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Abstract 

A new deep learning method, Multimodal Convolutional Transformer, analyzes EEG and genetic data 

to diagnose MDD. This approach achieved high accuracy (97,16 %) and surpasses other methods for early 

MDD detection, potentially aiding healthcare professionals. 
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Introduction 

The worldwide prevalence of Major Depressive Disorder (MDD) affects millions, highlighting the 

critical need for novel diagnostic and therapeutic strategies [1]. Despite extensive efforts, the availability of 

non-invasive and accurate diagnostic tools for MDD remains limited. Analyzing Electroencephalography 

(EEG) signals presents a promising avenue in addressing this challenge, as EEG records the brain's electri-cal 

activity and waves via electrodes on the scalp. This method offers unique advantages, including high frequency 

resolution and affordability and portability compared to alternatives like MRI [2]. 

Utilizing such a non-invasive approach, coupled with automated deep learning techniques, and initi-

ating timely treatment courses, holds significant promise [3]. EEG, as a non-invasive modality, allows for the 

measurement of electrical activity originating from various brain regions [4]. These signals can reveal the 

occurrence and localization of operational abnormalities inside the brain. Identifying deviations in brain phys-

iology during depressive states holds potential for early disease detection [5]. 

Biological markers are objective features that are measured and assessed to serve as Markers of typical 

biological functions, disease advancement, or reactions to treatment interventions [6]. Despite dec-ades of 

research aimed at understanding and treating Major Depressive Disorder (MDD), the quest for non-invasive 

and quantitative diagnostic tests remains unfulfilled. Moreover, there are currently no approved biomarkers 

established as clinical diagnostic criteria for MDD patients, with clinical diagnosis largely de-pendent on 

subjective assessments of depressive behavior and clinical examinations [7, 8]. Therefore, there is an urgent 

need to develop a biomarker-based system for discerning MDD, which can aid in predicting disease 

progression and guiding treatment decisions during the early stages of the disorder. 

To address this gap, we employed Deep Learning (DL) techniques to classify Major Depressive Dis-

order (MDD) utilizing both EEG and gene expression data, showcasing the potential of deep learning in 

advancing depression diagnostics. Previous methodologies typically focused on data modalities such as audio, 

text, video, EEG, or gene expression. For instance, in [9], hybrid transformer model was introduced, while in  

[10], temporal convolutional transformer model was introduced for joint diagnostic task using text, 

audio, video, and EEG data, while in [11] the authors introduced transformer model over text data only. Other 

models like hybrid CNN-LSTM model performed well in only text-based models [12, 13]. In contrast to prior 

studies, our innovative approach integrates EEG and gene expression data, supported by robust meth-odologies, 

representing a unique contribution to depression detection amidst the exploration of multimodal data within a 

unified Multimodal Convolutional Transformer for Depression Detection (MCT-DD) for Joint Task, akin to 

previous methodologies [10, 14].  

 

Methodolgy 

In our study, we employed the MODMA dataset [15], which encompasses data from electroenceph-

alography (EEG) signals and audio recordings of individuals diagnosed with clinical depression. This mul-

timodal dataset was curated and published by Lanzhou University in 2020. Following the methodology 

outlined by Zhao et al. [16], the MODMA dataset was organized into 1321 segments. Subsequently, these 
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segments were partitioned into a training set comprising 971 segments and a test set containing 350 seg-ments. 

The GSE98793 dataset, sourced from the Gene Expression Omnibus database (GEO), provided pub-

licly accessible transcriptomic data for individuals with Major Depressive Disorder (MDD) and healthy 

controls (HCs). This dataset included high-resolution gene expression profiles obtained from whole blood 

samples of 128 MDD patients and 64 HCs. Gene expression was measured using the Affymetrix Human 

Genome U133-Plus 2.0 gene expression microarray. Diagnosis of MDD patients was based on the identifi-

cation of at least two depressive episodes meeting DSM-IV or ICD-10 criteria, assessed using the semi-

structured Schedule for Clinical Assessment in Neuropsychiatry (SCAN). Detailed demographic and clini-cal 

information regarding the GSE98793 dataset can be found publicly on the website.  

EEG Data Preprocessing: Before feeding in the deep learning model, we pre-process the EEG signal 

as described in [18].  

Genetic Data Preprocessing: We utilized significant gene data from the prominent genes in MDD 

patients compared to healthy controls, as suggested by [17]. The bioinformatics analysis conducted in [17] 

provided transcriptomic data with a large number of genes (features). In general, the transcriptomic data is 

huge surpassing the sample size, possibly resulting in overfitting during classification tasks. To address this 

issue, we applied Principal Component Analysis (PCA) for feature selection, reducing data dimensionality 

while retaining significant information. The significant genes identified in [17] were exclusively used in our 

model. Through an integrative analysis of bioinformatics and machine learning methods in [17], 10 primary 

MDD-associated biomarkers were pinpointed: NRG1, CEACAM8, CLEC12B, DEFA4, HP, LCN2, OLFM4, 

SERPING1, TCN1, and THBS1. 

Model description 

We used Convolutional and transformer models in hybrid form. Given that sequence models entail 

lengthier computation due to sequential processing, whereas Transformer models necessitate less execution 

time owing to parallelized processing [9]. Thus, we propose Multimodal Convolutional Transformer 

Depression detection (MCT-DD) model for joint task repression. Fig. 1 below depicts the proposed model 

workflow. 

 

 
Fig. 1. Workflow of Multimodal Convolutional Transformer for Depression Detection (MCT-DD)                         

for Joint Task 

 

Further we discuss the two segments of the proposed architecture using CNN and Transformer Models. 

CNN Layer 

The input features from the EEG signal and audio modalities, respectively are fed to Convolutional 

Layers (C), it undergoes a spatial filtering operation to extract local patterns or features from the input feature 

set. The convolutional layer applies a set of learnable filters (also called kernels) to the input. Each filter slides 

across the input signal and computes a dot product between its weights and the values in the receptive field. 

This dot product represents a localized feature map, capturing spatial patterns within the input multimodal data. 

As the filters slide across the input signal, they detect various spatial patterns or features present in different 
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parts of the EEG signal and audio features. These features represent characteristics such as amplitude variations, 

frequency components, or temporal dynamics within the EEG signal and audio features. 

We have X = the input EEG signal with dimensions channels × time × electrodes. 

channels = the number of EEG channels (e.g., number of electrodes). 

time = the length of the time series data (e.g., number of time samples). 

electrodes = the number of electrodes. 

F = number of filters (or kernels) used in the convolutional layer. 

K = size of the filter/kernel (also referred to as the kernel size). 

S = stride (step size) of the filter as it slides/spatially convolves across the input. 

ReLU = Rectified Linear Unit activation function. 

Then Convolutional Equations for EEG data signals are presented in equation 1. 

 

𝐶𝑜𝑛𝑣(𝑥)𝑖,𝑗,𝑓 = 𝑅𝑒 (∑ ∑ ∑ 𝑊𝑘,𝑒𝑐,𝑡∗𝑥𝑖+𝑘−1,𝑗+𝑒−1,𝑐

𝐸

𝑒=1

𝑘

𝑘=1

𝑐

𝑐=1

+ 𝑏𝑓) (1) 

 

where: 

Conv(X)i,j,f= the value at position (i,j) of the fth feature map produced by the convolutional layer. 

X i,j,c= value at position (i,j) of the cth channel of the input EEG signal. 

W k,e,c,f = weight (or parameter) associated with the kth element of the eth filter for the cth input channel 

and the fth output feature map. 

bf = the bias term associated with the fth feature map. 

C = number of input channels (number of EEG electrodes). 

E = the number of elements in the filter/kernel (kernel size)  

i and j = iterate over the spatial dimensions of the output feature map. 

The sums are computed over all input channels, kernel elements, and electrodes. 

After the convolution operation, a non-linear activation function (e.g., ReLU) is applied elementwise to 

the feature maps. This introduces non-linearity to the model, enabling it to learn complex relationships between 

the input and the target output. Average pooling was applied after the convolutional operation. Pooling reduces 

the spatial dimensions of the feature maps while retaining the most salient information, aiding in spatial 

hierarchies, and reducing computational complexity. 

The output of the convolutional layer consists of a stack of feature maps, each representing a different 

aspect or pattern extracted from the input signals. 

These feature maps serve as input to subsequent layers in the Multimodal Convolutional Transformer 

for Depression Detection (MCT-DD) for Joint Task architecture. 

 

Transformer Encoder 

The output from the convolutional layer is fed into a Transformer model via positional encodings to 

provide positional information to the model. Further it undergoes a transformation through attention 

mechanism followed by fully connected neural networks. 

Here X = output from the convolutional layer, which consists of feature maps representing spatial 

patterns extracted from the input EEG signals. 

N = the number of positions (or time steps) in the input. 

FFN(⋅) = the position-wise feedforward neural network. 

The self attention mechanism is described as: 

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√ⅆ𝑘

)𝑉 (2) 

      

where:  Q, K, V = the query, key, and value matrices, respectively, obtained by linear transformations of X. 

dk = the dimensionality of the key vectors. 

 

 

While the Multi-head Attention is represented as: 

𝑀𝑢𝑙𝑡𝑖ℎ𝑒𝑎ⅆ (𝑋) = 𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ𝑒𝑎ⅆ1, ℎ𝑒𝑎ⅆ2 , … … … . ℎ𝑒𝑎ⅆℎ) ⋅ 𝑊0 (3) 
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where: 

headi = Attention (XWi
Q ,XWi

K, XWi
Vrepresents the ith attention head).  

Wi
Q ,Wi

K, Wi
V = the weight matrices for the query, key, and value projections for the ith head.  

W0 = the weight matrix for the output projection. 

The output is further processed by a fully connected layer, with Softmax function for classification into 

depressed or healthy controls. 

A similar task was applied on genetic model using the significant genes in the dataset [17]. The input 

and output of both EEG based data and gene-based data are processed individually to test the performance of 

model. 

 

Results  

In the results section we compare our model with other existing deep learning models that were 

essentially high performing in [12, 13]. The results are illustrated in Table 1. Table 2 shows the 

hyperparameters used in our model. 

Table 1 

Performance of the Proposed Model 

 

Model Name  
Accuracy F1 Precision Recall 

CNN-LSTM-

BiLSTM 

 

EEG 

(MODM

A 

dataset) 

 

Gene  

model 

EEG 

(MOD

MA 

dataset) 

 

Gene 

model 

EEG 

(MODM

A 

dataset) 

 

Gene 

model 

EEG 

(MODM

A 

dataset) 

 

Gene 

Model 

0.88 

 

0.94 

 

0.89 0.95 0.85 0.96 0.88 0.94 

CNN-LSTM  0.85 

 

0.92 

 

0.85 0.94 0.86 0.92 0.87 0.93 

Our Proposed 

Convolutional 

Transformer Model 

0.95 

 

0.97 

 

0.95 0.97 0.96 0.98 0.95 0.97 

 

 

 Table 2 

Hyperparameter settings of the Convolutional Transformer proposed model 

Layer Name Parameter Settings 

Optimizer Adam 

Learning Rate 0.001 

Batch Size 256 

Epochs 100 

Regularization (L2) 0.001 

Dropout Rate 0.2 

Key Dimension in Multi-Head Attention 16 

Units in Dense Layers 512, 16, 256, 256 

Activation Function in Dense Layers ReLU 

Units in Output Layer 1 

Activation Function in Output 

Layer 

Softmax 

Early Stopping Yes 

 

Our Convolutional Transformer model (MCT-DD) for Joint Task outperforms CNN-LSTM-BiLSTM 

[12] and CNN-LSTM [13] architectures in classifying MDD using EEG and gene expression data, achieving 

accuracies of 95 % and 97,16 %, respectively. The higher precision, recall, and F1 scores obtained by our 
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model on comparison with existing models indicate its ability to effectively distinguish between MDD subjects 

and healthy controls with fewer false positives and false negatives. These results highlight the efficacy of 

leveraging a unified Convolutional Transformer architecture for joint analysis of EEG and gene expression 

data, facilitating improved feature extraction and modeling of complex interactions within the data. By 

capturing both spatial and temporal dependencies in EEG signals while integrating gene expression 

information, our model demonstrates enhanced discriminatory power for MDD classification. 

Conclusion  

In conclusion, Major Depressive Disorder (MDD) presents a significant global health challenge, 

highlighting the need for innovative diagnostic tools, such as our Multimodal Convolutional Transformer 

model (MCT-DD), which integrates EEG and gene expression data, showcasing promising potential for 

enhancing depression diagnostics. While the model shows promise but lacks clinical validation and also it 

cannot predict MDD type or severity. Integrating EEG and genetic data in the (MCT-DD) model was hindered 

by dataset differences; future research may focus on collecting data from the same subjects to enhance 

diagnostic accuracy for complex diseases like MDD.  
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