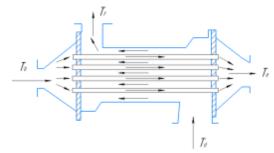
Секция 3

Производство тепловой и электрической энергии

ОЦЕНКА ЭФФЕКТИВНОСТИ РАБОТЫ ЗАМКНУТОЙ АТОМНОЙ ГТУ С ВОДОРОДНЫМ КОМПЛЕКСОМ В ЗАВИСИМОСТИ ОТ ПОТЕРЬ ЭНЕРГИИ

Н.В. Стецов

Томский политехнический университет, ИШЭ, НОЦ И.Н. Бутакова, группа 5091 Научный руководитель: А.М. Антонова, к.т.н., доцент НОЦ И.Н. Бутакова ИШЭ ТПУ


Увеличение интереса к высокотемпературным газовым реакторам (ВТГР) связано с их потенциальными возможностями в обеспечении высоких температур теплоносителя, что открывает новые горизонты для применения в энергометаллургии, нефтехимии и других энергоемких отраслях. В качестве одной из перспективных технологий при этом выделяется интеграция высокотемпературного газового реактора с системами высокотемпературного электролиза воды для производства водорода. Это особенно актуально для стран глобального юга, где появляются потребности в капиталоемких энергетических решениях.

В рамках проектирования маломощных станций (до 300 МВт), создание модульных установок выглядит оптимальным вариантом, так как они требуют меньших вложений, обладают высокой безопасностью и могут гибко интегрироваться в существующие производственные цепочки. Использование регенеративных циклов в газотурбинных установках позволяет значительно повысить их эффективность за счет возврата части теплоты отработавших газов к сжатому воздуху перед входом в реактор. Этот подход не только улучшает коэффициент полезного действия (КПД), но и снижает расход топлива, что имеет важное значение для снижения операционных затрат.

Повышение спроса на водород как альтернативный источник энергии к 2050 г. до 500 млн т в год подчеркивает необходимость разработки технологий, улучшающих процессы его про-

изводства с минимальным воздействием на окружающую среду. Реализация проектов, связанных с производством водорода с использованием атомной энергии, может стать значительным шагом в этом направлении [1].

При оценке эффективности работы газотурбинных установок одним из критических факторов является степень регенерации цикла [2, 3]. Однако увеличение регенерации может привести к возрастанию гидравлического сопротивления и, как следствие, снижению общей эффективности системы.

Puc. 1. Схема гелий-гелиевого регенератора

Таким образом, проведение вариантных расчетов для определения оптимальных параметров теплообменных аппаратов становится насущной задачей. Выбор трубной конструкции регенератора с кольцевым оребрением, направленный на интенсификацию теплообмена, может сыграть важную роль в повышении эффективности.

В работе [3] было показано, что сопротивление меняется от степени регенерации согласно формуле.

$$\xi_p = \frac{\beta_p \cdot \sigma}{1 - \sigma}.\tag{1}$$

Для получения реальных величин было проведено 4 вариантных расчёта регенератора на основе соотношения уравнений тепловых балансов, вычисления коэффициентов теплоотдачи и теплопередачи. Расчёт сопротивлений был произведён по методике [5, 6]. Характеристики оребрения трубного пучка представлены на рис. 2. Результаты вариантных проектных расчётов представлены в табл. 1.

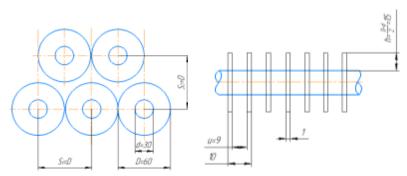


Рис. 2. Характеристики и компоновка трубного пучка

Таблица 1. Характеристики регенератора и физических величин для стороны высокого давления (в трубном пространстве)

№	σ	$Q_{\rm per}$, MBT	ΔT , K	<i>G</i> , кг/с	<i>w</i> ₁ , м/c	Δp , МПа	<i>l</i> , м	<i>D</i> , м	ε
1	0,70	120	490	79	10	0,017	7,9	2,9	2,7
2	0,80	150	449	86	5	0,107	10,5	4,4	2,4
3	0,85	167	427	90	5	0,387	14,4	4,6	3,2
4	0,90	185	407	95	3	0,714	23,1	6,1	3,8

Для значений степени регенерации 0,7–0,9 имеем возрастание потерь давления до значения 0,714 МПа. Это связано с увеличением гидравлического сопротивления, в частности, потерями на трение в следствие увеличения поверхности нагрева и существенного увеличения длины теплообменных трубок. Для степени регенерации 0,85 получили отношение длины трубок к диаметру трубной доски в 3,2, что говорит о компактности агрегата.

Далее необходимо сравнить теоретически-принятые сопротивления и реальные. На графике (рис. 3) представлены зависимости реального и теоретического сопротивления, носящие гиперболических характер в соответствии с формулой (1). Зависимости приведены в абсолютных величинах потерь давления, МПа.

Стоит отметить, что принятые потери в теоретическом расчёте работы [2], превысили реальные, что положительно скажется на коэффициенте полезного действия установки и коэффициенте использования теплоты топлива. Также стоит отметить, что значение оптимальной степени регенерации может быть уточнено в диапазоне от 0,8 до 0,85 с целью более точного определения габаритов и сопротивлений по трактам низкого и высокого давлений.

Для получения реальных значений КПД и КИТТ значения сопротивлений давлений были встроены в расчёт ГТУ. Результаты представлены в табл. 2.

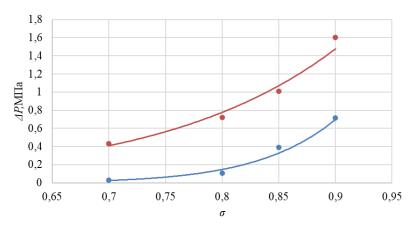


Рис. 3. График зависимости суммарных потерь давления от степени регенерации по двум трактам (красный – теоретические потери, синий – реальные)

				- I			
σ	Δp , ΜΠ a	Н	$G_{ m тепл}$	$N_{\mathfrak{I}}$	$G_{ ext{napa}}$	$\eta_{\Gamma ext{TY}}$	КИТТ
0,7	0,017	601	78,6	47,3	10,6	0,297	0,445
0,8	0,107	601	85,9	51,7	11,6	0,333	0,485
0,85	0,387	601	90,2	54,2	12,2	0,354	0,509
0.9	0.714	601	94.8	57.1	12.9	0.378	0.531

Таблица 2. Характеристики реальной ГТУ

Согласно [7] коэффициент полезного действия ГТУ может достигать 50 % по выработке электроэнергии и отпуску тепла на электролизную установку. Значение КИТТ в 0,509 для оптимальной степени регенерации говорит о том, что получено реальное значение показателя.

Таким образом в данной части работы рассмотрена реальная конструкция регенератора и исследована зависимость реального сопротивления от степени регенерации цикла. КИТТ энергоблока по отпуску теплоты на электролизную установку и выработку электроэнергии получился равным 0,509, что говорит о высокой эффективности работы цикла.

СПИСОК ЛИТЕРАТУРЫ

- 1. Атомный водород. [Электронный ресурс] URL: https://atomvestnik.ru/2022/12/26/atomnyj-vodorod/?ysclid (дата обращения: 15.11.2024)
- 2. Антонова А.М., Воробьев А.В., Стецов Н.В. Анализ влияния управляемых параметров на эффективность замкнутой ГТУ с водородным комплексом // Энергетика: состояние, проблемы, перспективы: Материалы XIII Всероссийской научнотехнической конференции, Оренбург, 25–27 октября 2022 г. Оренбург: Оренбургский государственный университет, 2022. С. 51–57. EDN RVVXJH.
- 3. Стецов Н.В. Влияние изменения сопротивления регенератора на характеристики замкнутой атомной ГТУ с водородным комплексом // Бутаковские чтения : сборник статей III Всероссийской с международным участием молодёжной конференции, 12–14 декабря 2023 г., Томск. Томск : Изд-во ТПУ, 2023. С. 249–252.
- 4. Гельфенбейн Л.Г. Регенераторы газотурбинных установок. Москва: Машгиз, 1963. 179 с.: ил.; 22 см.
- 5. Руководящий документ по стандартизации методические указания тепловой и гидравлический расчёт теплообменного оборудования АЭС ОКСТУ 3103 Дата введения 1990-07-01 Информационные данные 1. Утвержден и введен в действие указанием Министерства тяжелого, энергетического и транспортного машиностроения СССР от 27.09.89 N BA-002-1/8374.
- 6. Петровский Ю.В., Фастовский В.Г. Современные эффективные теплообменники. Москва ; Ленинград : Госэнергоиздат, 1962. 256 с. : ил.; 21 см.
- 7. Горюнова И.Ю., Ларионов И.Д. Г71 Регенераторы ГТУ. Екатеринбург : Изд.-во Урал. ун-та, 2017. 80 с. ISBN 978-5-7996-2259-6