ИЗВЕСТИЯ ТОМСКОГО ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА имени С. М. КИРОВА

Том 86

1958 г.

ПРОВОДИМОСТЬ АКТИВНОГО ДВУХПОЛЮСНИКА В СХЕМЕ ГЕНЕРАТОРА С КАТОДНОЙ СВЯЗЬЮ

И. А. СУСЛОВ

(Представлено научным семинаром радиотехнического факультета)

Введение

Генератор синусоидальных колебаний, построенный на основе усилителя с катодной связью (рис. 1), удобно рассматривать как колебательный контур, подключенный к нелинейному активному двухпо-

Рис. 1

люснику, обладающему отрицательным сопротивлением. Обозначим проводимость такого двухполюсника (мы будем в дальнейшем называть его двухполюсником с катодной связью) через

$$Y_{ab} = \sigma_{ab} + j \cup C_{ab}.$$

Активная составляющая σ_{ab} входит в условие самовозбуждения генератора и влияет на амплитуду его колебаний.

Реактивная составляющая $j \,\omega \, C_{ab}$, связанная с имеющимисяв схеме двухполюсника паразитными емкостями, оказывает непосредственное влияние на частоту генератора и её стабильность.

На рис. 2 а показаны паразитные емкости двухполюсника с катодной связью. Некоторые из этих емкостей можно объединить, так как они оказываются включенными параллельно друг другу. Если емкость обратной связи C_1 достаточно велика и ее сопротивлением для генерируемых частот можно пренебречь, схему рис. 2а можно заменить более простой схемой рис. 26, где $C_k = C_{k1} + C_{k2} + C_{gk2} + C_{ak1}$, $C_{gk} = C_{gk1} + C_{ak2}$ и $C_a = C_{ga1} + C_{ga2}$. Исследованием проводимости двухполюсника с катодной связью

Исследованием проводимости двухполюсника с катодной связью занимался П. Г. Сульцер [1]. Однако полученные им формулы имеют громоздкий вид и неудобны для анализа и расчетов. Они, кроме того, относятся лишь к случаям, когда можно или совсем пренебрегать емкостями C_{gk} и C_k (рис. 26) или учитывать действие только одной из них. Эти емкости одного порядка и нет оснований пренебрегать действием одной из них по сравнению с другой.

В настоящей статье рассмотрен общий случай одновременного действия всех паразитных емкостей схемы.

Полная проводимость двухполюсника с катодной связью

Определим для схемы рис. 26 проводимость между клеммами a и b — проводимость активного двухполюсника с катодной связью. Составим для этого эквивалентную схему, в которой лампы заменим эквивалентными генераторами тока. Получим схему рис. За. Проводимость между точками a и $b - Y_{ab}$ будет равна

$$Y_{ab} = j \, \omega C_a + \frac{1}{R_a} + Y_{cd}.$$

 Y_{ed} можно найти из более простой эквивалентной схемы рис. 3 б. Для этой схемы составим уравнения узловых напряжений. Использование метода узловых напряжений в сочетании с заменой ламп эквивалентными генераторами тока позволяет обойтись меньшим числом уравнений и выразить искомые величины через определители более низкого порядка, чем при использовании эквивалентных генераторов э.д. с. и метода контурных токов [2,3]. Схема рис. 3 б описывается двумя уравнениями.

$$U_{1}\left(j \omega C_{gk} + \frac{1}{R_{i2}}\right) - U_{k}\left(j \omega C_{gk} + \frac{1}{R_{i2}}\right) = i_{\beta x} + S_{2} U_{k},$$

$$-U_{1}\left(j \omega C_{gk} + \frac{1}{R_{i2}}\right) + U_{k}\left[j \omega (C_{gk} + C_{k}) + \frac{1}{R_{i1}} + \frac{1}{R_{i2}} + \frac{1}{R_{k}}\right] = S_{1} U_{g1} - S_{2} U_{k}.$$

Подставляя $U_{g_1} = U_1 - U_k$, получим:

$$U_{1}\left(j \omega C_{g^{k}} + \frac{1}{R_{i2}}\right) - U_{k}\left(j \omega C_{g^{k}} + \frac{1}{R_{i2}} + S_{2}\right) = i_{\theta_{x}},$$

ţ,

$$- U_{1} \left(j \omega C_{gk} + \frac{1}{R_{i2}} + S_{1} \right) + U_{k} \left[j \omega (C_{gk} + C_{k}) + \frac{1}{R_{i1}} + \frac{1}{R_{i2}} + \frac{1}{R_{k}} + S_{1} + S_{2} \right] = 0.$$

Из этой системы можно найти проводимость Y_{cd}

$$Y_{cc} = -\frac{LP + \omega^2 (MP - NQ)}{P^2 + \omega^2 Q^2} + j \omega \frac{NP + LQ + \omega^2 MQ}{P^2 + \omega^2 Q^2},$$

rge $L = S_1 S_2 - \frac{1}{R_{i2}} \left(\frac{1}{R_k} + \frac{1}{R_{i1}} \right), \quad M = C_{gk} C_k,$ (1)
 $N = C_{gk} \left(\frac{1}{R_k} + \frac{1}{R_{i1}} \right) + \frac{C_k}{R_{i2}},$
 $P = S_1 + S_2 + \frac{1}{R_{i1}} + \frac{1}{R_{i2}} + \frac{1}{R_k}$

и $Q = C_{g^k} + C_k$.

Обозначим —
$$\frac{LP + \omega^2(MP - NQ)}{P^2 + \omega^2 Q^2} = \sigma_{cd}$$
(2)

$$\frac{NP+LQ+\omega^2 MQ}{P^2+\omega^2 Q^2} = C_{cd}.$$
 (3)

Тогда $Y_{cd} = \sigma_{cd} + j\omega C_{cd}$.

Займемся, прежде всего, преобразованием выражения для активной составляющей σ_{cd} проводимости Y_{cd} .

Активная составляющая проводимости двухполюсника с катодной связью

Выражения (1), входящие в формулы для отрицательной проводимости σ_{cd} и емкости C_{cd} , упрощаются, если положить нараметры обеих ламп одинаковыми. Неодинаковость параметров при однотипных лампах получается за счет того, что в анодной цепи второй лампы имеется сопротивление R_a , которого нет в анодной цепи первой. Однако разница параметров, обусловленная этим сопротивлением, невелика, если само сопротивление R_a выбрано сравнительно небольшой величины (порядка 10 ком). Считая R_a не очень большим ($R_a < 2R$), положим в выражениях (1) $S_1 = S_2 = S$, $R_{i1} = R_{i2} = R_i$.

Тогда

$$L = S^{2} - \frac{1}{R_{i}} \left(\frac{1}{R_{k}} + \frac{1}{R_{i}} \right),$$
$$M = C_{grk} C_{k},$$

$$N = C_{gk} \left(\frac{1}{R_k} + \frac{1}{R_i} \right) + \frac{C_k}{R_i} ,$$

$$P = 2S + \frac{2}{R_i} + \frac{1}{R_k} ,$$

$$Q = C_{gk} + C_k .$$
(1)

Выразим с помощью (1') отношение членов числителя и знаменателя (2), содержащих ω^2 и отношение членов (2), не зависящих от частоты,

т. е. $\frac{MP - NQ}{Q^2}$ и $\frac{L}{P}$, через параметры лампы и схемы.

$$\frac{L}{P} = \frac{S^2 - \frac{1}{R_i} \left(\frac{1}{R_k} + \frac{1}{R_i} \right)}{2S + \frac{1}{R_k} + \frac{1}{R_i}},$$
(4)

$$\frac{MP - NQ}{Q^2} = \frac{2\nu S - \nu^2 \left(\frac{1}{R_k} + \frac{1}{R_i}\right) - \frac{1}{R_i}}{(1 + \nu)^2},$$
(5)

где $v = \frac{C_{g_k}}{C_k}$

Выполнив деление многочленов в (4), находим:

$$\frac{\mathbf{L}}{\mathbf{P}} = \frac{S}{2} - \frac{1}{4R_k} - \frac{1}{2R_i} + \frac{\frac{1}{4R_k^2}}{2S + \frac{1}{R_k} + \frac{2}{R_i}}.$$
 (4')

Емкости C_{gk} и C_k -- одного порядка. При одинаковых емкостях $(C_{\sigma k} = C_k) = 1$ и

$$\frac{MP - NQ}{Q^2} = \frac{S}{2} - \frac{1}{4R_k} - \frac{1}{2R_i}.$$
 (5')

Сравнение (5') с (4') показывает, что оба выражения отличаются на малую величину

$$\Delta \vartheta = \frac{\frac{1}{4R_k^2}}{2S + \frac{1}{R_k} + \frac{2}{R_i}} .$$
 (5")

Обозначим
$$\frac{L}{P} = \vartheta$$
 . (4")

Тогда
$$\frac{MP - NQ}{Q^2} = \vartheta - \Delta \vartheta$$
. (5‴)

Относительная ошибка при замене (5') на (4') будет

$$\frac{\Delta \vartheta}{\vartheta} = \frac{\frac{1}{4R_{k}^{2}}}{S^{2} - \frac{1}{R_{i}R_{k}} - \frac{1}{R_{i}^{2}}} = \frac{1}{(2SR_{k})^{2} - \frac{4SR_{k}}{\mu} - \frac{(2SR_{k})^{2}}{\mu^{2}}},$$
(6)

где µ — внутренний коэффициент усиления лампы. С увеличением *R*_kпроизведение *SR*_k возрастает. Как показывает формула (6), относительная ошибка $\frac{\Delta \vartheta}{\vartheta}$ будет при этом уменьшаться. Для двухполюсника на лампе 6H8 при $R_k = 1$ ком и $R_a = 10$ ком; $SR_k = 1,7$ $\frac{\Delta \vartheta}{\vartheta} = 0,09$; при $R_k = 10$ ком и $R_a = 10$ ком $SR_k = 4,3$, $\frac{\Delta \vartheta}{\vartheta} = 0,014$. В случае двухполюсника на 6Н9 при $R_k = 1 \ \kappa om$ и $R_a = 10 \ \kappa om$ $SR_k = 1, 4, -\frac{\Delta \vartheta}{\vartheta} = 0,13$, а при $R_k = 10 \ \kappa om$ и $R_a = 10 \ \kappa om$ $\frac{\Delta \vartheta}{\vartheta} = 0,006$. 46

Приведенные примеры показывают, что относительная разница между выражениями (4') и (5') с ростом R_k уменьшается. При $R_k = 10 \ ком$ она делается порядка 1°/о.

Малая разница между выражениями (4') и (5') при v = 1 и наличие "разброса" значений v для реальных схем подсказывают следующий путь упрощения формулы (2). Пусть имеем пропорцию $\frac{a}{b} = \frac{c}{d}$; тогда выражение вида $\frac{a + \omega^2 c}{b + \omega^2 d}$ будет в точности равно каждому из двух написанных отношений. Мы видели, что при v = 1 выражения $\frac{L}{P}$ и $\frac{MP - NQ}{Q^2}$ оказываются близкими. Найдем теперь то $v = v_c$, при котором их разность будет минимальной. Так как $\frac{L}{P}$ не зависит от v, то это будет иметь место при максимуме выражения $\frac{MP - NQ}{Q^2}$. Последний легко определить, приравнивая нулю частную нроизводную

$$\frac{\partial}{\partial \nu} \frac{MP - NQ}{Q^2} = \frac{\partial}{\partial \nu} \frac{2\nu S - \nu^2 \left(\frac{1}{R_k} + \frac{1}{R_i}\right) - \frac{1}{R_i}}{(1 + \nu)^2} = 0.$$

Выполнив несложные математические операции, получаем

$$v_{0} = \frac{S + \frac{1}{R_{i}}}{S + \frac{1}{R_{k}} + \frac{1}{R_{i}}} = \frac{SR_{k} + \frac{SR_{k}}{\mu}}{SR_{k} + \frac{SR_{k}}{\mu} + 1}$$
(7)

С увеличением сопротивления \mathbf{R}_k произведение $S\mathbf{R}_k$ возрастает. При этом v_0 приближается к единице. Однако при любых \mathbf{R}_k оно остается меньше единицы.

Покажем теперь, что при $v = v_0 \frac{MP - NQ}{Q^2}$ равно $\frac{L}{P}$ и их разность $\Delta \vartheta$ равна нулю. Подставим в (5) вместо v выражение дл я v_0 из (7) Получим:

$$\left(\frac{MP - NQ}{Q^2}\right)_{\text{max}} = \frac{S^2 - \frac{1}{R_k R_i} - \frac{1}{R_i^2}}{2S + \frac{2}{R_i} + \frac{1}{R_k}} = \frac{L}{P}.$$
 (8)

Равенство (8) позволяет на основании известных свойств производных пропорций значительно упростить выражение (2) для проводимости *са.* Последнее будет иметь теперь следующий вид:

$$\sigma_{cd} = -\frac{L}{P} = -\frac{S^2 - \frac{1}{R_i} \left(\frac{1}{R_k} + \frac{1}{R_i}\right)}{2S + \frac{2}{R_i} - \frac{1}{R_k}}$$
(9)

Для активной составляющей з_{аb} проводимости Y_{ab} при этом получается следующее выражение:

$$\sigma_{ab} = \frac{1}{R_a} - \frac{S^2 - \frac{1}{R_i} \left(\frac{1}{R_k} + \frac{1}{R_i} \right)}{2S + \frac{2}{R_i} + \frac{1}{R_k}}.$$
 (10)

Таким образом, при у = у₀ отрицательная проводимость двухполюсника с катодной связью не зависит от частоты.

Формула (10) допускает дальнейшие упрощения. В числителе можно пренебречь $\frac{1}{1} = \frac{S^2}{1}$ по сравнению с S^2 . Тогда

аожно пренеоречь
$$\frac{1}{R_i^2} = \frac{1}{\mu^2}$$
 по сравнению с S². Гогда
 $\sigma_{ab} = \frac{1}{R_a} - \frac{S^2 - \frac{1}{R_i R_k}}{2S + \frac{2}{R_i} + \frac{1}{R_k}}.$

Если не требуется большой точности, можно в числителе пренебречь еще членом $\frac{1}{R_i R_k} = \frac{S^2}{\mu S R_k}$ по сравнению с S^2 , а в знаменателе $\frac{2}{R_i} = \frac{2S}{\mu}$ по сравнению с 2S (это дает дополнительную ошибку в

несколько процентов); тогда получается более простая формула:

$$\sigma_{ab} = \frac{1}{R_a} - \frac{S^2}{2S + \frac{1}{R_b}}$$

Для грубых подсчетов при $R_k > 1$ ком и $R_a > 10$ ком можно пользоваться формулой:

$$\sigma_{ab} \approx -\frac{S}{2}$$
.

Посмотрим, как будет меняться проводимость двухполюсника с катодной связью при изменении частоты, если $v \neq v_0$. Из выражения (2) для σ_{cd} следует, что при небольших ω эта проводимость равна $-\frac{L}{P}$, а при больших $-\frac{MP-NQ}{Q^2}$. Если $v \neq v_0$, то $-\frac{L}{P}$ и $-\frac{MP-NQ}{Q^2}$ неодинаковы и с возрастанием ω от 0 до $\infty \sigma_{cd}$ меняется от $-\frac{L}{P}$ до $-\frac{MP-NQ}{Q^2}$. Это изменение будет монотонным, так как производная 48

$$\frac{d\sigma_{cd}}{d\omega} = -\frac{(MP^3 - NP^2Q - LPQ^2) 2\omega}{(P^2 + \omega^2Q^2)^2}$$

в промежутках между указанными пределами не будет обращаться в нуль. Так как, согласно предыдущему, при у≠ №

$$-\frac{\mathrm{L}}{\mathrm{P}} \gg \left| -\frac{\mathrm{M}\mathrm{P}-\mathrm{N}\mathrm{Q}}{\mathrm{Q}^{2}} \right|$$

то проводимость σ_{cd} (и σ_{ab}) с ростом частоты уменьшается и условия самовозбуждения ухудшаются.

Найдем значения v, при которых $\frac{MP - NQ}{Q^2} = 0$, т. е. при которых числитель в формуле (5) обращается в нуль

$$2 \nu S - \nu^2 \left(\frac{1}{R_k} + \frac{1}{R_i} \right) - \frac{1}{R_i} = 0.$$
 (11)

Решая квадратное уравнение (11), получаем

$$\mathbf{v}_{1,2} = \frac{\mu SR_k}{\mu + SR_k} \left(1 \pm \sqrt{1 - \frac{1}{\mu SR_k} - \frac{1}{\mu^2}} \right).$$

Разлагая $1 - \frac{1}{\mu SR_k} - \frac{1}{\mu^2}$ по формуле бинома Ньютона и

пренебрегая членами второго и высших порядков малости, находим

$$\nu_1 = \frac{1}{2(\mu + SR_k)} + \frac{1}{2\mu \left(1 + \frac{\mu}{SR_k}\right)},$$

$$\mathbf{v}_{2} = \frac{2\mu SR_{k}}{\mu + SR_{k}} - \mathbf{v}_{1} \approx \frac{2\mu SR_{k}}{\mu + SR_{k}}$$

Для схемы на лампе 6H8 при $R_k = 1$ ком получаются следующие значения коэффициентов v_1 и v_2 : $v_1 = 0,025$, $v_2 = 3,11$, а при $R_k = 10$ ком

 $-\nu_1 = 0.026, \quad \nu_2 = 7.32.$ Если $\nu < \nu_1$ или $\nu > \nu_2$, то на достаточно высоких частотах, когда |ω² (MP – NQ)| > LP, двухполюсник с катодной связью уже не будет давать отрицательного сопротивления и схема ни при каких условиях не будет генерировать. Генерация на самом деле оказывается невоз-

можной на частотах гораздо более низких, чем
$$\omega = \sqrt{\frac{LP}{|MP - NQ|}}$$

так как по условиям самовозбуждения отрицательная проводимость σ_{cd} должна быть больше -суммарной проводимости сопротивления \mathbf{R}_{a} и проводимости параллельного контура LC. Последняя на высоких частотах, как известно, возрастает (резонансное сопротивление падает).

На рис. 4 показано семейство кривых σ_{cd} ($\nu, \omega C_k$). Кривые получены для схемы на лампе 6H8 при $R_k = 1$ ком и $R_a = 10$ ком. Они говорят о том, что для $\nu \neq \nu_0$ отрицательная проводимость σ_{cd} с уве-49

4. Изв. ТПИ, т. 86.

личением частоты уменьшается. Это уменьшение происходит тем быстрее, чем больше v отличается от v_0 . При $v = v_0$ схема имеет максимальный частотный потолок, и проводимость σ_{cd} вплоть до очень высоких частот, на которых нужно учитывать влияние времени пролета электронов и действие индуктивностей вводов, остается такой же, как на самых низких частотах.

Рис. 4

В выражении для емкости C_k

$$C_k = C_{gk_2} + C_{ak_1} + C_{k_1} + C_{k_2}$$

два первых члена примерно равны $C_{\sigma k}$

$$C_{gk} = C_{gk1} + C_{ak2}.$$

Суммарная емкость катодов относительно земли (подогревателя) $C_{k1} + C_{k2}$ не меньше C_{gk} . Таким образом, \vee должно быть не больше 1/2. Монтажные емкости несколько нивелируют емкости C_{gk} и C_k , и в реальной схеме \vee может быть близким к ν_0 .

Оценим ошибку при пользовании формулой (9) для проводимости с.d. Обозначим

$$P = x, \ \omega Q = y, \ \frac{y^2}{x^2} = x.$$
 (12)

Тогда, принимая во внимание (4") и (5"), получим

$$\sigma_{cd} = -\frac{\mathbf{L}P + \omega^2 (MP - \mathbf{N}Q)}{\mathbf{P}^2 + \omega^2 Q^2} = -\vartheta + \frac{\Delta \vartheta y^2}{x^2 + y^2} = \sigma_{cd_0} + \Delta \sigma_{cd}.$$

Относительная ошибка при замене σ_{cd} на — $\vartheta = \sigma_{cd0}$, т.е. при отбрасывании членов с ω^2 в выражении (2), будет равна

$$\left|\frac{\Delta\sigma_{cd}}{\sigma_{cd}}\right| = \frac{\Delta\vartheta}{\vartheta} \cdot \frac{x}{1+x} \cdot$$
(13)

Она будет малой при не очень больших частотах, когда × $\ll 1$, и при v. близких к v₀, когда $\frac{\Delta \vartheta}{\vartheta} \ll 1$.

На рис. 5 показаны графики изменения $\frac{\Delta \vartheta}{\vartheta}$ в функции от $\vartheta = \frac{\nu}{\nu_0}$. Кривые этого рисунка показывают, что при $\nu = \nu_0$ величина $\frac{\Delta \vartheta}{\vartheta}$ имеет достаточно тупой минимум и что условие $\nu = \nu_0$, при котором проводимость двухполюсника с катодной связью максимальна, не является критичным.

Динамическая емкость двухполюсника с катодной связью

Динамическая емкость двухполюсника с катодной связью состоит из емкости C_a и емкости C_{cd} между клеммами c и d (рис. За и б).

$$\mathbf{C}_{ab} = C_a + C_{cd}.$$

Емкость C_{cd} определяется формулой (3). Подставляя в эту формулу из (1') значения входящих в нее величин, получим:

$$C_{cd} = (C_{gk} + C_k).$$

$$\cdot \frac{\left(S + \frac{1}{R_k}\right)^2 + \frac{v}{v+1} \left(2S + \frac{2}{R_i} + \frac{1}{R_k}\right) \frac{1}{R_k} + \omega^2 v' C_k^2}{\left(2S + \frac{2}{R_i} + \frac{1}{R_k}\right)^2 + \omega^2 (1+v)^2 C_k^2}, \quad (14)$$

$$r_{\text{Re}} v = -\frac{C_{gk}}{C_k}.$$

-	
5	Ł
\sim	-

Обозначим

$$\frac{NP+LQ}{P^2} = \eta, \quad \frac{M}{Q} = \eta_1 \text{ is } \eta - \eta_1 \equiv \Delta \eta.$$
(15)

Найдем то значение ν , при котором отношение η членов выражения (9), не зависящих от частоты, будет наиболее близким к отношению η_1 членов, содержащих ω^2 , т.е. разность

$$\frac{NP + LQ}{P^2} - \frac{M}{Q} = \eta - \eta_1 =$$

$$= \frac{\left(S + \frac{1}{R_i}\right)^2 + \frac{\gamma}{1 + \gamma} \left(2S + \frac{2}{R_i} + \frac{1}{R_k}\right) \frac{1}{R_k}}{\left(2S + \frac{2}{R_i} + \frac{1}{R_k}\right)^2} - \frac{\gamma}{(1 + \gamma)^2}$$
(16)

будет минимальной.

Для этого приравняем нулю частную производную

$$\frac{\partial}{\partial v} \left(\frac{NP + LQ}{P^2} - \frac{M}{Q} \right) = 0 \; .$$

Решая получающееся в результате уравнение

$$\frac{\frac{1}{R_k}}{2S + \frac{2}{R_i} + \frac{1}{R_k}} = \frac{1 - v}{1 + v}$$

относительно у, находим:

$$s = \frac{S + \frac{1}{R_i}}{S + \frac{1}{R_k} + \frac{1}{R_i}}.$$

Это выражение совпадает с (7).

Подставляя $\gamma = \gamma_0$ в выражение (16), определим минимальное значение разности $\Delta \eta = \eta - \eta_1$. Оно оказывается равным нулю

$$(\Delta \eta)_{\nu \equiv \nu_0} = 0,$$

а отношения η и η_1 равными¹)

$$\eta = \eta_{1} = \frac{\left(S + \frac{1}{R_{i}}\right)\left(S + \frac{1}{R_{i}} + \frac{1}{R_{k}}\right)}{\left(2S + \frac{2}{R_{i}} + \frac{1}{R_{k}}\right)^{2}}.$$

Совпадение η и η_1 означает независимость выражения (3) для емкости ' C_{cd} от частоты.

¹) См. (15) 52 Для величины емкости C_{cd} при v == v₀ легко получаем следующее выражение:

$$C_{cd} = (C_{gk} + C_k) \eta = (C_{gk} + C_k) \eta_1 = (C_{gk} + C_k) \frac{v_0}{(1 + v_0)^2}$$

или окончательно

$$C_{cd} = \frac{C_{gk}C_k}{C_{gk} + C_k}.$$
(17)

Таким образом, при $\nu = \nu_0$ динамическая емкость двухполюсника с катодной связью не зависит от частоты и равна его статической емкости.

Если $\nu \neq \nu_0$, то η и η_1 неодинаковы и $\Delta \eta \neq 0$. В этом случае C_{cd} определяется общей формулой (14). На не очень высоких частотах, когда $\times \ll 1$, можно отбрасывать члены с ω^2 . Тогда для емкости C_{cd} будем иметь более простое выражение

$$C_{cd} = (C_{gk} + C_k) \frac{\left(S + \frac{1}{R_i}\right)^2 + \frac{v}{1 + v} \left(2S + \frac{2}{R_i} + \frac{1}{R_k}\right) \frac{1}{R_k}}{\left(2S + \frac{2}{R_i} + \frac{1}{R_k}\right)^2}, \quad (18)$$

а ошибку за счет отброшенных членов можно найти следующим образом.

Согласно (12) и (15) выражение для емкости *C_{cd}* можно представить в виде:

$$C_{cd} = (C_{gk} + C_k) \left(\eta - \Delta \eta - \frac{\chi}{1 + \chi} \right) = C_{cd0} - \Delta C_{cd}.$$

Относительная ошибка указанного пренебрежения будет равна

$$\frac{\Delta C_{cd}}{C_{cd}} \approx \frac{\Delta C_{cd}}{C_{d0}} = \frac{\Delta \eta}{\eta} \frac{x}{1+x}.$$
(19)

Последнее выражение показывает, что при », близком к ν_0 , когда $\frac{\Delta \eta}{\eta}$ мало, можно пренебрегать членами с ω^2 , даже если они сравнимы

с остальными членами. Наоборот, при v, сильно отличающихся от v_o, формула (18) справедлива лишь тогда, когда $x \ll 1$, т.е. на не очень высоких частотах.

На частотах, для которых члены с ω^2 в (14) превышают члены, не содержащие ω^2 , более точной, чем (18), оказывается формула (17). Ей следует отдать предпочтение (независимо от частоты) в тех случаях, когда $\nu = \nu_0$.

Найдем ошибку от применения упрощенной формулы (17). Для этого, воспользовавшись обозначениями (12) и (15), представим выражение (3) для емкости C_{cd} в виде

$$C_{cd} = \left(\eta_1 + \frac{\Delta \eta}{1 + \kappa} \right) \left(C_{gk} + C_k \right).$$

Разность между C_{cd} и его приближенным значением η_1 обозначим через ΔC_{cd}

$$\Delta C_{cd} = C_{cd} - (C_{gk} + C_k) \eta_1 = \frac{\Delta \eta}{1 + \kappa} (C_{gk} + C_k).$$

Относительная ошибка при пользовании формулой (17) будет равна

$$\frac{\Delta C_{cd}}{C_{cd}} = \frac{\Delta C_{cd}}{\eta - \Delta \eta + \Delta C_{cd}} \approx \frac{\Delta \eta}{\eta} \cdot \frac{1}{1 + \kappa}.$$
(20)

Она, таким образом, будет малой при v, близком к v₀ (Δv, мало), и уменьшается с увеличением частоты (когда × растет). Мы видели, что ошибка при пользовании упрощенными формула-

Мы видели, что ошибка при пользовании упрощенными формулами (17) и (18) в значительной степени зависит от величины $\frac{\Delta \eta}{n}$.

Посмотрим, как меняется $\frac{\Delta \eta}{\eta}$ с изменением v. Положим v = δv_0 . Относительную разницу $\frac{\Delta \eta}{\eta}$ можно представить в виде

$$\frac{\Delta \eta}{\eta} = 1 - \frac{\eta_1}{\eta}$$

Подставляя сюда значения у и у, получим

$$\frac{\Delta\eta}{\eta} = 1 - \frac{\delta\nu_0}{(1+\delta\nu_0)^2} \, \cdot \,$$

$$\frac{\left(2S + \frac{2}{R_i} + \frac{1}{R_k}\right)^2}{\left(S + \frac{1}{R_i}\right)^2 + \frac{\delta v_0}{1 + \delta v_0} \left(2S + \frac{2}{R_i} + \frac{1}{R_k}\right) \frac{1}{R_k}}$$

Из (7) нетрудно видеть, что

$$2S + \frac{2}{R_{i}} + \frac{1}{R_{k}} = \frac{\nu_{0} + 1}{\nu_{0}} \left(S + \frac{1}{R_{i}} \right),$$

$$a \qquad \frac{\frac{1}{R_{k}}}{S + \frac{1}{R_{i}}} = \frac{1 - \nu_{0}}{\nu_{0}}.$$
(21)

Воспользовавшись сначала первым, а потом вторым из этих соотношений, находим, что

$$\frac{\Delta \eta}{\eta} = 1 - \frac{(1+\nu_0)^2}{(\nu_0 + \delta) \left(\nu_0 + \frac{1}{\delta}\right)}$$

На рис. 6 показан график зависимости $\frac{\Delta \eta}{\eta}$ от δ , полученный для двухполюсника на лампе 6H8¹). При построении этого графика S и R_i определялись экспериментально, а v_0 вычислялось по формуле (7). Кривая рисунка показывает, что $\frac{\Delta \eta}{\eta}$ в известных границах изменения v остается малым и, следовательно, значение $v = v_0$ не является критичным.

Рис. 6

Случай неодинаковых параметров ламп

Посмотрим, как может отразиться на полученных ранее выводах учет неодинаковости параметров ламп, который необходим при относительно больших R_a .

Для активной проводимости τ_{cd} мы имели общее выражение (2); входящие в него величины имеют значения (1). Сравним, как и раньше, отношение $\frac{L}{P}$ членов числителя и знаменателя, не зависящих от частоты, с отношением $\frac{MP - NQ}{Q^2}$ членов, содержащих ω^2 . Для этого возьмем разность указанных отношений. Она равна

¹⁾ Были рассчитаны две кривые зависимости $\frac{\Delta \eta}{\eta}$ от д (для $R_{\kappa} = 1$ ком и $R_{\kappa} = 4$ ком). Они, однако, различаются настолько мало, что при использованном масштабе сливаются.

$$\frac{L}{P} - \frac{MP - NQ}{Q^2} = \frac{S_1 S_2 - \frac{1}{R_{i2}} \left(\frac{1}{R_k} + \frac{1}{R_{i1}}\right)}{S_1 + S_2 + \frac{1}{R_k} + \frac{1}{R_{i1}} + \frac{1}{R_{i2}}} - \frac{\nu \left(S_1 + S_2 + \frac{1}{R_k} + \frac{1}{R_{i1}} + \frac{1}{R_{i2}}\right)}{(1 + \nu)^2} - \frac{\left(1 + \nu\right) \left[\nu \left(\frac{1}{R_k} + \frac{1}{R_{i1}}\right) + \frac{1}{R_{i2}}\right]}{(1 + \nu)^2}, \quad (22)$$

где у $=\frac{C_{g_k}}{C_k}$.

Найдем то значение $v = v_0$, при котором разность (22) имеет минимум. Поскольку $\frac{L}{P}$ не зависит от v, это будет при максимуме $\frac{MP - NQ}{Q^2}$. Для отыскания последнего приравниваем нулю частную производную $\frac{\partial}{\partial v} \left(\frac{MP - NQ}{Q^2} \right) = 0.$

В результате элементарных математических операций получаем:

$$\nu_{0} = \frac{S_{1} + S_{2} + \frac{2}{R_{i2}}}{S_{1} + S_{2} + 2\left(\frac{1}{R_{k}} + \frac{1}{R_{i1}}\right)}$$
(7')

Найдем теперь величину разности (22) при $v = v_0$. Для этого предварительно перепишем $\frac{MP - NQ}{Q^2}$ следующим образом:

$$\frac{MP - NQ}{Q^2} = \frac{1}{1 + \nu_0} \left[\frac{\nu_0}{1 + \nu_0} \left(S_1 + S_2 + \frac{1}{R_k} + \frac{1}{R_{i1}} + \frac{1}{R_{i2}} \right) - \frac{\nu_0}{1 + \nu_0} \left(\frac{1}{R_k} + \frac{1}{R_{i1}} \right) - \frac{1}{R_{i2}} \right].$$
(23)

На основании (7') можем написать

$$S_{1} + S_{2} + \frac{1}{R_{k}} + \frac{1}{R_{i1}} + \frac{1}{R_{i2}} = \frac{S_{1} + S_{2} + 2\left(\frac{1}{R_{k}} + \frac{1}{R_{i1}}\right)}{2}.$$

Подставляя это выражение в первый член (23), получим

$$\frac{MP - QN}{Q^2} = \frac{1}{1 + \nu_0} \left[\frac{\nu_0 (S_1 + S_2)}{2} - \frac{1}{R_{i2}} \right]$$

или после замены v₀ по формуле (7')

$$\frac{MP - NQ}{Q^2} = \frac{\left(\frac{S_1 + S_2}{2}\right)^2 - \frac{1}{R_{i2}} \left(\frac{1}{R_k} + \frac{1}{R_{i1}}\right)}{S_1 + S_2 + \frac{1}{R_k} + \frac{1}{R_{i1}} + \frac{1}{R_{i2}}}.$$
(24)

56

ş

Сравнивая (24) с

$$\frac{L}{P} = \frac{S_1 S_2 - \frac{1}{R_{i2}} \left(\frac{1}{R_k} + \frac{1}{R_{i1}} \right)}{S_1 + S_2 + \frac{1}{R_k} + \frac{1}{R_{i1}} + \frac{1}{R_{i1}} + \frac{1}{R_{i2}}}$$

замечаем, что $\frac{MP - NQ}{Q^2}$, имеющее максимум при $v = v_0$, оказывает-

ся при указанном значении у большим, чем $\frac{L}{P}$, так как среднее

арифметическое двух неравных между собой величин S_1 и S_2 больше их среднего геометрического.

Относительное изменение разности между $\frac{L}{P} = \vartheta$ и $\frac{MP - NQ}{Q^2} =$

$$=\vartheta$$
 $\Delta\vartheta$, т. е. $\frac{\Delta\vartheta}{\vartheta}$ в зависимости от изменения $\delta = \frac{\nu}{\nu_0}$ представ-

лено для случая неодинаковых параметров ламп на рис. 7. По сравнению с ранее рассмотренным случаем здесь мы получаем более несимметричную кривую, опускающуюся, кроме того, ниже оси абсцисс. С ростом частоты колебаний увеличивается роль членов (2), содержащих **w**. При этом проводимость двухполюсник с катодной связью

приближается к $\frac{1}{R_a} - \frac{MP - NQ}{Q^2}$. Если $v = v_0$, она увеличивается по

абсолютной величине и условия самовозбуждения за счет этого улучшаются. Ухудшение условий самовозбуждения при повышении частоты имеет место лишь в случае у, заметно отличающихся от v₀. Сказанное иллюстрируется кривыми рис. 8, на котором представлена зависимость проводимости σ_{ab} от ωC_k при различных значениях у. Эти кривые получены с помощью формулы

$$\sigma_{ab} = \frac{1}{R_a} - \frac{\left[S_1 S_2 - \frac{1}{R_{i2}} \left(\frac{1}{R_k} + \frac{1}{R_{i1}} \right) \right] \left(S_1 + S_2 + \frac{1}{R_k} + \frac{1}{R_{i1}} + \frac{1}{R_{i2}} \right)}{\left(S_1 + S_2 + \frac{1}{R_k} + \frac{1}{R_{i1}} + \frac{1}{R_{i2}} \right)^2 + \omega^2 C_k^2 (1 + \gamma)^2} + \frac{1}{R_k} \left(\frac{1}{R_k} + \frac{1}{R_k} + \frac{1}{R_{i1}} + \frac{1}{R_{i2}} \right)^2 + \omega^2 C_k^2 (1 + \gamma)^2} + \frac{1}{R_k} \left(\frac{1}{R_k} + \frac{1}{R_k} + \frac{1}{R_{i1}} + \frac{1}{R_{i2}} \right)^2 + \frac{1}{R_k} \left(\frac{1}{R_k} + \frac{1}{R_k} + \frac{1}{R_{i2}} + \frac{1}{R_k} + \frac{1}{R_{i2}} \right)^2 + \frac{1}{R_k} \left(\frac{1}{R_k} + \frac{1}{R_k} + \frac{1}{R_{i2}} + \frac{1}{R_k} + \frac{1}{R_{i2}} \right)^2 + \frac{1}{R_k} \left(\frac{1}{R_k} + \frac{1}{R_k} + \frac{1}{R_{i2}} + \frac{1}{R_k} + \frac{1}{R_{i2}} \right)^2 + \frac{1}{R_k} \left(\frac{1}{R_k} + \frac{1}{R_{i2}} + \frac{1}{R_k} + \frac{1}{R_{i2}} + \frac{1}{R_k} + \frac{1}{R_{i2}} \right)^2 + \frac{1}{R_k} \left(\frac{1}{R_k} + \frac{1}{R_{i2}} + \frac{1}{R_k} + \frac{1}{R_{i2}} + \frac{1}{R_k} + \frac{1}{R_{i2}} \right)^2 + \frac{1}{R_k} \left(\frac{1}{R_k} + \frac{1}{R_{i2}} + \frac{1}{R_k} + \frac{1}{R_{i2}} + \frac{1}{R_k} + \frac{1}{R_{i2}} + \frac{1}{R_k} + \frac{1}{R_{i2}} + \frac{1}{R_k} + \frac{1}{R_{i2}} \right)^2 + \frac{1}{R_k} \left(\frac{1}{R_k} + \frac{1}{R_{i2}} + \frac{1}{R_k} + \frac{1}{R_{i2}} + \frac{1}{R_{i2}} + \frac{1}{R_k} + \frac{1}{R_k} + \frac{1}{R_{i2}} + \frac{1}{R_k} + \frac{1}{$$

$$+\frac{\omega^2 C_k^2 \left\{\nu \left(S_1 + S_2 + \frac{1}{R_k} + \frac{1}{R_{i1}} + \frac{1}{R_{i2}}\right)}{\left(S_1 + S_2 - \frac{1}{R_k} + \frac{1}{R_{i1}} + \frac{1}{R_{i2}}\right)^2 + \omega^2 C_k^2 (1 + \nu)^2}$$

$$= \frac{(1-\nu)\left[\nu\left(\frac{1}{R_{k}}+\frac{1}{R_{i1}}\right)-\frac{1}{R_{i2}}\right]}{\left(S_{1}+S_{2}+\frac{1}{R_{k}}+\frac{1}{R_{i1}}+\frac{1}{R_{i2}}\right)^{2}+\omega^{2}C_{k}^{2}(1+\nu)^{2}}$$

для двухполюсника на лампе 6H8, у которого $R_k = 2 \kappa o \dot{m}$ и $R_a = 60 \kappa o m$.

Рис. 8

Посмотрим теперь, как отражается неодинаковость нараметров ламп на динамической емкости двухполюсника с катодной связью. Выражение (3) для этой емкости исследуем теми же приемами, что и раньше. Запишем разность отношений членов (3), не зависящих от частоты ω , и членов, содержащих ω^2

$$\frac{NP + LQ}{P^{2}} - \frac{M}{Q} = (C_{gk} + C_{k}) \left\{ \frac{\left(S_{1} + S_{2} + \frac{1}{R_{k}} + \frac{1}{R_{i1}} + \frac{1}{R_{i2}}\right)}{\left(S_{1} + S_{2} + \frac{1}{1 + \nu} \left(\frac{1}{R_{k}} + \frac{1}{R_{i1}}\right) + \frac{1}{1 + \nu} \cdot \frac{1}{R_{i2}}\right] + \left[S_{1}S_{2} - \frac{1}{R_{i2}}\left(\frac{1}{R_{k}} + \frac{1}{R_{i1}}\right)\right] + \frac{1}{R_{k}} + \frac{1}{R_{i1}} + \frac{1}{R_{i2}}\right)^{2} - \frac{\nu}{\left(1 + \nu\right)^{2}} \right\}.$$

$$(25)$$

Найдем то значение », при котором разность (25) минимальна. Для этого приравняем нулю частную производную от (25)

$$\frac{\partial}{\partial v} \left(\frac{NP + LQ}{P^2} - \frac{M}{Q} \right) = 0$$

или

$$(C_{gk}+C_k)\left[\frac{\frac{1}{R_k}+\frac{1}{R_{i1}}-\frac{1}{R_{i2}}}{(1+\nu)^2\left(S_1+S_2+\frac{1}{R_k}+\frac{1}{R_{i1}}+\frac{1}{R_{i2}}\right)}-\frac{(1-\nu)}{(1+\nu)^3}\right]=0$$

Отсюда у получается равным

$$\nu = \nu_0 = \frac{S_1 + S_2 + \frac{2}{R_{i2}}}{S_1 + S_2 + 2\left(\frac{1}{R_k} + \frac{1}{R_{i1}}\right)}.$$
(7)

Оно совпадает с тем значением », которое оказывается наивыгоднейшим с точки зрения условий самовозбуждения.

Определим теперь знак второй производной от разности (25). Эта производная равна

$$\frac{\partial^2}{\partial v^2} \left(\frac{NP + LQ}{P^2} - \frac{M}{Q} \right) = \left(C_{gk} + C_k \right) \cdot \frac{2}{(1 + v_0)^4} > 0 .$$

Тем самым доказано, что найденный экстремум является минимумом. Посмотрим теперь, чему равна разность (25) при у = у₀. Подста-вив для этого в (25) у = у₀ из (7'), после простых преобразований находим

$$\frac{NP+LQ}{P^2} - \frac{M}{Q} = (C_{gk} + C_k) \left\{ \frac{\left[S_1 S_2 + \left(\frac{S_1 + S_2}{2}\right)\left(\frac{1}{R_k} + \frac{1}{R_{i1}} + \frac{1}{R_{i2}}\right) + \frac{1}{R_{i2}}\right\} + \frac{1}{R_{i1}} + \frac{1}{R_{i2}} +$$

$$\frac{+\frac{1}{R_{l^2}}\left(\frac{1}{R_k} + \frac{1}{R_{l^1}}\right) - \left[\left(\frac{S_1 + S_2}{2}\right)^2 + \left(\frac{S_1 + S_2}{2}\right)\left(\frac{1}{R_k} + \frac{1}{R_{l^1}} + \frac{1}{R_{l^2}}\right) + \left(S_1 + S_2 + \frac{1}{R_k} + \frac{1}{R_{l^1}} + \frac{1}{R_{l^2}}\right)^2 + \left(\frac{S_1 + S_2}{2} + \frac{1}{R_k} + \frac{1}{R_{l^1}} + \frac{1}{R_{l^2}}\right)^2 + \left(\frac{S_1 + S_2}{2} + \frac{1}{R_k} + \frac{1}{R_{l^1}} + \frac{1}{R_{l^2}}\right)^2 + \left(\frac{S_1 + S_2}{2} + \frac{1}{R_k} + \frac{1}{R_{l^2}} + \frac{1}{R_{l^2}}\right)^2 + \left(\frac{S_1 + S_2}{2} + \frac{1}{R_k} + \frac{1}{R_{l^2}} + \frac{1}{R_{l^2}}\right)^2 + \left(\frac{S_1 + S_2}{2} + \frac{1}{R_k} + \frac{1}{R_{l^2}} + \frac{1}{R_{l^2}}\right)^2 + \left(\frac{S_1 + S_2}{2} + \frac{1}{R_k} + \frac{1}{R_{l^2}} + \frac{1}{R_{l^2}}\right)^2 + \left(\frac{S_1 + S_2}{2} + \frac{1}{R_k} + \frac{1}{R_{l^2}} + \frac{1}{R_{l^2}}\right)^2 + \left(\frac{S_1 + S_2}{2} + \frac{1}{R_k} + \frac{1}{R_{l^2}} + \frac{1}{R_{l^2}}\right)^2 + \left(\frac{S_1 + S_2}{2} + \frac{1}{R_k} + \frac{1}{R_{l^2}} + \frac{1}{R_{l^2}} + \frac{1}{R_{l^2}} + \frac{1}{R_{l^2}}\right)^2 + \left(\frac{S_1 + S_2}{2} + \frac{1}{R_{l^2}} + \frac{1}{R_{$$

Выражения в квадратных скобках (26) отличаются только первыми членами в числителях. В уменьшаемом такой член равен S_1S_2 , а соответствующий член в вычитаемом $-\left(\frac{S_1+S_2}{2}\right)^2$.

Так как при неравных S_1 и S_2 $S_1S_2 < \left(\frac{S_1 + S_2}{2}\right)^2$, то при $\nu = \nu_{\bullet}$ $\eta = \frac{NP + LQ}{P^2} < \frac{M}{Q} = \eta_1$.

В выражении (25) вычитаемое $\frac{\gamma}{(1+\gamma)^2}$ стремится к нулю, как при $\gamma \to 0$,

так и при $\nu \to \infty$. Между этими крайними значениями ν и значением $\nu = \nu_0$ имеются точки, в которых вычитаемое равно уменьшаемому и имеет место равенство двух сравниваемых нами отношений

$$\left(\frac{NP+LQ}{P^2} \operatorname{H} \frac{M}{Q}\right).$$

Кривая зависимости относительной их разности $\frac{\Delta \eta}{\eta} = \frac{\eta - \eta_4}{\eta}$ от $= \frac{\gamma}{\gamma_0}$ изображена на рис. 9. Она опускается ниже оси δ , пере-

секаясь с последней в двух точках $\delta_1 = \frac{\nu_1}{\nu_0}$ и $\delta_2 = \frac{\nu_2}{\nu_0}$.

Ошибка при отбрасывании в выражениях для проводимости и для динамической емкости двухполюсника с катодной связью членов, не зависящих от частоты, или членов, содержащих ω^2 , определяется по тем же формулам (13), (19) и (20), которые были получены для случая одинаковых параметров. Разница будет лишь в том, что входящие в них $\frac{\Delta \vartheta}{\vartheta}$ и $\frac{\Delta \eta}{n}$ иначе зависят от $\delta = \frac{\gamma}{v_0}$.

Нестабильность частоты генератора с катодной связью при изменении питающих напряжений

Зависимость динамической емкости $C_{ab} = C_a + C_{cd}$ от параметров лампы приводит к тому, что у генератора типа *LC*, построенного на основе рассматриваемого двухполюсника, частота колебаний делается непостоянной при изменении режима питания. "Статические" паразитные емкости C_{gk} , C_k и C_a (рис. 2б) также зависят от режима. Он влияет на них через посредство тепловых воздействий и благодаря изменению плотности пространственных зарядов внутри лампы. Учесть аналитически указанные "режимные" изменения емкостей C_{gk} , C_k и C_a представляется очень трудным. Мы будем обращаться поэтому с этими емкостями как с постоянными и будем изучать только такое влияние режима на динамическую емкость C_{ab} , которое обусловлено наличием в аналитических формулах для C_{ab} или C_{cd} членов, связанных с параметрами лампы.

Характер изменения частоты при изменении питающих напряжений оказывается неодинаковым в различных условиях. К числу таких условий нужно отнести величину частоты колебаний. Из формулы (14) для емкости C_{cd} можно видеть, что с ростом частоты ω увеличивается роль членов этой формулы, содержащих ω^2 и не зависящих непосредственно от параметров ламп. Если влияние режима через тепловые действия и изменение емкостей пространственных зарядов окажется более слабым, чем обусловленное изменением параметров ламп, то стабильность генератора с повышением частоты должна улучшаться.

Независимости динамической емкости С_{сd} от параметров ламп. а следовательно, ее стабильности, можно, как мы уже убедились, до-

биться, выбрав отношение $v = \frac{C_{gk}}{C_k}$ равным v_0 . Если причины, не учи-

тываемые предлагаемой линейной теорией, сохранят при этом некоторую нестабильность частоты, ее можно уменьшить соответствующим недовыполнением или перевыполнением условий компенсации.

Чтобы убедиться в этом, обратимся к формуле (14). Имея в виду не очень высокие частоты, отбросим члены с ω^2 , которые приводят лишь к сглаживанию действия "режимных" членов, зависящих от параметров ламп. Таким образом мы приходим к упрощенной формуле (18). С помощью соотношений (21) эта формула легко преобразуется к виду:

$$C_{cd} = (C_{gk} + C_k) \frac{\nu_0^2 + \nu}{(\nu_0 + 1)^2 (1 + \nu)}.$$
 (27)

"Режимным" здесь является один только параметр »₀. Поэтому выражение (27) оказывается очень удобным для исследования влияния из-

менений питающих напряжений. При уменьшении анодного напряжения, точно так же как при уменьшении накала, крутизна уменьшается. Параметр v_0 при этом также уменьшается. По сравнению с S изменение v_0 происходит, как видно из (7), значительно медленнее, тем медленнее, чем больше R_k . Отсюда в соответствии с формулой (27) получается вывод: с увеличением R_k стабильность динамической емкости и частоты генератора повышается.

Исследуем выражение (27) на экстремальные точки, считая переменным "режимный" параметр »₀. Приравняем для этого нулю частную производную

$$\frac{\partial C_{cd}}{\partial v_0} = (C_{gk} + C_k) \frac{2(v_0 - v)}{(1 + v_0)^3} = 0.$$

Единственное экстремальное значение получается при $v_0 = v$. Взяв вторую частную производную и подставив в нее $v_0 = v$, найдем

$$\left(\frac{\partial^2 C_{cd}}{\partial v_0^2}\right)_{v_0 = v} = \frac{2(C_{gk} + C_k)}{(1 + v)^3} > 0.$$

Таким образом, при $v_0 = v$ мы имеем минимальную емкость C_{cd} . Подстановка $v_0 = v$ в выражение (27) превращает его в (17) и делает независящим от режима. Благодаря тупому минимуму небольшие отклонения v_0 от v не вызывают сколько - нибудь заметных изменений емкости C_{cd} и частоты. Мы, таким образом, несколько другим путем приходим к уже полученному ранее условию $v = v_0$ стабильности схемы по частоте.

Если выбрано большим, чем v_0 (E_a , E_f), вычисленное для нормальных напряжений питающих источников, то при понижении питающих напряжений v_0 будет уменьшаться и еще более удаляться от оптимального значения, равного ». При этом емкость C_{cd} будет увеличиваться (так как $v_0 = v$ соответствует минимум емкости, а мы от него уходим) и частота—понижаться.

с Если у выбрать меньшим, чем $v_0(E_a, E_f)$ для нормальных значений питающих напряжений, то с уменьшением последних v_0 будет, уменьшаясь, приближаться к оптимальному значению $v_0 = v$, а емкость C_{cd} к минимуму. При этом частота колебаний будет увеличиваться.

к минимуму. При этом иссоса по Таким образом, распоряжаясь отношением емкостей $v = \frac{C_{g_k}}{C_k}$ (например, искусственно увеличивая одну из них), можно менять ход кривой нестабильности частоты.

На рис. 10 показано относительное изменение динамической емкости C_{cd} при изменении анодного напряжения у двухполюсника на лампе 6H8, имеющего $R_k = 1$ ком и $R_a = 10$ ком. Кривые рисунка получены для различных у с помощью формулы

$$C_{cd} = (C_{gk} + C_k) \left[\frac{\frac{\nu}{1 + \nu} \left(\frac{1}{R_k} + \frac{1}{R_{i1}} \right) + \frac{1}{1 + \nu} \cdot \frac{1}{R_{i2}}}{S_1 + S_2 + \frac{1}{R_k} + \frac{1}{R_{i1}} + \frac{1}{R_{i2}}} + \frac{S_1 S_2 - \frac{1}{R_{i2}} \left(\frac{1}{R_k} + \frac{1}{R_{i1}} \right)}{\left(S_1 + S_2 + \frac{1}{R_k} + \frac{1}{R_{i1}} + \frac{1}{R_{i2}} \right)^2} \right].$$
(28)

В этой формуле учитывается неодинаковость параметров ламп двухполюсника. Первый член в квадратной скобке с уменьшением анодного напряжения увеличивается, а второй уменьшается. Выбор » позволяет регулировать соотношение между этими членами и менять таким об-

разом ход кривой $\frac{\Delta C_{cd}}{C_{cd}} = F(E_a).$

При рассмотрении вопроса о нестабильности динамической емкости мы отбросили члены с ω^2 , не зависящие непосредственно от режима. В случае $\gamma = \gamma_0$ они не могут изменить величину этой емкости.

Рис. 10

Если $\gamma \neq \gamma_0$ члены с ω^2 действуют как нивелирующие: благодаря им емкость меняется меньше, чем при их отсутствии. Влияние членов с ω^2 можно оценивать той ошибкой, которая получается при их отбрасы-

вании. Для этого можно пользоваться формулой (19). Множитель $\frac{x}{1+x}$

в этой формуле является мерой указанного нивелирующего действия.

В реальных условиях регулировка соотношения между емкостями C_{gk} и C_k может не привести к получению желаемой высокой стабильности генератора или может потребоваться более сильная регулировка (другое значение v), чем та, которой следовало бы ожидать, исходя из описываемой линейной теории. В некоторой мере результаты этой теории искажаются вследствие отмеченной выше зависимости самих паразитных емкостей C_{gk} , C_k и C_a от режима. Однако главными причинами, которые могут не только исказить действие регулировки с помощью v, но и сделать эту регулировку неэффективной, являются следующие.

1. Изменение средней за период динамической емкости двухполюсника, связанное с неодинаковостью динамических емкостей на ветвях и на падающем участке его вольтамперной характеристики.

t

2. Не учитываемое предлагаемой теорией действие сеточных токов. Эти токи могут появляться при сравнительно небольших R_k (порядка 1 ком и менее) и больших амплитудах колебаний, которые, в свою очередь, могут иметь место при больших Z_p^{-1}) и R_a . Увеличение R_k или уменьшение Z_p и R_a позволяют легко избежать сеточных токов и устранить таким образом эту причину, мешающую осуществлению компенсации.

Рассмотрим несколько подробнее вопрос о средней динамической емкости. Изложенная выше теория относится к условиям в рабочих точках. За их пределами параметры ламп имеют уже другие значения и динамические емкости — также. При отрицательной полуволне напряжения на контуре, когда величина этого напряжения достаточно велика, первая лампа \mathcal{J}_1 (рис. 1) оказывается запертой. При этом $S_1 = 0$, $R_{i1} = \infty$, а активная проводимость и динамическая емкость двухполюсника с катодной связью в соответствии с (2), (3) и (1) выражаются формулами:

$$D_{ab} = \frac{1}{R_a} + \frac{\left(S_2 + \frac{1}{R_k} + \frac{1}{R_{i2}}\right) \frac{1}{R_k R_{i2}} - \omega^2 \left(C_{gk} C_k S_2 - \frac{C_{gk}^2}{R_k} - \frac{C_k^2}{R_{i2}}\right)}{\left(S_2 + \frac{1}{R_k} + \frac{1}{R_{i2}}\right)^2 + \omega^2 (C_{gk} + C_k)^2}$$

$$C_{ab} = C_{a} + \frac{\left(\frac{C_{gk}}{R_{k}} + \frac{C_{k}}{R_{i2}}\right)S_{2} + \frac{C_{gk}}{R_{k}^{2}} + \frac{C_{k}}{R_{i2}^{2}} + \omega^{2}C_{gk}C_{k} (C_{gk} + C_{k})}{\left(S_{2} + \frac{1}{R_{k}} + \frac{1}{R_{i2}}\right)^{2} + \omega^{2}(C_{gk} + C_{k})^{2}}.$$
 (29)

При пиках положительной полуволны напряжения на контуре запирается вторая лампа \mathcal{J}_2 , и $S_2 = 0$, а $R_{i2} \pm \infty$. Для активной составляющей входной проводимости и для динамической емкости двухполюсника в этом случае имеем:

$$\sigma_{ab+} = \frac{1}{R_a} - \omega^2 \frac{C_{gk}C_kS_1 - \frac{C_{gk}^2}{R_k} - \frac{C_{i}^2}{R_{i_1}}}{\left(S_1 + \frac{1}{R_k} + \frac{1}{R_{i_1}}\right)^2 + \omega^2 (C_{gk} + C_k)^2},$$

$$C_{ab+} = C_a + \frac{C_{gk}\left(\frac{1}{R_k} + \frac{1}{R_{i_1}}\right)\left(S_1 + \frac{1}{R_k} + \frac{1}{R_{i_1}}\right)}{\left(S_1 + \frac{1}{R_k} + \frac{1}{R_{i_1}}\right)^2 + \omega^2 (C_{gk} + C_k)^2} + \frac{\omega^2 C_{gk}C_k (C_{gk} + C_k)}{\left(S_1 + \frac{1}{R_k} + \frac{1}{R_{i_1}}\right)^2 + \omega^2 (C_{gk} + C_k)^2}.$$
(30)

з) Zp – резонансное сопротивление контура. 64 На не очень высоких частотах, когда можно пренебречь членами с «², приведенные формулы имеют более простой вид

$${}^{\circ}_{ab} = \frac{1}{R_{a}} + \frac{1}{R_{i2} + R_{k}} \frac{1}{(1 + \mu_{2})},$$

$${}^{\circ}_{ab+} = \frac{1}{R_{a}},$$

$$C_{ab-} = C_{a} + \frac{\frac{C_{gk}}{R_{k}} \left(-S_{2} - \frac{1}{R_{k}}\right) + \frac{C_{k}}{R_{i2}} \left(S_{2} + \frac{1}{R_{i2}}\right)}{\left(S_{2} + \frac{1}{R_{k}} + \frac{1}{R_{i2}}\right)^{2}},$$

$$C_{ab+} = C_{a} + \frac{C_{gk}}{R_{k}} \left(\frac{1}{R_{k}} + \frac{1}{R_{i1}}\right)}{S_{1} - \frac{1}{R_{k}} + \frac{1}{R_{i1}}}.$$

$$(30')$$

Входящие в выражения (29') и (30') S_1 , S_2 , $\frac{1}{R_{i1}}$ и $\frac{1}{R_{i2}}$ с уменьшением

питающих напряжений всегда уменьшаются. Это приводит к увеличению емкостей C_{ab+} и C_{ab-} и к понижению частоты.

Динамические емкости, соответствующие ветвям вольтамперной характеристики, таким образом, с уменьшением питающих напряжений всегда увеличиваются. Если v = v' таково, что теория, учитывающая только условия в рабочих точках, предсказывает понижение частоты с уменьшением питающих напряжений, то необходимое для получения стабильной частоты некоторое уменьшение v на самом деле оказывается недостаточным. Требуется еще большее уменьшение v для компенсации понижения частоты за счет увеличения динамической емкости на ветвях вольтамперной характеристики, соответствующих запертым первой и второй лампам.

Результаты экспериментальной проверки

Экспериментальная проверка основных выводов настоящей статьи проводилась как на генераторных схемах, так и с помощью низкочастотных моделей двухполюсника с катодной связью. Ниже приводятся некоторые данные такой проверки. Емкостям Сgk и Ck в макете двухполюсника намеренно давались большие значения (тысячи пикофарад). Двухнолюсник был выполнен на лампе 6H8, сопротивления R_k и R_a были равны $R_k = 2 \ \kappa o M$, $R_a = 10 \ \kappa o M$. Измерения производились с по-мощью мостиковой схемы, которая была заимствована из работы Х. И. Черне [4], посвященной определению полных сопротивлений с отрицательной вещественной частью. Эта схема приведена на рис. 11. К клеммам ав шестиполюсника рис. 11 подводились колебания звуковой частоты. На выходе к клеммам сd подключался осциллограф в качестве индикатора. Измеряемое сопротивление $z_x = r_x + jx_x$ включалось между клеммами a и c. Для этой схемы сопротивления r_x и x_x , согласно Х.И. Черне, можно вычислить через параметры шестиполюсника, соответствующие балансу моста, с помощью следующих выражений:

5. Has. 11HI, r. 86.

Поскольку при выводе формул настоящей статьи входное сопротивление двухполюсника с катодной связью представлялось как параллельное соединение отрицательного сопротивления и некоторой емкости, нужно еще перейти от последовательной комбинации активного и реактивного сопротивлений, положенной в основу формул (31), к эквивалентной ей параллельной. Такой переход приводит к выражениям:

$$\rho = -(r_1 + r_3) \left[1 + \left(\frac{\omega C_2 r_1 r_3}{r_1 + r_3} \right)^2 \right],$$

$$C_{cd} = \frac{r_1 r_3 C_2}{(r_1 + r_3)^2 + (\omega r_1 r_3 C_2)^2} \qquad (32)$$

При пользовании формулами (2) и (14) предварительно определялись значения параметров ламп в рабочих точках. В таблице 1 приведены результаты измерений ρ и C_{cd} для макета двухполюсника с катодной связью, выполненные с помощью мостика рис. 11. Двухполюсник имел $R_k = 2 \ \kappaom$, $R_a = 10 \ \kappaom$, напряжение анодного питания было $E_a = 200 \ s$, напряжение накала $E_f = 6,3 \ s$. В последних графах таблицы даны значения ρ и C_{cd} , вычисленные для тех же условий с помощью формул (2) и (14) настоящей статьи. Цифры таблицы свидетельствуют о том, что изложенная теория правильно отражает влияние паразитных емкостей C_{gk} и C_k на активную проводимость и динамическую емкость двухполюсника с катодной связью.

Для проверки влияния $\mathbf{v} = \frac{\mathbf{C}_{gk}}{\mathbf{C}_k}$ на ход кривых нестабильности

было снято большое число кривых зависимости относительного ухода частоты генератора с катодной связью от изменения питающих напряжений. Измерения производились на звуковых и радиочастотах при различных значениях параметров схемы двухполюсника, различных и различных величинах резонансного сопротивления колебательного контура.

Оказалось возможным компенсировать нестабильность при изменении питающих напряжений не только подбором соответствующего

Т	а	б	Л	И	Ц	а	1
---	---	---	---	---	---	---	---

"Паразитные" емкости		· ·		Параметры мостиковой схемы			Частота	Входное сопротивление и входная емкость			
			$C_{gk}C_{k}$					измерено мостиком		вычислено по формулам	
C gk. ngj	C _k , n¢	×	$\overline{C_{gk} + C_{k}}_{n\phi},$	r ₁ , Ом	г, Ом	C ₂ , n¢	Ј, гц	р, Ом	C n¢ ^{cd} ,	?, Ом	C _{cd} , n¢
3700	· 7000	0,53	2420	1140	1210	12200	10000	2830	2430	2820	2440
7100	7000	1,01	3530	1000	1000	20700	10000	2840	3650	2770	3600
11500	7000	1,65	4360	1100	510	42500	10000	3000	4940	2940	5130
16500	7000	2,36	4920	9 7 0_	280	88000	10000	3140	6100	3190	6430
21500	7000	3,07	5300	680	220	161800	10000	3460	7820	3550	7700
7100	11500	0,616	4380	1000	500	37700	12000	2780	4450	2740	4300
7100	17000	0,417	5030	800	600	47000	10000	2842	5660	. 2870	5300
7100	22500	0,315	5400	790	520	58000	10000	3030	6020	3000	6070
7100	27000	0,263	5630	860	320	90000	10000	3240	6500	3180	6580
							}		}		

Результаты измерений р и C_{cd} на макете двухполюсника с катодной связью

значения v, но также подбором R_k , R_a или емкости обратной связи C_1 . Значения v, обеспечивающие компенсацию нестабильности, оказались резко отличными от тех, которых можно было бы ожидать на основании изложенной теории, причем вопреки последней таких значений оказалось два: одно много меньше единицы, другое значительно больше. Подобная компенсация наблюдалась лишь в случаях. когда $Z_p \gg |\rho|$. При Z_p , сравнимых с $|\rho|$ (на коротких волнах), компенсацию нестабильности подбором v не удавалось получить. Как подсоединение добавочных конденсаторов параллельно C_k , так и искусственное увеличение C_{gk} неизменно приводили к возрастанию нестабильности.

На рис. 12 приведены кривые $\frac{\Delta f}{f} = F(E_a)$, снятые для генера-

тора на лампе 6H8 при различных значениях емкостей, подключаемых параллельно C_{gk} и C_k . Эти добавленные в схему емкости будем обозначать соответственно C'_{gk} и C_k' . Из кривых рис. 12 видно, что как добавление C'_{gk} , так и подключение C'_{k} приводит к возрастанию нестабильности схемы: кривые еще более загибаются книзу. Действие емкости C'_{gk} оказывается при этом более сильным по сравнению с C'_{k} . В этом можно усмотреть лишь некоторую дань изложенной ранее теории, которая для подъема кривой нестабильности требовала уменьшения отношения $v = \frac{C_{gk}}{C_{\kappa}}$ или, другими словами, увеличения C_{κ} . Ход кривых

рис. 12 нельзя объяснить действием таких причин, как изменение температурного режима или емкости пространственного заряда, изменением нелинейной поправки на период или непостоянством параметров ламп в рабочих точках. В самом деле, с увеличением температуры емкости конденсаторов обычно возрастают. В нашем случае с повышением температуры в лампе общая емкость в контуре также увеличивается. Об этом говорят кривые выбега частоты, получающегося за счет разогрева лампы после включения (рис. 13). Поэтому за счет изменения температурного режима частота должна возрастать с понижением питающих напряжений. В действительности же наблюдается обратная картина (кривые 1, рисунков 12, 14 и 15).

Емкость пространственного заряда при понижении E_a и $E_f = \text{const}$ увеличивается, так как уменьшается количество электронов, отсасываемых анодом. Это могло бы дать качественное объяснение хода

кривых $\frac{\Delta f}{f} = F(E_a)$. Однако если бы эта причина была определяющей, следовало бы ожидать, что при одновременном пропорциональном изменении E_a и E_f кривые $\frac{\Delta f}{f} = F_1(E_a, E_f)$ должны идти выше кривых $\frac{\Delta f}{f} = F(E_a)$, так как понижение E_f приводит к уменьшению плотности пространственного заряда и обусловленной им емкости. На

плотности пространственного заряда и обусловленной им емкости. На самом деле одновременное уменьшение E_a и E_f сопровождается возрастанием нестабильности. Кривые еще более загибаются вниз. Подключение дополнительных емкостей $C'_{g\kappa}$ и C'_{κ} не должно не-

Подключение дополнительных емкостей С_{*g*^{*k*}} и С^{*k*} не должно непосредственно отразиться ни на температурном режиме, ни на емкости пространственного заряда. Поэтому нет оснований связывать с ними наблюдаемое понижение кривых нестабильности и неудачу компенсации с помощью подбора ».

За счет изменения нелинейной поправки на период частота с понижением питающих напряжений должна увеличиваться, так как происходит приближение к порогу генерации. Последнее, как известно, сопровождается понижением содержания гармоник и возрастанием частоты.

Расчеты, кроме того, показывают, что уход частоты за счет нелинейной поправки на два порядка меньше наблюдаемых на опыте. Таким образом, и эта причина не дает объяснения наблюдаемым кривым. Ранее отмечалось, что воздействие двухполюсника с катодной связью на частоту генератора нужно оценивать с помощью средней за период динамической емкости двухполюсника. Указанная емкость определяется средним действием различных участков вольтамперной характеристики, захватываемых в процессе колебаний и имеющих неодинаковые динамические емкости. Подстановка конкретных значений величин, входящих в формулы (31), (32) и (33), показывает, что динамическая емкость на падающем участке больше, чем на ветвях. С изменением питающих напряжений меняется амплитуда колебаний, а также емкости отдельных участкови их доля в средней динамической емкости; меняется поэтому и величина последней.

При уменьшении E_a амплитуда колебаний падает несколько быстрее, чем E_a [5], доля среднего участка от этого вазрастает и "интегральная" динамическая емкость увеличивается. В результате с понижением E_a частота уменьшается (кривая 1, рис. 12). Если одновременно с E_a пропорционально уменьшать E_f , изменения параметров ламп будут более глубокими и падение амплитуды более быстрым. Это приведет к еще большему западанию кривой нестабильности. Подключение $C'_{g\kappa}$ или C'_{κ} несколько ухудшит условия самовозбуждения и приведет к более быстрому уменьшению амплитуды с понижением E_a и E_f . Это усиливает эффект средней динамической емкости и приводит к возрастанию нестабильности.

Таким образом, по крайней мере, качественно ход наблюдаемых кривых нестабильности и неудача компенсации уходов частоты с помощью надлежащего подбора у объясняются изменениями средней динамической емкости.

При снятии кривых рис. 12 мы меняли », подключая к генератору только $C'_{g\kappa}$ или только C'_{κ} , чтобы не сильно понижать частоту контура. Если ввести в схему одновременно обе дополнительные емкости $C'_{g\kappa}$ и C'_{κ} , можно легко получить предсказываемую теорией компенсацию нестабильности. Успех компенсации в этом случае связан с уменьшением эффекта средней емкости. В выражениях (29) и (30) для динамических емкостей на ветвях члены с ω^2 при увеличении C_{gk} и C_k за счет дополнительных емкостей получают преобладающее значение

и емкости C_{cd-} и C_{cd+} будут приблизительно равными $\frac{C_k C_k}{C_{g\kappa} + C_k}$)

Такой же будет и емкость на падающем участке. Средняя за период динамическая емкость почти не будет при этом зависеть от амплитуды. Ее влияние на стабильность частоты уменьшается.

На рис. 14 кривая 1 изображает зависимость нестабильности от E_a для генератора без дополнительных емкостей. При подключении в схему $C_{g'_{\kappa}} = 37 \, n\phi$ и $C'_{k} = 80 \, n\phi$ нестабильность определяется уже кривой 2. Частота при этом понижается с 10,85 до 8,25 *мггц* за счет увеличения общей емкости в контуре. Если такое же понижение частоты получить за счет увеличения емкости основного конденсатора контура, то кривая нестабильности оказывается лишь немногим лучшей, чем при минимальной емкости в контуре (кривая 3, рис. 14).

Нужное отношение емкостей было получено следующим образом. Конденсатор C'_{κ} был взят равным 80 *пф*, а емкость $C'_{g\kappa}$ подстраивалась так, чтобы при анодном напряжении $E_a = 160 \, s$ получить макси-

¹⁾ Здесь в $C_{g\kappa}$ и C_{κ} включены как наразитные, так и дополнительные емкости.

мальную амплитуду. Последняя измерялась ламповым вольтметром, подключенным к контуру. Без какой - либо дополнительной подстройки получилась кривая 2 рис. 14. Это является подтверждением изложенной выше теории, которая предсказывала совпадение наивыгоднейших условий самовозбуждения (и, следовательно, условий получения максимальной амплитуды колебаний) с условиями наилучшей стабильности частоты.

Кривые, аналогичные изображенным на рис. 14, но полученные при одновременном пропорциональном изменении обоих питающих напряжений Е_a и E_f, показаны на рис. 15. И в этом случае легко достига-

Рис. 15

ется компенсация нестабильности путем увеличения емкостей C_{gk} и C_k и подбора надлежащего соотношения между ними.

Таким образом, рассмотренная здесь параметрическая стабилизация позволяет обеспечить постоянство частоты при изменении питающих напряжений в широких пределах. Она, однако, не имеет никакого отношения к уходам частоты, связанным с изменением параметров самого контура вследствие температурных, механических и других воздействий. В отношении указанных воздействий генератор с катодной связью ничем не отличается от других схем. Поэтому их влияние следует ослаблять обычными методами повышения эталонности колебательного контура (применением температурной компенсации, улучшением конструкции контура и т. д.).

Выводы

1. Надлежащим выбором отношения $\gamma = \frac{C_{g_{\kappa}}}{C_{\kappa}}$ между емкостями

 C_{gk} и C_k двухнолюсника с катодной связью можно получить наивыгоднейшие условия самовозбуждения генератора, образованного двухнолюсником и подключенным к нему колебательным контуром.

2. Эти условия при небольших анодных сопротивлениях $R_a^{(1)}$ (порядка 10 ком) не зависят от частоты и сохраняются неизменными вплоть до очень высоких частот, на которых большую роль играют индуктивности вводов и конечное время пролета электронов. В случае больших $R_a^{(2)}$ (порядка 100 ком) при указанной оптимальной величине $\gamma = \gamma_0$ имеет место даже улучшение условий самовозбуждения с повышением частоты.

3. При значениях ν , заметно отличающихся от $\nu = \nu_0$, условия самовозбуждения с повышением частоты ухудшаются.

4. Динамическая входная емкость двухполюсника с катодной связью при $\nu = \nu_0$ не зависит от параметров лами и от частоты колебаний и имеет минимальную величину, равную статической емкости двухнолюсника.

5. Значению у = у соответствует наилучшая стабильность генератора с катодной связью по частоте.

6. На коротких волнах, когда резонансное сопротивление контура Z_p сравнимо с отрицательным сопротивлением двухполюсника ρ , компенсацию с помощью изменения одной только емкости C_{gk} или C_k получить не удается. Однако одновременное увеличение обеих емкостей и выбор соответствующего отношения между ними позволяют легко компенсировать нестабильность. При этом амплитуда колебаний, в согласии с теорией, оказывается максимальной, а численные значения γ_0 — близкими к теоретическим.

7. Компенсация нестабильности, о которой говорилось в предыдущем пункте, некритична. Она обеспечивает постоянство частоты при изменении питающих напряжений в широких пределах.

8. Наблюдаемые на опыте отклонения от теории объясняются действием причин, не учитываемых ею. Из них наибольшее значение имеет изменение средней за период колебаний динамической емкости.

¹⁾ Или при одинаковых параметрах лами ($S_1 = S_2$).

²⁾ Или при разных нараметрах лами $(S_1 \neq S_2)$.

1. Sulzer, P. G. Cathode - Coupled Negative - Resistance Circuit, PJRE, v. 36, Nb. 8, 1948.

2. Колосов А.А. Резонансные системы и резонансные усилители, Связьиздат, M., 1949.

3. Боде Г. Теория цепей и проектирование усилителей с обратной связью, пер.
 с англ. под ред. А. А. Колосова и Л. А. Меерэвича, изд. ин. литер., М., 1948.
 4. Черне Х. И. Схемы измерения полных сопротивлений шунтового типа с от-

рицательной вещественной частью, Радиотехника, т. 4, № 5, 1949.

5. Суслов, И.А. Нелинейная теория генератора с катодной связью, Известия ТПИ, **т. 86**, 1958.

,