

в присутствии платиновых [9] и ряда окисных [18, 19, 20, 15] катализаторов удовлетворительно выражается уравнением

$$\frac{dC_{SO_3}}{d\tau} = K \frac{C_{SO_2} - C_{SO_2 pash.}}{\sqrt{C_{SO_3}}} \,. \tag{1}$$

Согласно данным Н. П. Курина и Н. Т. Рудюк [14], это уравнение удовлетворительно выражает кинетику процесса окисления SO_2 в SO_3 в присутствии хромо-оловянных катализаторов, полученных методом механического смешения Cr_2O_3 и SnO_2 .

В настоящей работе мы сделали попытку применить уравнение (1) к полученным нами результатам по окислению SO_2 в SO_3 в присутствии хромо-оловянных катализаторов, полученных методом совместного осаждения.

Если в уравнении (1) выразить концентрации SO_2 и SO_3 к моменту времени τ и при равновесии через начальную концентрацию SO_2 и степени окисления x и x_T , то после интегрирования получим

$$K = \frac{\sqrt{a}}{\tau} \left[\sqrt{x_T \cdot 2}, 303 \log \frac{\sqrt{x_T + \sqrt{x}}}{\sqrt{x_T - \sqrt{x}}} - 2\sqrt{x} \right].$$
(2)

Критерием применимости уравнения (2) должно явиться постоянство констант скоростей, вычисленных при различных объемных скоростях и постоянной температуре. Из наших опытов время пребывания газа на катализаторе т точно определить нельзя, и, вместо этой величины, как было показано одним из нас [16], мы в уравнении (2) поставили пропорциональную ей величину

$$\frac{1}{\upsilon \frac{T}{273}}$$

где *v*—объемная скорость, *T*— абсолютная температура реакции. Окончательная форма кинетического уравнения имела вид:

$$K = v \frac{T}{273} \sqrt{a} \left[\sqrt{x_T} \cdot 2,303 \cdot \log \frac{\sqrt{x_T} + \sqrt{x}}{\sqrt{x_T} - \sqrt{x}} - 2\sqrt{x} \right].$$
(3)

При вычислении констант скоростей K в уравнение (3) подставлялись: a — начальная концентрация SO₂ в долях единицы;

x7- равновесная степень окисления в долях единицы;

х - степень окисления при данной объемной скорости в долях единицы.

v — объемная скорость в объемах (н.у.) газовой смеси на 1 насыпной объем катализатора в час.

Как видно из табл. 6, в подавляющем большинстве случаев константа скорости при постоянных температурах, но различных объемных скоростях остается величиной постоянной. Наблюдаемые отклонения в постоянстве значений K частично можно объяснить ощибками опыта, связанными преимущественно с трудностью установления стационарного состояния. Удовлетворительное постоянство констант скоростей при различных объемных скоростях указывает на то, что уравнение (3) правильно выражает кинетические соотношения реакции окисления SO₂ в SO₃ молекулярным кислородом в присутствии хромо-оловянных катализаторов, полученных методом совместного осаждения, если иметь дело с постоянным исходным составом газовой смеси (7% SO₂, 11%0₂+ азот).

Таблица б

Тем- пера-	Объем-		С	тепень ок	исления S	О ₂ в SO ₃	в присут	ствии ката	ализатора	с содерж	аниом SnC	О₂ в % (вес)			
тура в С	ная ско- рость	0,00	0,616	1,224	2,418	6,199	14,179	24,84	33,13	49,78	66,47	79,86	90,84	100	
350	600 1000 1500 2000 2500	39, 85 19,44	57,82 51,44 36,95	128,7 169,8 95,73 81,11	150,3 170,6 188,5 103,5	86,41 107,2 105,2 95,07 60,55	- 31,30 24,50 24,99 21,48	90,94* 41,54 34,32 27,64	61,33 69,25 90,57 82,07	51,80 59,77	51,04 48,72 24,81			0,2897	
Среднее ние К	значе-	29,61	48,74	101,5	153,2	98,47	25,57	34,5	70,88	55,78	41,52	1			
400	600 1000 1500 2000 2500	107,2 56,74 41,18	181,9 111,8 125,6 87,2 187,0	284,6 253,3 175,0 201,1 176,2	435,9 323,6 327,2 198,9 120,1	474,0* 127,3 122,5 125,3 90,14	65,30 92,87 58,40 60,89 52,81	184,8* 116,7 110,9 77,35 79,54	294,1 265,7 284,0 207,7	257,2 199,0 134,5	196,4 184,8 147,6 109,4 121,5	58,38 40,4 36,3 28,4	37,87 21,13	0, 58 68	
Среднее ние К	значе-	48,97	150,3	218,0	321,4	11,63	66,00	96,12	262,9	196,9	151,9	40,87	29,5		
425	600 1000 1500 2000 2500	38,43 53,49 35,59	356,6 305,6 291,2 269,6 320,2	337,8 3×8,1 388,1 445,8 320,2	413,1 447,1 540,4 446,8 281,4	992,8 794,0 774,0 800,0	150,4 165,3 202,2 209,0 400,0*	515,3 433,4 394,5 341,4 292,3	405,8 329,6 343,5 443,1 351,1	230,5 238,1 272,3 365,6 319,0	244,4 339,2 262,0 243,6 275,8	100,1 102,0 82,6 81,9 75,0	85,78 92,65 102,7 68,81 46,64	0,6085	
Среднее ние К	значе-	42,5	308,6	376,2	425,6	840,0	181,7	395,4	374,2	261,9	272,8	88,3	793,1	3	

Эначения констант скоростей реакции 2 SO₂ + O₂ = 2 SO₃ в присутствии хромо-оловянных катализаторов, вычисленных по уравнению (3). Начальный состав газовой смеси SO₂-7,0; O₂-11,0 и N₂-82,0 % (объеми.)

Продолжение табл. 6

Тем-	Объем-		Степ	ень окисл	ения SO ₂	в SO3 в 1	присутстви	ин катализ	затора с с	одержани	ем SnO ₂ в	% (вес.)		84 100			
пера- тура в °С	ная ско- рость	0,00	0,616	1,224	2,418	6,199	14,179	24,84	33,13	49,78	66,47	79,86	90,84	100			
450	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	300,0* 104,3 136,8 91,5	949,4 782,6 812,7 931,1 821,4	1388 1677 1004 1+80 889*)	1725 1384 1434 993,3 768,3*)	1777 1262 1139	43,57 48,73 771,9 687,0	1005 766,4 769,8 787,5 469,4	23 35*) 1318 1172 1158	1268 1104 885,1 990,5 1025	956,5 799,2 806,8 702,0 1212	315,5 302,8 296,0 303,8 262,3	232,6 223,7 166,6 136,9 149,7				
Среднее ние К	значе-	110,9	859,4	1312	1384	1392	595,4	759,6	1216	1097	816,1	295,9	185,9				
475	600 1000 1500 2000 2500	663,0 801,4 848,5 844,7	$ 1288* \\ 2813 \\ 2460 \\ 2082 $	1974 1471 1245 1228	1443 2016 2027 1368 794,6*	1 912*) 2826 2585 3289 3182	1648 1529 1642 1473 1342	 2420 2577 2680	3737 4645 5342 4808	2789 3585 4818	1525 2542 3570 2489 1002*)	984,2 959,7 813,8 938,5 911,1	569,9 735,9*) 437,6 415,7 356,5	10,9 3,623			
Среднее ние К	значе-	831,5	2454	1479	1713,5	2970	1526	2556	4638	3740	2532	921,4	505,1				
500	600 1000 1500 2000 25 0	1749 1731 2227 2198	-	 1893 2199 3014 2547	951,8*) 1329 1948 2017 1988		5565	 5699 5883			1710 2851 3867 4880 5880	886,5*) 1371 1971 2329 2837	1807 1397 1290 1181	7,24			
Среднее ние К	эначе- ·	1976	·	2413	1821	4528		5786				2379	1418				
550	600 1000 1500 2000 2500	815 1317 1867		4107	1165*) 1681 2358	1205 1525	4103 5472				1485 2475 3345	3930 2322*) 3064 4011 5012	328 2 4527 4326 3980				
				4719	2019	1365	4787	×				3602	4028				

Цифры, отмеченные звездочкой при вычислении среднего значения К, были отброшены.
 — означает невозможность вычисления константы скорости вследствие достижения химического равновесия или близкого к нему состояния при окислении SO3 в SO3.

Однако, как показывают таблицы 7,8,9, вычисление по этому уравнению при переменном начальном составе газовой смеси не дало нужного постоянства констант скоростей. Именно, с повышением в начальной газовой смеси содержания O₂ (при прочих постоянных условиях) константы скорости возрастают, а с повышением концентраций SO₂ и SO₃ падают.

Таблица 7

Константы скорости реакции окисления SO₂ в SO₃ в зависимости от начальной концентрации кислорода. Объемная скорость—1000, начальные концентрации SO₂—7,0%, SO₃—0,0% (объемн.)

Температура в °С	Значение К при содержании кислорода в % (объеми.)											
	2,0	4,0	7,0	11,0	15,0	19,0						
425 450 475 500	457,7 x. p. x. p.	99,89 299,7 58 8 ,6 1370	176,0 446,7 1768 1561	198,6 608,3 2760 2389	216,3 161,0 x. p. 2732	1844 2749						

Таблица 8

Константы скорости реакции окисления SO₂ в SO₃ в зависимости от начальной концентрации сернистого газа. Объемная скорость—1000, начальные концентрации O₂—11,0, SO₃—0,0% (объемн.)

Температура	Значения К при содержании SO ₂ в % (объемн.).										
°Č	2,0	4,0	7,0	10,0	14,0						
400 425 450 475 500	5 6,5 1341 x. p. x. p. 1150	287,3 418,3 x. p. 1279 x. p.	262,9 234,9 912,2 2841	187,2 114,4 619,3 1949	1,8 100,0 348,9 —						

Таблица 9

Константы скорости реакции окисления SO₂ в SO₃ в зависимости от начальной концентрации SO₃. Объемная скорость—1000; начальная концентрация SO₂—7,0, O₂—11,0 % (объемн.)

Температура в °С	Значения К при содержании SO ₃ в ⁰ /0 (объемн.)											
	1,0	2,0	4,0	7,0	10,0							
425 450 475 500	168,4 226,3 244,5 2214	115,6 196,4 1606 1818	367,2 158,5 76 5 ,2 1597	1,67 34,05 39 3 ,7 1066	22 ,3 30 0 ,0							

Таким образом, кинетика окисления SO₂ в присутствии исследованных нами хромо-оловянных катализаторов так же, как это показали Г. К. Боресков и Т. И. Соколова [21], для ванадиевых катализаторов оказывается отличной от кинетики окисления SO₂ на платиновых катализаторах в отношении влияния исходной газовой смеси.

Тем-	Объем-		Степень окисления SO ₂ в SO ₃ в присутствии катализатора с содержанием SnO ₂ в % (вес.)													
тура в °С	ная ско- рость	0,00	0,616	1,224	2,418	6,199	14,179	24,84	33,13	49,78	66,47	79,86	90,84	100		
350	600 1000 1500 2000 2500	41,77 11,9	76,57 51,82 23,93	224,2 273,0 104,7 47,86*)	267,8 279,1 275,0 95, 7 *) 50,7*)	131,6 143,6 149,5 110,0 69,8*)	26,32 23,92 20,94	138,8' 54,2 31,1 79,8	81,22 89,62 113,2 76,52	59,75 64,91 20,93*)	55,75 49,02 20,10*)	16,75	7,18			
	к ср.			200,0	212,0	100,4	20,12		50,1	02,01	02,00	,				
400	600 1000 1500 2000 2500	160,0 55,69 25,82	322,9 150,7 135,7 68,95	540,2 422,1 219,0 241,2 188,5	878,7 581,3 549,4 258,4 107,6	366,9 172,3 96,92 103,3 80,85	85,28 106,6 64,63 64,63 42,7 64,3	420,2 139,9 113,0 68,95 70,01	588,6 481,3 368,0 301,3 155,9	402,8 311,8 161,4 146,3 129,0	346,2 279,9 180,9 120,6 123,9	72,38 51,69 33,59 8,59	50,4 34,46 18,91			
425	б00 1000 1500 2000 2500 К ср.	34,83 44,53 23,43 34,26	679,0 535,8 435,6 381,9 446,8 450,7	746,2 714,7 643,3 741,3 446,8* 711,3	809,1 839,9 945,1 737,0 346,3 832,7	2021* 1474 1349 1412 1411	243,1 259,0 781,2 312,7 274,0	1005 604,9 663,5 544,9 390,9 622	$\begin{array}{c} 654,3\\602,3\\602,5\\736,3\\535,1\\626,2\end{array}$	428,9 379,2 401,8 490,9 435,2 427,0	429,4 591,6* 361,8 335,0 346,3 368,1	142,2 125,0 50,45 71,49 67,00 99,2	132,8 109,4 100,5 125,0 83,8 110,2			
450	600 1000 1500 2000 2500 K cp.	172,0 138,7 159,0 71,0* 156,5	1877 1328 1478 1629 1365 1450	2499 1940 1888 2128 1446 1850	2777 2728 1731 1668 2226	3518* 2443 2048 2246	824,7 875,0 1332 1168 955,7	1999 1300 1222 1360 665,5 1399	2497 2163 1688 2116	2 4 02 2057 2330 1766 1757 2062	1887 1527 1471 1082 1192 1432	586,0 527,4 437,3 444,6 376,1 474,2	410,8 351,1 222,1 277,7 150,4 315,4			

Константы скорости реакции 2 SO₂ + O₂ = 2 SO₃ в присутствии хромо-оловянных катализаторов, вычисленные по уравнению (5). Начальный состав газовой смеси SO₂-7,00; O₂-11,0 и N₂-82,0 % (объемп.)

Продолжение табл. 10.

Тем- пера-	Тем- пера- объем- ная ско- степень окисления SO ₂ в SO ₃ в присутствии катализатора с содержанием SnO ₂ в % (вес.))	ana ang karang karan				
тура в °С	ная ско- рость	0,00	0,616	1,224	2,418	6,199	14,179	24 ,84	33,13	49,78	66, 47	79,86	90,84	100
475	600 1000 1500 2000 2500 К ср.	1233 1472 1533 1463 1490	2369* 4926 4463 3733 4 874	4067* 2678 2460 2214 2 450	2817 4067 3589 2462 1672 2881	5286 5648 6197 5710	2881 3073 2978 2430 2840	4754 4740 4903 4799	9802 9164 9453	2750 4744 5588 4360		$1694 \\ 1780 \\ 1586 \\ 1704 \\ 1591 \\ 1671$	1038 1072 786.8 641.2 596.1 828	
500	-600 1000 1500 2600 2500 K cp.	1930 2941 3708 3472 3373		3220 3696 5007 4343 4067	1608* 2231* 3265 3446 3415 3375	 6930	· · · · · · · · · · · · · · · · · · ·			2204 8653	5513° 6930 6221	1483 2256 3312		
550	600 1000 1500 2000 2500 K cp.	1103 1830 2526 1886			1674 2264 3161	1549 2054					2203 3633 3791 37 12	2818 4745 3952 5159 6450 4061	5532 5268 5137 5312	

,

Цифры, обозначенные одной звездочкой, при вычислении среднего значения К ср. были отброшены
 ²) — означает невозможность вычисления К вследствие установления равновесного или близкого к нему состояния.

В этой связи мы попытались применить кинетическое уравнение, выведенное Боресковым для ванадиевых контактных масс с учетом скорости обратной реакции:

$$\frac{dC_{SO_3}}{d\tau} = K_1 C_{O_2} \left(\frac{C_{SO_2}}{C_{SO_3}} \right)^{0.8} K_2 \left(\frac{C_{SO_3}}{C_{SO_2}} \right)^{1,2}.$$
 (4)

Уравнение (4) после соответствующего преобразования и решения относительно К₁ имело вид:

$$K_{1} = \frac{a.v.T}{273} \int_{0}^{2} \frac{x^{0.8} dx}{(1-x)^{0.8} \left(b - \frac{ax}{2}\right) \left[1 - \frac{1}{K_{p^{2}}} \cdot \frac{x^{2}}{(1-x)\left(b - \frac{ax}{2}\right)}\right], \quad (5)$$

где попрежнему a – начальная концентрация SO₂, b – начальная концентрация кислорода, x – степень окисления SO₂ в SO₃ к моменту времени τ и

$$K_p^2 = \frac{K_1}{K_2}$$

К сожалению, интеграл в правой части уравнения (5) не удается решить в общем виде, и поэтому для его решения пришлось прибегнуть к трудоемкому графическому интегрированию. В уравнении (5) при определенных значениях температуры реакции и объемной скорости величина

$$-\frac{a.vT}{273} = \text{const} = \text{B}.$$

Задавая переменному x различные значения (0,1; 0,2 и т. д. до 0,95), мы находим f(x), после чего были построены кривые в координатах x и f(x). Площадь, ограниченная одной из кривых (представляющей собой изотерму) ординатами и осью абсцисс, умноженная на масштаб диаграммы, равнялась искомому интегралу. После умножения найденного интеграла на постоянную B мы получали значение константы скорости K_1 для соответствующей температуры и объемной скорости. Результаты вычислений по уравнению (5) приведены в табл. 10, 11 и 12.

Таблица 11

Константы скорости в зависимости от содержания кислорода в исходной газовой смеси, вычисленные по уравнению (5). Объемная скорость—1000; начальная концентрация SO₂-7,0, SO₃-0,0 % (объемн.)

Температура	Значения K ₁ при содержании кислорода в % (объемн.)											
в°С	2,0	4,0	7,0	11,0	15,0	19,0						
425 450 475 500	444,9 27u6 —	426,6 1669 3630 —	493,9 1332 4936 5846	314,3 945 4936 3220	224,7 2291 3498	2234 2561						

Таблица 12

Температура в °С	Значения К ₁ при начальной концентрации SO ₂ в % (объемн.)					
	.2,0	4,0	7,0	10,0	14,0	
400 425 450 475 500	542,3 973,8	361,8 548,0 1883 1889	80,73 360,6 1773 	56,12 155,1 1487 5500	144,8 956,4 	

Константы скорости, вычисленные по уравнению (5) в зависимости от начальной концентрации SO₂ в исходной газовой смеси. Объемная скорссть – 1000, O₂--11,0; SO₃--0,0 % (объемн.)

Константы скорости K₁ при переменной начальной концентрации SO₃ (табл. 13) были вычислены по уравнению (6)

$$K_{1} = \frac{a^{0,2}v.T}{273} \int_{o}^{o} \frac{(c+ax)^{0,8}dx}{(1-x)^{0,8}\left(b-\frac{ax}{2}\right)\left[1-\frac{1}{K_{p^{2}}}\cdot\frac{(c+ax)^{2}}{a^{2}(1-x)^{2}\left(b-\frac{ax}{2}\right)}\right]},$$
(6)

где с-начальная концентрация SO3.

x.

Как видно из табл. 10, наблюдается более или менее удовлетворительное постоянство констант скоростей, вычисленных по уравнению (5) для температур $425-550^{\circ}$, если газовая смесь имела начальный состав 7% SO₂ 11% O₂ и 0,0% - SO₃ + азот. При 400° и частично при 350 константы скорости систематично меняются, что указывает на меньшую пригодность уравнения (5) для этих условий. Однако большая сходимость констант скоростей, вычисленных по уравнению (5) в сравнении с аналогичными величинами, вычисленными по уравнению (3), наблюдается при переменном содержании кислорода (табл. 11) и серного ангидрида (табл. 13). Уравнение (5) так же, как и уравнение (3); дает мало удовлетворительное постоянство констант скоростей в зависимости от начальной концентрации SO₂.

Таблица 13

Температура в °С	Эначения К ₁ при начальной концентрации SO ₃ в % (объемн.)					
	1,0	2,0	4,0	7,0	10,0	
425 450 475	394 537 3509	340 565 3000	168 677 2358	135 268 2152	260 2198	

Константы скорости К₁, вычисленные по уравнению (6) в зависимости от начальной концентрации SO₃. Объемная скорость—1000; SO₂—7,0; O₂—11,0 % (объемн.)

Из всего вышеизложенного видно, что уравнение (5) более правильно, чем уравнение 3, передает кинетические соотношения при окислении SO₂ в SO₃ в присутствии изученных нами хромо оловянных катализаторов при переменном начальном составе газовой смеси.

Однако для практических целей, когда работают с газовой смесью постоянного состава (7,0% SO₂, 11% O₂ + N₂), можно с успехом применять более простое уравнение (3) для расчета процесса окисления SO₂ в SO₃ в присутствии изученных нами хромо-оловянных катализаторов при проектировании контактных аппаратов.

Графическая обработка логарифмов констант скоростей, вычисленных по уравнению (5), представлена на фиг. 31. При этом оказалось, что в присутствии большинства исследованных катализаторов, прямые log $K_{cp} = f\left(\frac{1}{T}\right)$ имеют излом в области температур 400—425°. Кажущиеся энергии активации ($E_{\text{каж.}}$) процесса окисления SO₂ в SO₃, вычисленнные из тангенсов наклона прямых log $K_{cv} = f\left(\frac{1}{T}\right)$, приведены в табл. (14). В при-

Фиг. 31. Зависимость log Кср от (1|Т)

сутствии чистой окиси хрома энергия активации оказалась равной 67300 кал/моль. При введении в катализатор до 1,224% SnO₂ в области указанных в таблице температур сохраняется одно значение $\mathcal{L}_{\text{каж.}}$, хотя оно и понижается до 24600 кал/моль. Для катализаторов с более высоким содержанием SnO₂ найдено два значения $\mathcal{E}_{\text{каж.}}$: одно (12800—26000) в области пониженных (350—425°), а другое (33900—57300) в области повышенных (400—500°) температур. Энергию активации для чистой SnO₂ вычислить не удалось из за отсутствия достаточного количества экспериментальных данных.

Приведенные данные указывают на снижение энергии активации при введении в катализатор SnO₂.

Переходя к рассмотрению механизма процесса окисления SO₂ в SO₃ в присутствии хромо оловянных катализаторов следует прежде всего отметить то, что молекулы SO₂ в газовой фазе не реагируют с молекулами кислорода, по крайней мере, в области температур, при которых осуществляется промышленный синтез SO₃. Это можно объяснить наличием больших сил сродства между атомами в молекулах кислорода и сернистого газа.

Таблица 14

Порядковый номер катали- затора	Содержанио SnO ₂ в катализаторе в % (вес.)	Е _{каж.} в кал моль	Температурная область
1		67200	425 500
1	0,0	46800	420000
2	0,010	94-00	400-475
3	1,224	24000	400 - 500
4	2,418	12900	350-425
~		8700	450-500
5	6,199	21800	350 - 400
		33900	400 - 475
6	14,179	16600	350-400
		50 300	400-475
7	24.84	11200	350-400
	-	50500	400 - 475
8	33.13	22000	350-400
	,	49200	400 - 475
9	49 78	16500	350 - 400
Ū		45800	400-475
10	66 47	22400	350 - 425
•••	00,11	46200	425-500
11	70.86	24300	350-425
11	19,00	57200	495 475
10	00.04	07500	420-470
12	90,84	20000	300400
		43500	400
	1	1	1

Кажущиеся энергии активации реакции 2 SO₂ + O₂ = 2 SO₃ в присутствии хромо-оловянных катализаторов

Гетерогенное окисления SO2 кислородом в присутствии твердого ката~ лизатора становится возможным вследствие расшатывания и преодоления сил сродства между атомами реагирующих компонентов под влиянием физических и химических сил сродства, возникающих на поверхности катализатора при его взаимодействии с SO, и O₂. Если бы при каталитическом окислении SO₂ в SO₃ достаточно было только физических сил, проявляющихся при простой физической адсорбции, то в этом случае энергия активации процесса окисления SO₂ кислородом в присутствии хромо-оловянных катализаторов составила бы всего лишь 2000—8000 кал/моль. В действительности же энергия активации процесса окисления SO₂ в SO₃ в присутствии исследованных нами хромо-оловянных катализаторов гораздо выше приведенной величины и лежит в пределах 12000-67000 кал/моль, т.е. она имеет тот же порядок, как и теплоты химических реакций. Поэтому, не отклоняясь существенно от истины, можно предположить, что в каталитическом процессе окисления SO, кислородом главную роль играют силы химического сродства, действие которых вызывает образование и последующее разрушение на поверхности катализатора нестойких промежуточных соединений [22]. Этот механизм предполагает попеременное окисление и восстановление поверхности контакта при непосредственном участии кислорода катализатора в процессе окисления SO₂ в SO₃. Возможность этого процесса для ванадиевых катализаторов была экспериментально доказана методом меченых атомов [23] при изучении изотопного обмена в системе V₂O₅—O₂ [18]. Физическая адсорбция, обусловливаемая действием физических сил, для данного каталитического процесса также необходима, однако она при этом играет главным образом роль "резервуара", из которого молекулы SO_2 и O_2 поступают к активным местам, где и разыгрываются химические процессы, приводящие к образованию конечного продукта SO₃.

Наличие значительных сил химического сродства между обычными макрофазами хрома, кислорода и сернистого газа доказывается существованием многочисленных окислов (Cr_2O_3 , CrO_3 , CrO_3 , Cr_5O_{13} , Cr_5O_{12} и др.), а также сульфатов хрома (напр., $Cr_2(SO_4)_3$, $Cr_2O_3.2SO_3$, $Cr_2O_3.3SO_3$ и др.). Существование указанных соединений зависит прежде всего от области температур. Так, CIO₃ существует [24] при температурах ниже 310°, CIO₂—ниже 360° ; при более высоких температурах они разлагаются с образованием $\mathrm{Cr_2O_3}$ и выделеннем кислорода. Температурный интервал существования Cr₅O₁₃ ле-жит в пределах 265-360°; выше 360° он переходит в Cr₅O₁₂, который устойчив до 410°, после чего он переходит в Сг. Оз. Что касается сульфатов хрома, то Cr₂(SO₄)₃ при температуре 280° разлагается с образованием основного сульфата хрома Cr₂O₃.2SO₃, который при температуре выше 450-460° переходит в более бедный SO₃ основной сульфат хрома состава $2Cr_{3}O_{3}$. $3SO_{3}$ [25]. Вследствие избытка свободной энергии вещества катализатора на поверхности последнего, условия существования образующихся поверхностных промежуточных соединений могут значительно отличаться от тех, которые характерны для обычных макрофаз. Однако вследствие отсугствия соответствующих данных по этому вопросу при рассмотрении вероятного механизма окисления SO₂ в SO₃ в присутствии окиси хрома, в первом приближении, можно исходить из свойств соединений хрома с кислородом и серой, характерных для макрофазного состояния этих веществ. Н. П. Курин и С. А. Сигов предположили в качестве возможного следующий механизм окисления SO₂ кислородом в присутствии чистой окиси хрома:

$$\left. \begin{array}{c} 2 \quad \operatorname{CrO}_2 + \operatorname{SO}_2 \xrightarrow{\longrightarrow} \operatorname{Cr}_2 \operatorname{O}_3 + \operatorname{SO}_3 \\ 5 \quad 2 \quad \operatorname{Cr}_2 \operatorname{O}_3 + \operatorname{O}_2 \xrightarrow{\longrightarrow} 4 \operatorname{CrO}_2 \end{array} \right\}$$

$$(7)$$

a) 2
$$(Cr_2O_3.2SO_3) \xrightarrow{2} 2Cr_2O_3.3SO_3 + SO_3$$

5) 2 $(2Cr_2O_3.3SO_3) + 2SO_2 + O_2 \xrightarrow{4} 4(Cr_2O_3.2SO_3)$, (9)

реакции 7,8 и частично 9 мономолекулярны в отношении O_2 и SO_2 , что согласуется с формой кинетических уравнений (1) и (4). Учитывая температурные границы существования указанных выше соединений хрома, можно предполагать, что окисление в присутствии окиси хрома протекает преимущественно по реакциям (7) и (8) в области пониженных (до 400-425), а по реакциям (9) в области повышенных температур (выше 425°С).

На изменение механизма окисления SO₂ в SO₃ кислородом в присутствии Cr₂O₃ при переходе от области пониженных к области повышенных температур указывает наличие излома прямой log $K = f\left(\frac{1}{T}\right)$, который наблюдали Н. П. Курин и Н. Т. Рудюк [14] для продажной высокопрокаленной Cr₂O₃. Этот излом направлен книзу и, как известно [26], кинетический анализ в этом случае указывает на параллельные существования двух механизмов процесса окисления SO₂ в SO₃, характеризующихся различными энергиями активации.

Именно, при температурах ниже 400—425° окисление SO₂ в SO₃ быстрее идет по реакциям 7—8, и при этом затрачивается меньшая энергия активации; при температурах выше 400—425° превалирующее значение приобретают реакции 9, с более высокой энергией активации.

Для чистой высокоактивной окиси хрома, полученной методом осаждения, мы определили энергию активации для высокотемпературной области; повидимому, для пониженных температур (ниже 425°) должно существовать другое более низкое значение этой величины.

Для всех исследованных нами хромо-оловянных катализаторов с содержанием двуокиси олова 2,4 и выше % прямые $\log K = f\left(\frac{1}{T}\right)$ имеют излом

в области 400—425° и, в соответствии с этим, два значения энергии активации: одно, меньшее—для низких, а другое, большее—для повышенных температур.

Механизм явления коактивации хромо-оловянных катализаторов мы связываем с более глубоким химическим взаимодействием Cr_2O_3 и SnO_2 , нежели это имеет место при структурной активации, хотя последняя, повидимому, также имеет место.

В этой связи мы предполагаем следующий механизм реакции окисления SO₂ на поверхности хромово-оловянных катализаторов:

a)
$$\operatorname{Cr}_{2}\operatorname{O}_{3} + \operatorname{SnO}_{2} \xrightarrow{\sim} 2 \operatorname{CrO}_{2} + \operatorname{SnO}_{3}$$

6) $2 \operatorname{CrO}_{2} + \operatorname{SO}_{2} \xrightarrow{\sim} \operatorname{Cr}_{2}\operatorname{O}_{3} + \operatorname{SO}_{3}$
B) $2 \operatorname{SnO}_{2} + \operatorname{O}_{2} \xrightarrow{\sim} 2 \operatorname{SnO}_{2}$

$$(10)$$

a) 2
$$(\operatorname{Cr}_{2}\operatorname{O}_{3}, 2\operatorname{SO}_{3}) \xrightarrow{\sim} 2\operatorname{Cr}_{2}\operatorname{O}_{3}, 3\operatorname{SO}_{3} + \operatorname{SO}_{3}$$

6) 2 $\operatorname{Cr}_{2}\operatorname{O}_{3}, 3\operatorname{SO}_{3} + \operatorname{SnO}_{2} + \operatorname{SO}_{2} \xrightarrow{\sim} 2(\operatorname{Cr}_{2}\operatorname{O}_{3}, 2\operatorname{SO}_{3}) + \operatorname{SnO}$
B) 2 $\operatorname{SnO} + \operatorname{O}_{2} \xrightarrow{\sim} 2\operatorname{SnO}_{2}$.
(11)

Реакции 10 и 11 мономолекулярны в отношении SO₂ и O₂, что согласуется с кинетическими уравнениями 1 и 4. Учитывая наличие излома на прямых log $K = f\left(\frac{1}{T}\right)$ и направление его книзу, следует считать, что реакции 10 и 11 протекают параллельно. Однако в области температур 350—425° суммарная скорость процесса окисления SO₂ в SO₃ определяется преимущественно реакциями 10. При более высоких температурах CrO₂ если и может существовать на активной поверхности, то в очень малых концентрациях н поэтому преимущественное окисление SO₂ в SO₃ идет через основные более устойчивые сульфаты хрома по реакциям 11 с затратой болсе значительных энергий активации.

Механизм окисления SO₂ в SO₃ в присутствии хромо-оловянных катализаторов, полученных методом совместного осаждения и механического смешения высокопрокаленной Cr₂O₃ с SnO₂, в основном один и тот же. Доказательствами этого являются одинаковый характер зависимости степени окисления SO₂ в SO₃ от концентрации SnO₂ в катализаторе и существование одинаково направленного излома прямых log $K = f\left(\frac{1}{T}\right)$ и, в соответствии с последним, наличие двух значений энергии активации, одно из которых (более низкое) относится к пониженным, а другое к повышенным температурам.

Как показали наши опыты, метод совместного осаждения Cr_2O_3 и SnO_2 из водных растворов солей дает более активные катализаторы. Это связано с тем, что окислы хрома и олова выпадают в тонкодиспергированном состоянии и очень равномерно перемешиваются друг с другом, с высоким развитием поверхности контакта между зернами Cr_2O_3 и SnO_2 . В результате создается термодинамически неуравновешенная каталитическая система [27] со значительным избытком свободной энергии. Последнее, а также высокое развитие поверхности контакта между элементарными зернами Cr_2O_3 и SnO_2 в более высокой степени ускоряет, в частности, реакции 10a и 11в и другие реакции нашей схемы, чем это может иметь место для более грубых контактных масс, получаемых при механическом смешении ингредиентов.

Повышению каталитической активности могло также способствовать быстрое приливание осадителя к раствору солей хрома и олова, так как в этом случае становится более вероятным захват и внедрение в кристаллическую решетку элементарных зерен Cr_2O_3 и SnO_2 соответственно ионов олова и хрома.

В заключение следует отметить, что развиваемые выше представления о механизме процесса окисления SO₂ в SO₃ молекулярным кислородом в присутствии хромо оловянных катализаторов следует рассматривать лишь как одно из приближений.

Поэтому мы не отрицаем и другие трактовки возможных реакций на поверхности исследованных нами катализаторов, с образованием в частности высокоактивных комплексных соединений [8].

В этой связи следует считать целесообразным постановку экспериментальных исследования с целью более тонкого изучения структуры поверхности хромо-оловянных катализаторов, тепловых эффектов топохимических процессов и их химизма с применением более совершенных методов исследования, в частности метода меченых атомов.

Выводы

1. Исследованы каталитические свойства системы Cr₂O₃ + SnO₂ при окислении SO₂ в SO₃ молекулярным кислородом в зависимости от объемной скорости (600—2500), температуры (350—550°С) и состава газовой смеси при широком изменении в составе катализаторов содержания SnO₂ (от 0 до 100%). Катализаторы готовились методом совместного осаждения с последующим прессованием. Исследование степени окисления SO₂ в SO₃ в присутствии указанных катализаторов производилось динамическим методом в изотермических условиях.

2. Время установления стационарного состояния для изученных катализаторов лежало в пределах 2-8 часов.

3. С увеличением объемной скорости при прочих равных условиях степень окисления SO₂ в SO₃ падает, однако это падение происходит медленнее, нежели возрастает объемная скорость.

4. С повышением температуры при постоянной объемной скорости и составе газовой смеси степень окисления SO₂ в SO₃ вначале возрастает и после достижения максимального значения падает, следуя по равновесной кривой или несколько ниже ее. Оптимальные температуры для большинства исследованных катализаторов лежат в пределах 450—500°.

5. Повышение концентрации кислорода в исходной газовой смеси до 8—11% в присутствии катализатора с содержанием 33,13% SnO₂ вызывает увеличение степени окисления; при дальнейшем росте SO₂ степень окисления не меняется. Увеличение начальной концентрации SO₂ и SO₃ снижает степень окисления.

6. Изменение каталитических свойств системы $Cr_2O_3 + SnO_2$ с возрастанием содержания SnO_2 выражается сложной кривой, имеющей 2 максимума. Из всех исследованных наиболее активными оказались катализаторы с содержанием 2,418 и 33,13% SnO_2 . Метод совместного осаждения при приготовлении катализаторов обеспечивает более высокое развитие катали-

тических свойств системы $Cr_2O_3 + SnO_2$ в сравнении с методом механического смещения ингредиентов.

7. Кинетика процесса окисления SO₂ в SO₃ в присутствии изученных катализаторов и постоянном начальном составе газовой смеси (7,0% SO2, 11% 0, и 82% N₂) удовлетворительно выражается уравнением

$$\frac{dC_{\rm SO_3}}{dt} = K \frac{C_{\rm SO_2} - C_{\rm SO_2 paBH}}{\sqrt{C_{\rm SO_3}}},$$

а для газовой смеси с меняющимся начальным составом уравнением Г. К. Борескова

$$\frac{d\mathbf{C}_{\mathrm{SO}_3}}{dt} = K_1 \mathbf{C}_{\mathrm{O}_2} \left(\frac{\mathbf{C}_{\mathrm{SO}_2}}{\mathbf{C}_{\mathrm{SO}_3}} \right)^{0.8} K_2 \left(\frac{\mathbf{C}_{\mathrm{SO}_3}}{\mathbf{C}_{\mathrm{SO}_2}} \right)^{1,2}.$$

8. В присутствии большинства исследованных катализаторов прямая log $K_1 = f\left(\frac{1}{T}\right)$ имеет излом при температурах 400—425°. В соответствии с этим

кажущиеся энергии активации для области температур 350-425° и 425-550° равны соответственно 11000-26000 и 34000-67000 кал/моль.

9. В работе сделаны предположения о вероятном механизме процесса окисления SO₂ в SO₃ в присутствии хромо-оловянных катализаторов.

ЛИТЕРАТУРА

1. Боресков Г. К. Труды VI Менделеевского съезда, том II, Укр. научно-техн. из-во., 1935.

2. Кузьминых И. Н. Производство серной кислоты. ОНТИ, 575, 1937. 3. Малин Г. К. Технология серной кислоты и серы. Госхимиздат, 223, 1941. 4. Ададуров И. Е. Гернет Д. В., Хитун А. М. Журн. прикл. химин, VII, 6, 875, 1934.

1934.
Ададуров И. Е., и Гернет Д. В. Журн. прикл. хим., VIII, 4, 606, 1935.
Ададуров И. Е., Афанасенко М. Ф. и др. Журн. прикл. хим. VII, 8, 1934.
Ададуров И. Е. и Гернет Д. В. Журн. прикл. химин VIII, 4, 612, 1935.
Ададуров И. Е. и Фомичева Т. Л. Журн. прикл. химин IX, 9, 158, 1936.
Ададуров И. Е. и Гернет Д. В. Журн. прикл. химин IX, 9, 158, 1936.
Ададуров И. Е. и Гернет Д. В. Журн. прикл. химин IX, 4, 603, 1936.
Ададуров И. Е. и Гернет Д. В. Журн. прикл. химин IX, 4, 603, 1936.
Ададуров И. Е. и Гернет Д. В., Журн. прикл. химин X, 245, 1937.
Ададуров И. Е. Журн. прикл. химин, X, 3, 470, 1937.
Гернет Д. В. и Хитун А. М. Журн. прикл. химин, VIII, 4, 598, 1935.
Постников В. Ф., Кунин Т. И. и Асташева А. А. Журн. прикл. химин, 8, 1873, 1936.

IX, 8, 1873, 1936.

IX, 8, 1873, 1936.
I4. Курин Н. П. и Рудюк Н. Т. Изв. Томск. ордена Трудового Красного Зна-мени политехнич. института им. С. М. Кирова, т. 83, 1955.
I5. Курин Н. П., Сигов С А., Семенова Г. И. и Воробьева М. Н. Изв. Томск. Индустр. института им. С. М. Кирова, т. 60, вып. 3, 79, 1940.
I6. Курин Н. П. Журн Хим. пром. 1, 475, 1937.
I7. В. Neuman, Z. Elektrochem u ang. Physikal. Chem., 1,42, 1929.
I8. Тауlог а. Lenher, Z. Physikal. Chem., 30, 1931.
I9. Боресков Г. К. и Плигунов. Журн. прикл. химин VI, 5, 785, 1933.
20. Кузьминых И. Н. и Турхан. Журн. хим. пром. 6, 22, 1931.
I1. Боресков Г. К. и Соколова Т. И. Журн. хим. пром. 14, 17—18, 1241, 1937.
22. Боресков Г. К. Журн. физ хим. XIV, 9—10, 1940.
23. W. С. сатегоп, J. Phys. Chem., 57, 2, 229, 1953.
24. Simon u. Schmidt, Z. anorg u algem. Chem. 153, 1926.
25. L. Wohler, Pluddermann u P. Wöhler, Z. Phys. Chem., 62, 641, 1908.
26. Гиншельвуд. Кинетика газовых реакций. OHTИ, 1932.

26. Гиншельвуд. Кинетика газовых реакций. ОНТИ, 1932. 27. Рогинский С. З. Журн. физ. хим. 15, 708, 1941.