ИЗВЕСТИЯ томского ордена трудового красного знамени политехнического института им. С. М. Кирова

Том 151

1966

ТЕРМИЧЕСКОЕ РАЗЛОЖЕНИЕ СУЛЬФИТА СЕРЕБРА ПРИ НИЗКИХ ТЕМПЕРАТУРАХ

Г. Г. САВЕЛЬЕВ, В. А. БУДКОВ, А. А. КАБАНОВ, Ю. А. ЗАХАРОВ

(Представлена кафедрой радиационной химии)

В ряде работ [1, 2, 3] было изучено термическое разложение сульфита серебра при температурах выше 150°С. Найдено, что в этой области реакция структурночувствительна и что имеются определенные корреляции между влиянием гомофазных добавок на термическое разложение и электропроводностью образованных добавками твердых растворов.

Продолжая эти исследования, мы изучили термическое разложение сульфита серебра при температурах 100—150°С, а также измерили его электропроводность в диапазоне 20—200°С.

Исследования проводились на состаренных препаратах, полученных по методике, описанной в работе [3], из исходных препаратов марки ч. д. а.

Рис. 1. Кривые термического разложения сульфита серебра. *Р*-давление в системе.

Для термического разложения использовали объемную высоковакуумную установку [4]. За скоростью термического разложения следили по изменению давления в замкнутой системе. Для термического разложения брали навески 4 ± 0,2 мг давление в ходе разложения изменялось от 10⁻³ до 3 · 10⁻¹ мм Hg. На рис. 1 представлено несколько типичных 36 кривых термического разложения чистого сульфита серебра при нескольких температурах. Из рисунка видно, что в некотором интервале температур скорость разложения уменьшается с увеличением температуры. Мы подробно (через 2—3°С) исследовали этот интервал. Результаты представлены на рис. 2 в координатах скорость разложения, в относительных единицах — температура опыта.

Из представленного рисунка видно, что на кривой температурной зависимости скорости разложения имеется характерный изгиб с максимумом и минимумом соответственно при 120 и 145°С. Подобные результаты получены также для препарата Ag₂SO₃, содержащего 1% Pb ++ (рис. 2).

Для измерения удельной электропроводности (о) мы прессовали из Ag₂SO₃ образцы размерами 25 мм × 5,92 мм × 2 мм при давлении 2000 кг/см², 20°С, с выдержкой давления в течение 3 минут. Плотность

образцов без поправки на пористость составляла 4,1 г/см³. Давление прессования подбирали из условия отсутствия трибохимического разложения Ag_2SO_3 . Электроды из аквадага наносили на грани 5,92 \times 2 мм. Образцы с электродами сушили перед измерениями при 50°С в течение 14 часов. До прессования порошок хранился над P_2O_5 40 дней. Сопротивление измеряли на воздухе, при атмосферном давлении тераомметром E6-3; максимальная погрешность измерения $\pm 5\%$. Температуру измеряли медь-константановой термопарой, спай которой помещался в дополнительном, контрольном образце, и термометром. Было исследовано 3 образца, расхождение в величинах σ между ними было не более 15%.

На рис. З приведена полученная зависимость электропроводности Ag_2SO_3 от температуры в координатах $Ig \sigma - \frac{1}{T^\circ K}$. По ходу нагрева энергия активации дважды меняется и составляет 0,86; 1,7 и 0,56 эв. с точками перегиба (Б и В) при 110 и 147°С.

Из литературы нам известен лишь один пример аномалий в температурной зависимости скорости термического разложения, подобных установленным нами и описанным в настоящем сообщении. Такие аномалии наблюдаются в области модификационного перехода (около 240°С) при термическом разложении перхлората аммония и объяснены авторами работы [5] эндотермичностью перехода. Азид серебра также имеет модификационный переход при температуре разложения (180—190°С), однако в температурной зависимости скорости разложения в точке модификационного перехода наблюдается лишь изменение энергии активации с 35 до 42 ккал/моль, т. е. найден лишь один перегиб [6]. Этот вопрос, по-видимому, специально не исследовался. В работе [7] показано, что в точке модификационного перехода AgN_3 имеется перегиб в температурной зависимости электропроводности, причем температурный ход проводимости внешне почти полностью аналогичен показанному на рис. 3 для Ag_2SO_3 , т. е. при повышении температуры кажущаяся энергия активации сначала (в области перехода) повышается, а потом понижается (рис. 7 из работы [6]). Таким образом, имеется почти полная аналогия в поведении Ag_2SO_3 в интервале температур 100—150°С и в поведении AgN_3 и NH4ClO4 при моди-

Рис. 3. Температурная зависимость электропроводности сульфита серебра.

фикационных переходах. На основании этих аналогий можно сделать предположение о наличии модификационного перехода в Ag₂SO₃ при 110—145°C.

кристалличе-Перестройка ской решетки Ag₂SO₃ и наличие теплового эффекта (вероятно, эндотермического), сопровождающего этот процесс, а также изменение условий контакта между отдельными кристаллами в спрессованном Ag₂SO₃ приводит к резкому увеличению проводимости сульфита в интервале 117—142°С. Эти процессы, по-видимому, полностью заканчиваются при 142 +2°С, и приболее высоких температурах мы имеем дело с новой модификацией Ag₂SO₃, термолиз которой изучен в работах [1-3].

Интересно отметить, что тем-

пературная область аномального термолиза Ag₂SO₃ — интервал БВ (120—145°С) на рис. 2 с отрицательной энергией активации разложения — несколько уже температурного участка БВ (рис. 3), для которого наблюдается увеличение проводимости и возрастание энергии активации процесса.

При обсуждении возможных причин особого поведения Ag₂SO₃ в интервале 120—145°С остается неясным наличие двух перегибов на кривой скорость — температура разложения. В связи с последним нужно заметить, что вторая возможная причина появления аномалий в температурной зависимости скорости термического разложения Ag₂SO₃ может быть связана с образованием при температурах 120—145°С дитионата серебра по реакции ион — радикала SO₃ с сульфитом серебра, как это показано в ряде старых работ [8, 9, 10].

Дальнейшее исследование причин наблюдаемых аномалий в температурной зависимости скорости термолиза Ag₂SO₃ нами будет продолжено.

ЛИТЕРАТУРА

М. П. Гилевич, М. М. Павлюченко. ДАН БССР, 4, № 9, 384, 1960.
 М. П. Гилевич, М. М. Павлюченко. Сб. «Гетерогенные химические реакции» под ред. М. М. Павлюченко. Изд. МВС и СОБССР, Минск, стр. 22, 1961.
 Ю. А. Захаров, Г. Г. Савельев. Кинетика и катализ, 5, 2, 1964.
 Г. Г. Савельев, Ю. Захаров. Журн. физ. хим. 39, 2808, 1965.
 Вігситва, Newman, Proc. Roy. Soc. A-226, 1167—1168, A-227, 1169—1171, 1955.

6. Bartlett, F. Tompkins, A. Ioung, Proc. Roy. Soc., A-231, 1051, 1959.
7. D. A. Ioung, Brit, J. Appl. Phys, 15, № 5, 499, 1964.
8. H. Banbiny, Compt. Rend, 149, 858, 1069, 1909.
9. H. Banbiny, Bull. Soc. chim, 7, 51, 1910.
10. H. Banbiny, Ann. chim. Phys. 20, 5, 1910.