РАСЧЕТНОЕ ОПРЕДЕЛЕНИЕ ВРЕМЕНИ ПРОГРЕВА И ОБЪЕМА ВЫДЕЛЯЕМОЙ ГАЗОВОЙ ФАЗЫ ИЗ ЧАСТИЦЫ ТОПЛИВА

Ceчин A.И., д.т.н., профессор, e-mail: sechin@tpu.ru Мезенцева И.Л., ст. преподаватель, e-mail: mezenceva@tpu.ru Ceчин A.A., к.т.н., доцент, e-mail: seanal@tpu.ru

Томский политехнический университет, 634050, г. Томск, пр. Ленина, 30

Взгляды специалистов по обеспечению безопасности производств хранения, транспортирования и переработке горючих пылей, а также их сжигания, формировались и на базе практических наблюдений. Они направлены не только на предупреждение формирования горючей среды, учета способности к воспламенению, способности к генерации в горючей среде источников зажигания. Авторы [1-5] отмечают, что ежегодно пылевые взрывы и пожары наносят значительный ущерб народному хозяйству.

Известно, что увеличение площади контакта фаз при измельчении угольных материалов вызывает выделение в окружающую среду некоторого объема газовой фазы. Данный эффект используется при сжигании угольных топлив, время и объем выделяемых газов при нагреве угольной частицы представляет несомненный интерес, так как на этих показателях формируются режимы сжигания топлива.

Целью настоящей работы являлось определение времени прогрева и расчетного объема выделяемой газовой фазы из частицы топлива.

Определение времени прогрева сухой частицы. Объектом методической апробации была выбрана бензойная кислота (ЧДА) как вещество, широко обращающееся в промышленности. Показатели пожаро- и взрывоопасности взяты из справочника [6]. Брутто формула $C_7H_6O_2$; молекулярная масса 122,82; горючий белого цвета кристаллический порошок с массовой долей основного вещества 99,8 %; температура плавления 1221–123 °C; температура вспышки 143 °C; температура воспламенения 151 °C; температура самовоспламенения 514 °C; аэрогель не воспламеняется при кратковременном воздействии малокалорийного источника зажигания; аэровзвесь взрывоопасна: нижний предел воспламенения 27,5 г/м³; удельное объемное электрическое сопротивление более 10^{14} Ом·м.

Авторами [71–8] было установлено, что на зажигание и горение аэровзвеси бензойной кислоты не влияет температура источника зажигания, что говорит о том, что структурная формула не подлежит изменениям при нагреве частицы и не образует паровой фазы при нагреве до 514 °C. Свыше данной температуры начинаются окислительные процессы, приводящие к пламенному горению.

Расчеты проводились для частиц диаметром δ , двигающимися в реакционной камере с изменяющимся температурным полем от 20 °C до 1100 °C, для режимов от 293 К до 1373 К.

Газовая среда в камере – воздух, Тг.

Начальная температура частиц – 293 К, Тч.

Плотность частиц оч составляет 1539,74 кг/м3.

Исходя из критерия Федорова [9]
$$Fe = \delta_3^3 \sqrt{\frac{4g(\rho_u - \rho_c)}{3\upsilon^2 \rho_c}}$$
, (1)

Определяем критерий Нуссельта
$$Nu = 0.4Fe^{0.9}$$
, (2)

где υ – кинематическая вязкость газа, (условно берем среднюю величину при 508 °C, $\upsilon = 40.61 \cdot 10^{-6} \text{ m}^2/\text{c}$); ρ_c – плотность газовой среды, кг/м³, принимаем $\rho_c = 1.03 \text{ кг/m}^3$.

Были получены расчетные величины среднего диаметра частиц критерия Нуссельта, которые представлены в табл. 1.

Таблица 1 Расчетные величины среднего диаметра частиц критерия Нуссельта

Средний диаметр	δ_1	δ_2	δ_3	δ_4	δ_5	δ_6
частиц, б, мм	0,0315	0,0815	0,1300	0,1800	0,2250	0,2825
Nu	0,325	0,698	1,063	1,562	1,909	2,343

Принимаем условие, что за полное время прогрева частицы принимается то время, за которое частица примет от нагреваемого реакционного объема среды 95 % максимально возможного количества тепла.

Тогда удельная теплоемкость частицы Суд. ч согласно [10] будет Суд. $\mathbf{q} = \mathbf{C}\mathbf{q} + \mathbf{0},000209 \cdot \mathbf{T}\mathbf{q}$.

Удельную теплоемкость частицы определяем из выражения ее связи [11] с молярной теплоемкостью, [Дж/кг·К].

$$C_{\mathbf{q}} = \frac{C_{\text{мол}}}{\mu} \,, \tag{3}$$

где µ – молярная масса вещества; Смол – молярная теплоемкость вещества [11].

$$\mu = 122,12; \ C_{\text{мол}} = 146,8. \ \text{Тогда} \ C_{\text{ч}} = 1,202 \left\lceil \frac{\text{КДж}}{\text{кг} \cdot \text{K}} \right\rceil.$$

Затем определяем удельную теплоемкость частиц по выражению

$$C_{yд. \ q} = 1,375 \left[\frac{KДж}{к\Gamma \cdot K} \right].$$

По таблицам [12] определяем $\lambda_{\scriptscriptstyle \Gamma} = 0{,}305 \left\lceil \frac{K \mbox{Дж}}{\kappa \Gamma \cdot K} \right\rceil.$

На основе полученных данных определяем полное время прогрева частиц [10]

$$\tau_{\frac{\varrho}{Q}} \le 0.384 \frac{C_{\mathbf{q}} \rho_{\mathbf{q}} \delta^2}{\lambda_{\mathbf{r}} N u} \lg \left(1 - 0.95 \right), \tag{4}$$

где δ – диаметр частицы, м.

Полученные расчетные результаты сводим в табл. 2.

Таблица 2 Время прогрева частиц определенного диаметра в реакционной камере с изменяющимся температурным полем от 20 $^{\circ}$ С до 1100 $^{\circ}$ С

Средний диаметр	δ_1	δ_2	δ_3	δ_4	δ_5	δ_6
частиц, б, мм	0,0315	0,0815	0,1300	0,1800	0,2250	0,2825
τ_n , c	0,038	0,120	0,198	0,260	0,330	0,430

По полученным данным строим зависимость времени прогрева частицы от ее диаметра в реакционной камере с инициирующим источником зажигания и изменяющимся температурным полем от $20~^{\circ}$ C до $1100~^{\circ}$ C.

Анализируя полученную зависимость можно сказать, что время прогрева частицы диаметром 100 мкм до температуры 1100 °C составляет 0,07 с. В реальных условиях, согласно теории горения, частица уже большей своей частью сгорит [10]. Можно полагать, что от плотности пылевого облака будет зависеть как формирование фронта горения, так и режим горения.

Так же следует иметь в виду, что представленная зависимость относится к бензойной кислоте, взятой как наиболее изученное вещество, как при моделировании, так и отработке методических вопросов экспериментального характера. Привнесение в данный процесс выделения летучих, при моделировании прогрева угольных частиц, который отразится на характере наклона данной зависимости, который будет расти по отношению к оси абсцисс.

Разумеется, что угольная частичка будет иметь несколько другое время, так как будет газифицироваться на первом этапе, а на последующем, когда выделившийся газ самовоспламениться, будет интенсивнее прогреваться. Так что данные времена можно считать сопоставимыми в данном процессе как времена индукции рассматриваемого процесса.

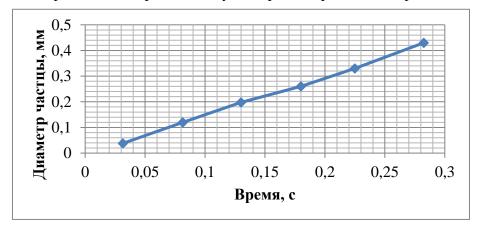


Рис. 1. Зависимость времени прогрева частицы от ее диаметра в реакционной камере с изменяющимся температурным полем от $20\,^{\circ}\mathrm{C}$ до $1100\,^{\circ}\mathrm{C}$

Определение кинетических констант деструкции. Следующим шагом является определение кинетических констант деструкции частицы топлива. Деструкцию рассматриваем как процесс выделения летучих из угольной частицы.

Взяв за основу известное уравнение [10], имеем:

$$\frac{U_u^2}{a} = \Theta_0^5 k_0 5,35 \cdot 10^{-2} e^{-\frac{1.5E}{RT_a}}.$$
 (5)

Обозначив $C = 5.35 \cdot 10^{-2} \Theta_0^5$ и прологарифмировав его имеем следующее выражение

$$\ln\left(\frac{U_n^2}{a}\right) = \ln\left(C \cdot k_0\right) - \frac{1.5E}{RT_a},$$
(6)

где T_a — теоретическая (адиабатическая) температура процесса, К; $\Theta_0 = \frac{T_0}{T_a}$ — начальная без-

размерная температура; T_0 — начальная термодинамическая температура, К; $U_{\rm H}$ — нормальная скорость распространения пламени, м/с.

В полулогарифмической системе координат это выражение представляется прямой линией, и $tg\alpha$ пропорционален энергии активации E, а длина отрезка прямой отсекаемого от оси ординат пропорциональна k_0 .

Сухая частица топлива за время подлета в реакционной камере к инициирующему источнику зажигания нагревается до $T=1393\,$ К. Необходимо количественно определить объемный выход из нее газовой фазы (объем летучих, в об. %) при достижении некоторой температуры T.

Энергию активации Е принимаем равной 96800 $\left\lfloor \frac{K Дж}{\kappa \Gamma \cdot K} \right\rfloor$ (для сухого оксида углерода), при $k_0 = 7,05 \cdot 10^6 \; \text{c}^{-1}$. R = 8,314; $\Delta \tau = 0,038 \; \text{c}$.

Принимаем за величину временного интервала — $\tau_n - \tau_{n-1}$.

Тогда по представленному ниже выражению [10], произведем расчет выхода объема летучих газов за один временной интервал.

$$A_{n} = \exp\left[-k_{0}\left(\tau_{n} - \tau_{n-1}\right) \exp\left(-\frac{E}{RT_{u}}\right)\right]$$
(7)

Проведенные расчеты показали, что при данных условиях частица топлива за время подлета в реакционной камере к источнику зажигания нагревается и из нее выделяется до 18,4 % газовой фазы. А это значит, что первый этап горения аэровзвеси будет проходить в газовой фазе. На следующем этапе горение будет проходить после распада тяжелых жидкофазных молекул и углеродного остатка.

Выводы. В результате проведенного исследования было установлено, что в период формирования газодисперсного облака и приближении его к источнику зажигания в реакционной камере происходит его нагрев. Получена зависимость, показывающая, что время прогрева частицы диаметром 100 мкм до температуры 1100 °C составляет 0,07 с. Расчеты показали, что в результате нагрева топливной частицы объем выделения из твердой фазы летучих компонентов составляет 18,4 % к массе твердой фазы. Можно утверждать, что самовоспламенение выделившихся летучих компонентов инициирует образование фронта горения. Это говорит о том, что первый этап горения аэровзвеси угольного топлива проходит в газовой фазе и является определяющим в процессе инициирования и развития фронта горения в газодисперсном облаке.

Список литературы

- 1. Кафаров В.В., Мешалкин В.П. Анализ и синтез химико-технологических систем. М.: Химия, 1991. 432 с.
- 2. Бесчастнов М.В. Взрывобезопасность и противоаварийная защита химикотехнологических процессов. М.: Химия, 1983. 472 с.
- 3. Пряников В.И. Техника безопасности в химической промышленности. М.: Химия. 1989. 285 с.
 - 4. Маршалл В. Основные опасности химических производств. М.: Мир, 1989. 678 с.
- 5. Корольченко А.Я. Пожаровзрывобезопасность промышленной пыли. М.: Химия, 1986. 216 с.
- 6. Баратов А.Н., Корольченко А.Я. Пожаро- взрывоопасность веществ и материалов и средства их тушения / Справочник. М.: Химия. Т. 1, 2. 1990. 880 с.
- 7. Сечин А.И. Безопасность систем перерабатывающих пылеобразующие материалы. // Химия и технология лекарственных препаратов и полупродуктов. Матер. научн.-прак. конф. Томск: Изд-во ТПУ, 2002. С. 5–34.
- 8. Сечин А.И., Яшин В.Я. Влияние температуры нагрева источника зажигания на нижний концентрационный предел распространения пламени в аэровзвесях // Известия Томского политехнического университета, Томск: 2003. Т. 6. С. 45–51.
- 9. Сена Л.А. Единицы физических величин и их размерности. Изд. 2, переработ. и дополн. М., Наука, 1977.-336 с.
- 10. Зельдович Я.Б., Баренблатт Г.И., Либрович В.Б., Махвиладзе Г.М. Математическая теория горения и взрыва. М.: Наука. 1980. 478 с.
- 11. Рабинович В.А., Хавин З.Я. Краткий химический справочник. Изд. 2. исп. и доп. Л.: Химия, 1978. 392 с.
- 12. Вукалович М.П., Кириллин В.А., Ремизов С.А. и др. Термодинамические свойства газов. М.: Машгиз, 1953.