ИЗВЕСТИЯ томского ордена трудового красного знамени политехнического института имени С. М. Кирова

Том 150

1968 r.

ИНЖЕНЕРНЫЙ МЕТОД ТЕПЛОВОГО РАСЧЕТА НАМАГНИЧИВАЮЩИХ ОБМОТОК БЕТАТРОНОВ С ВОЗДУШНЫМ ОХЛАЖДЕНИЕМ

Г. Ф. ШИЛИН, Г. И. ФУКС

Надежный выбор и расчет системы охлаждения намагничивающих обмоток бетатронов требует знания распределения температуры на поверхности вертикальных рядов шинок обмотки и закона теплообразования в ее объеме.

Рис. 1. К инженерному методу теплового расчета намагничивающей обмотки бетатрона.

Если тепловыделение постоянно по объему вертикального ряда шинок, то закон распределения температуры по его высоте можно найти по методике, данной в [1]. Однако наши эксперименты показали, что обыч-114 но тепловыделение по высоте вертикального ряда шинок линейно зависит от вертикальной кородинаты, то есть

$$\boldsymbol{q}_{o} = \boldsymbol{L} + \boldsymbol{M}\boldsymbol{x}, \ \boldsymbol{s}\boldsymbol{m}/\boldsymbol{M}^{3}, \tag{1}$$

где *х* — вертикальная координата обмотки в *м* (рис. 1).

Следовательно [1], можно, пользуясь этим соотношением, определить закон изменения температуры по стенке вертикальных рядов шинок обмотки в различных случаях.

а) Воздух подается в щели обмотки

снизу при X = 0 (рис. 1). Тогда

$$t_{\rm cr}(X) = t_{\rm BX} + \frac{2U}{\rm Pe} \operatorname{Nu} \frac{a}{s} \sum_{m=1}^{\infty} A_m \left(\sin \mu_m X - \frac{\mathrm{Bi}}{\mu_m} \cos \mu_m X + \frac{\mathrm{Bi}}{\mu_m} \right) + \sum_{m=1}^{\infty} A_m \left(\mu_m \cos \mu_m X + \mathrm{Bi} \sin \mu_m X \right).$$
(2)

б) Воздух подается в щели обмотки сверху при X = 1. Тогда

$$t_{\rm cr}(X) = t_{\rm BX} - \frac{2U}{\rm Pe} \,\mathrm{Nu} \cdot \frac{a}{s} \,\sum_{m=1}^{\infty} A_m \left[(\sin \mu_m \, X - \sin \mu_m) - \right]$$
(3)

$$-\frac{\mathrm{Bi}}{\mu_m}\left(\cos\mu_m X - \cos\mu_m\right) + \sum_{m=1}^{\infty} A_m \left(\mu_m \cos\mu_m X + \mathrm{Bi} \cdot \cos\mu_m X\right).$$

В формулах (2) и (3):

$$A_{m} = \frac{F(\mu_{m}) \cdot \operatorname{sh} \frac{\mu_{m}}{\eta}}{\mu_{m} \cdot D(\mu_{m}) \left[\mu_{m} \operatorname{sh} \frac{\mu_{m}}{\eta} + \operatorname{Bi} \operatorname{ch} \frac{\mu_{m}}{\eta} \right]}; \qquad (4$$

$$D(\mu_{m}) = \frac{1}{2\mu_{m}} \left\{ \mu_{m}^{2} (\mu_{m} + 0.5 \sin 2\mu_{m}) + \operatorname{Bi}^{2} (\mu_{m} - 0.5 \sin 2\mu_{m}) + 2\mu_{m} \cdot \operatorname{Bi} \cdot \sin^{2} \mu_{m} \right\};$$

$$F(\mu_{m}) = \frac{\beta}{\mu_{m}} \left[\mu_{m} \cdot \sin \mu_{m} + \operatorname{Bi} (1 - \cos \mu_{m}) \right] + \frac{\gamma}{\mu_{m}^{2}} \left[\mu_{m} \cdot \cos \mu_{m} (1 - \operatorname{Bi}) + \sin \mu_{m} (\operatorname{Bi} + \mu_{m}^{2}) - \mu_{m} \right];$$

$$\beta = 4 \frac{L}{\lambda_{\text{SKB}}} \cdot a^{2}; \quad \gamma = 8 \frac{M}{\lambda_{\text{SKB}}} \cdot a^{3}; \quad \eta = \frac{a}{b};$$

$$X = \frac{x}{2a}; \quad \operatorname{Bi} = \frac{a \cdot 2a}{\lambda_{\text{SKB}}}; \quad \operatorname{Pe} = \frac{W \cdot 2s}{a^{*}}; \quad \operatorname{Nu} = \frac{a \cdot 2s}{\lambda_{\text{BOSAJYX}}};$$

W — скорость воздуха в охлаждающих щелях обмотки в *м/сек*;
 а — коэффициент теплоотдачи в щели обмотки к воздуху

- с температурой $t_{\rm BX}$ в ${\it вm}/{\it M}^2 \cdot {\it rpad}.;$
- s ширина охлаждающей щели в м (рис. 1);

а* и λ_{возд} — коэффициент температуропроводности и теплопроводности воздуха;

λ_{экв} — эквивалентный коэффициент теплопроводности обмотки в *вт/м.град.*;

Таблица 1

Корни уравнения

	$2Bi \cdot \mu_m$				
		$lg\mu_m = \frac{1}{\mu_m^2}$	— Bi ²	Allana Cire	
	Koola La Place	• 11	TO HOLO DA CAL		
	Bi	μ1	μ_2	μ.3	
		Actionaly M			
1 -	0,005	0,099947	3,1448	6,2848	
2	0,01	0,13970	3.14799	6,28637	
3	0,02	0.19966	3,15420	6,2396	
4	0,03	0.24433	3,1605	6,2926	
5	0,04	0,28190	3,1668	6.2956	
6	0,05	0,31491	3,1731	6,29905	
7	0,06	0,34468	3,1793	6,3020	
8	0,07	0,37200	3,1852	0,3053	
9	0,08	0,39733	3,1914	6,3084	
. 10	0,09	0,42111	3,1979	6.3114	
11	0,10	0,4.353	3,20400	6,31485	
12	0,20	0,62210	3,2638	6,3459	
1. 1. 13 ···	0,30	0,75574	3,32173	6.37710	
14	0,40	0.86567	3,3773	6,4076	
15	0.50	0,96020	3,43101	6,43320	
16	0,60	1,0433	3,4827	6,4680	
17	0,70	1,1183	3,5327	6,4977	
18	0,80	1,1864	3 5810	6,5271	
19	0,90	1,2488	3,6280	6.5 59	
20	. 1,0	1,3052	3,67919	6,58462	
21	1,1	1,3600	3,7168	0,6127	
22	1,2	1,4100	3,7592	6,6406	
23	1,3	1,4568	3,8007	6,6680	
24	1,4	1,5009	3,8407	6,6954	
25	1,6	1,5820	3,9170	6,7484	
26	1,8	1,6545	3,9892	6,8006	
27	2,0	,7206	4,05740	6,85120	
28	2,2	1,7806	4,1218	6,9003	
29	2,4	1,8 56	4,1833	6,9483	
30	2.6	1,8862	4,2415	6,9946	
31	2.8	1,9330	4,2965	7,0400	
32	3,0	1,9763	4,3492	7,0842	
3 3 1	3,5	2,0723	4,4699	7,1892	
34	4,0	2,1536	4,5777	7,2868	
35	4,5	2,2236	4,6742	7,3783	
36	5,0	2,28445	4,76129	7,46367	
2014-0-0-1037-110	116 5,5 00000	2,3377	4,8395	7,5430	
38	6,0	2,3848	4,9112	7,6174	

 $\cdot \cdot \cdot \cdot \zeta_{i} = \{ i \in \mathcal{N}_{i} \}$

.

¥.

.

	B ₁	μ1	.μ2	μ3
39	6,5	2,4268	4,9762	7,6868
40	7,0	2,4645	5,0357	7,7518
41	7,5	2,4983	5,0903	7,8127
42	8,0	2,5289	5,1406	7,8715
43	8,5	2,5571	5,1872	7,9225
44	9,0	2,5824	5.2300	7,9745
45	9,5	2,6059	5.2700	8,0221
46	10	2,62768	5,30732	8,06713
47	20	2,8577	5.7253	8.6115
48	30	2,9456	5 8950	8,8509
49	40	2,9921	5,9859	8,9827
50	50	3.02090	6.04265	9,06626
51	60	3,0402	6.0809	9,1230
52	70	3,0542	6,1087	9,1642
53	87	3,0648	6,1302	9,1957
54	90	3.0731	6,1464	9,2 07
55	e. 100	3,0800	6.16014	8,24480
56	x i	3,1416	6,2832	9,4248

Продолжение таблицы 1

 U — периметр проходного сечения охлаждающей щели обмотки в м;

$$\mu_m$$
 — корни уравнения $\mathfrak{1g}\,\mu_m = \frac{2\mathrm{Bi}\cdot\mu_m}{\mu_m^2 - \mathrm{Bi}^2}$.

Первые три корня этого уравнения, найденные на ЭЦВМ "Промінь", представлены в табл. 1.

Соотношения (2) и (3) можно упростить, если учесть, что ряды в них быстро сходятся. При инженерных расчетах можно пользоваться этими зависимостями с одним членом ряда, m = 1. Тогда: а) воздух подается в щели обмотки

снизу при X = 0 (рис. 1),

$$t_{\rm cr}(X) = t_{\rm BX} + \frac{2U}{\rm Pe} \cdot \operatorname{Nu} \frac{a}{\rm s} A_1 \left(\sin \mu_1 X - \frac{\rm Bi}{\mu_1} \cos \mu_1 X + \frac{\rm Bi}{\mu_1} \right) + A_1 \left(\mu_1 \cos \mu_1 X + {\rm Bi} \sin \mu_1 X \right),$$
(5)

где A_1 вычисляется по (4) при m = 1.

Координата максимальной температуры находится из выражения:

$$X_{\max} = \frac{1}{\mu_1} \operatorname{arctg} \left[\frac{-\mu_1 \left(\operatorname{Bi} - \frac{2U}{\operatorname{Pe}} \operatorname{Nu} \frac{a}{s} \right)}{\operatorname{Bi} \left(\frac{\mu_1^2}{\operatorname{Bi}} + \frac{2U}{\operatorname{Pe}} \operatorname{Nu} \frac{a}{s} \right)} \right]; \quad (6)$$

б) воздух подается в щели обмотки сверху при X = 1 (рис. 1),

117

Contactor'

ria techomosi sh

A PERSONAL STR

$$t_{\rm cr}(X) = t_{\rm nx} - \frac{2U}{{\rm Pe}} \operatorname{Nu} \cdot \frac{a}{s} A_1 \left[(\sin \mu_1 X - \sin \mu_1) - \frac{{\rm Bi}}{\mu_1} (\cos \mu_1 X - \cos \mu_1) \right] + A_1 (\mu_1 \cos \mu_1 X + {\rm Bi} \cdot \sin \mu_1 X).$$
(7)

Координата максимальной температуры определяется из соотношения:

$$X_{\max} = \frac{1}{\mu_{1}} \operatorname{arctg} \left[\frac{\mu_{1} \left(\operatorname{Bi} + \frac{2U}{\operatorname{Pe}} \operatorname{Nu} \cdot \frac{a}{s} \right)}{\operatorname{Bi} \left(\frac{\mu_{1}^{2}}{\operatorname{Bi}} - \frac{2U}{\operatorname{Pe}} \cdot \operatorname{Nu} \cdot \frac{a}{s} \right)} \right].$$
(8)

Для вычисления A_1 по (4) построена номограмма, что значительно сокращает труд вычислительных операций (рис. 2).

Рис. 2. Номограмма для вычисления величины А1 по формуле (4).

Тепловой расчет намагничивающей обмотки бетатрона, основанный на использовании соотношений (5) — (8), должен следовать за электро-118

Таблица 2

Инженерная методика теплового расчета намагничивающей обмотки бетатрона

№ п. п.	Величина	Обозначе- ние	Расчетные соотношения	Размер- ность	Примечание
1	2	3	4	5	6
-10	and a second star second s		Данные для расчета		and the set of the set of the
Ŧ	Тип бетатрона				
2	Высота исследуемого вертикаль- ного ряда шинок	2 a	рис. 1	м	Тепловой расчет надо вести по и 2 рядам по счету от полюса больше других нагруженных в теп ловом отношении
3	Ширина вертикального ряда ши- нок	46	рис. 1	M	DRC 1
4	Намагничивающая сила вторич- ной обмотки	I_2w_2			Необходима для электромодели рования поля рассеяния бетатрона для оценки теплообразования в ря дах шинок
5	Сечение шинки обмотки	κ×l		\mathcal{MM}^2	
6	Сопротивление вторичной обмотки	R		ОМ	Later 1
7	Намагничивающий ток	I_2		a	
8	Теплоактивных потерь в меди намагничивающей обмотки	Q	$I_2^2 R$	8 <i>m</i>	

Продолжение таблицы 2

1	2	3	4	5	6
9	Объем намагничивающей обмотки	V	$2\left(2\pi\sum_{i=1}^{n}R_{i}\cdot4b\cdot2a\right)$	м ³	рис. 1
10	Теплообразование в намагничиваю- щей обмотке	<i>qv^{akt}</i>	$q_v^{\text{akt}} = \frac{Q}{V}$	вт м ³	Необходимо для нахождения теп- ловыделения от вихревых токов по [2]
11	Температура воздуха на входе в охлаждающие щели обмотки	$t_{\scriptscriptstyle \mathrm{BX}}$	- <u>-</u> -	°C	
12	Допустимая температура нагрева отмотки	t _{доп}		°C	
13	Ширина охлаждающих щелей	8		м	рис.1
14	Тепловыделение в объеме верти- кального ряда шинок как от вихре- вых токов [2], так и от активных потерь в меди обмотки	q_v	$q_v = L + M \cdot x$	вт м3	х—в м
15	Направление движения воздуха в щелях		Снизу вверх или сверху вниз		рис. 1
16	Эквивалентный коэффициент теплопроводности обмотки	λ _{экв}	$\lambda_{\mathbf{3KB}} = \lambda_0 + \delta \cdot t_0$	<i>вт∣</i> м∙°С	Найдено из опыта для шинки $10 \times 3,28 \text{ мм}^2$: 1) оплетка шин—два слоя стекло- волокна (ПСД [5]), пропитка—ба- келитовый дак, $\lambda_{3 \kappa B} = 2.523 + 2,03 \cdot 10^{-4} \cdot t \text{ вт/м} \circ C$; 2) оплетка та же, пропитка—дак $N \ge 447 \text{ ГОСТ } 6244 - 52$, $\lambda_{3 \kappa B} = 1,452 + 9,995 \cdot 10^{-4} \cdot t \text{ вт/м} \circ C$

120

Продолжение таблицы 2

1	2	3	4	5	6
17	Суммарная площадь проходного сечения всех охлаждающих каналов 2 частей обмотки	$\sum_{i} S_{i}$		M ²	рис. 1

Тепловой расчет намагничивающей обмотки бетатрона

1	Скорость движения воздуха в охлаждающих каналах обмотки	W		м сек	Задаемся
2	Критерий Пекле	Ре	$Pe = \frac{W \cdot 2s}{a^*}$		Теплофизические характеристики воздуха берутся при $t_{\rm BX}^{\circ}{ m C}$
3	Эквивалентный коэффициент теп- лопроводности оомотки при <i>t</i> допус.	λ _{экв}	$\lambda_{\mathfrak{SKB}} = \lambda_0 + \delta \cdot t_{\mathfrak{AOR}}$	вт∣м °С	
4	Периметр проходного сечения 1 погонного метра щели	U	U=1+s+1+s	M	Расчет удобнее вести для 1 по- гонного метра щели
5	Коэффициент теплоотдачи в ще- ли обмотки	α	Nu=f(Re, Pr, Gr)	<i>вт м</i> 2°С	По [3] или [4] в зависимости от режима течения
6	Критерий Био	Bi	$Bi = \alpha \cdot 2a / \lambda_{\Im KB}$		
7	Корень трансцендентного уравне- ния	μ	$tg\mu_m = \frac{2Bi \cdot \mu_m}{\mu^2 m - Bi^2}$		Из таблицы № 1

121

Продолжение таблицы 2

1	2	3	4	5	6
8	Комплекс	β	$\beta = 4La^2/\lambda_{3KB}$	°C	
9	Комплекс	γ.	$\gamma = 8M \cdot a^3 / \lambda_{\mathfrak{I},G}$	°C	
10	Отношение размеров вертикально- го ряда шинок	η	$\eta = \frac{a}{b}$		Рис. 1
11	Коэффициент в формулах (5) – (8)	A_1		°C	Из номограммы рис. 2 по вели- чинам Ві, β, γ, γ
12	Максимальная температура на по- верхности ряда шинок из (5)—(8)	t _{max}	Аналитически или графически	°C	
13	Сравниваем t _{max} и t _{доп}		Должно быть совпадение, то есть $t_{\max} = t_{\text{доп}}$		При несовпадении t_{max} и $t_{доп}$ за- даются другим значением скорости воздуха W, и расчет повторяется
14	Полное количество воздуха, не- обходимое для охлаждения оомотки	Q'	$Q' = W \cdot \sum_{i} S_i \cdot 3500$	м ³ /час	Величина Q' необходима для вы- оора вентилятора системы охлаж- дения бетатрона

122

техническим расчетом. Последний дает геометрические размеры и ряд электротехнических параметров, которые необходимы для количественной оценки распределения тепла в вертикальных рядах шинок обмотки методом моделирования вихревого поля [2].

Удобно вести тепловой расчет в форме табл. 2, записав в первой части все данные, необходимые для расчета. В конечном итоге рассчитывается величина скорости воздуха в охлаждающих каналах обмотки, при которой максимальная температура на поверхности обмотки не превышает допустимую. По скорости воздуха и суммарной площади проходного сечения всех охлаждающих каналов верхней и нижней обмоток бетатрона рассчитывается общее количество воздуха, потребное для охлаждения обмотки.

ЛИТЕРАТУРА

1. В. В. Иванов, Г. Ф. Шилин. Тепловой расчет намагничивающей обмотки бетатрона с воздушным охлаждением. Изв. вузов-Электромеханика, № 8, 1964.

2. С. И. Лурье. Математическое моделирование магнитных полей рассеяния трансформаторов и реакторов на электропроводящей бумаге. Электричество, № 10, 1965. 3. Ф. М. Тарасов. Тонкослойные теплообменные аппараты. Машгиз, 1964. 4. С. С. Кутателадзе, В. М. Боришанский. Справочник по теплопереда-

че. Госэнергоиздат, 1959.

A Blacks

5. Электротехнический справочник, т. 1. Госэнергоиздат, 1962.

un a faran den aver an annañ er a trean de marcheter, ere en an an Landa - ren plant e enerte an ferri Lasanañ en an trean er an Annar an an an plante ereter a t

ERANGSCRAP, AND DESCRIPTION OF STREET, STREET,