Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://earchive.tpu.ru/handle/11683/64552
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorKanaeva, I. A.en
dc.contributor.authorIvanova, Yulia Aleksandrovnaen
dc.date.accessioned2021-03-01T06:58:58Z-
dc.date.available2021-03-01T06:58:58Z-
dc.date.issued2021-
dc.identifier.citationKanaeva I. A. Road pavement crack detection using deep learning with synthetic data / I. A. Kanaeva, Yu. A. Ivanova // IOP Conference Series: Materials Science and Engineering. — 2021. — Vol. 1019 : 14th International Forum on Strategic Technology (IFOST 2019) : October 14-17, 2019, Tomsk, Russia. — [012036, 10 p.].en
dc.identifier.urihttp://earchive.tpu.ru/handle/11683/64552-
dc.description.abstractThe improvement of road system quality is a critical task. The mechanism to address such important issue is close monitoring of road pavement condition. Traditional approach requires manual identification of damages. Taking into account considerable length of road system it is essential to create an effective automatic pavement defects detection tool. This approach will extremely reduce time for monitoring of current road state. In this paper global experience in solution of detection issues of road pavement's distress is reviewed. The article includes information about the existing datasets of road defects, which are commonly used for detection and segmentation. The present work is based on deep learning approach with the use of synthetic generated training data for segmentation of cracks in driver-view image. The novelty of the approach lies in creating synthetic dataset for training state-of-the-art deep learning frameworks. The relevance of the research is emphasized by processing of wide-view images in which heterogeneous pixel intensity, complex crack topology, different illumination condition and complexity of background make the task challenging.en
dc.format.mimetypeapplication/pdf-
dc.language.isoenen
dc.publisherIOP Publishingen
dc.relation.ispartofIOP Conference Series: Materials Science and Engineering. Vol. 1019 : 14th International Forum on Strategic Technology (IFOST 2019). — Bristol, 2021en
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rightsAttribution-NonCommercial 4.0 Internationalen
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/-
dc.subjectтрещиныru
dc.subjectдорожные покрытияru
dc.subjectдефектыru
dc.subjectсегментацияru
dc.subjectизображенияru
dc.titleRoad pavement crack detection using deep learning with synthetic dataen
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/conferencePaper-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dcterms.audienceResearchesen
local.description.firstpage012036-
local.filepathhttps://doi.org/10.1088/1757-899X/1019/1/012036-
local.identifier.bibrecRU\TPU\network\34712-
local.identifier.perskeyRU\TPU\pers\45859-
local.localtypeДокладru
local.volume1019-
local.conference.name14th International Forum on Strategic Technology (IFOST 2019)en
local.conference.date2019-
dc.identifier.doi10.1088/1757-899X/1019/1/012036-
Располагается в коллекциях:Материалы конференций

Файлы этого ресурса:
Файл Описание РазмерФормат 
doi.org_10.1088_1757-899X_1019_1_012036.pdf1,05 MBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons