Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://earchive.tpu.ru/handle/11683/64584
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorGoncharov, Arkady Sergeevichen
dc.contributor.authorSavelyev, Aleksey Olegovichen
dc.contributor.authorKrinitsyn, N.en
dc.contributor.authorMikhalevich, Sergey Sergeevichen
dc.date.accessioned2021-03-01T06:59:02Z-
dc.date.available2021-03-01T06:59:02Z-
dc.date.issued2021-
dc.identifier.citationAutomated anomalies detection in the work of industrial robots / A. S. Goncharov, A. O. Savelyev, N. Krinitsyn, S. S. Mikhalevich // IOP Conference Series: Materials Science and Engineering. — 2021. — Vol. 1019 : 14th International Forum on Strategic Technology (IFOST 2019) : October 14-17, 2019, Tomsk, Russia. — [012095, 6 p.].en
dc.identifier.urihttp://earchive.tpu.ru/handle/11683/64584-
dc.description.abstractThis article describes the results of the anomalies automated detection algorithm development in the operation of industrial robots. The development of robotic systems, in particular, industrial robots, and software for them is ahead of the tracking and managing technologies development. The operation of the digital production system involves the generation of a large amount of various data characterizing the state of both the specific equipment and the industrial system as a whole. Such a system produces a sufficient amount of data to develop machine learning models to analyse this data to solve problems such as forecasting and modelling. As part of the study, an experiment was conducted based on the equipment of the laboratory of industrial robots of Tomsk Polytechnic University. In the course of the research, the industrial manipulator moved loads belonging to different classes by weight. An algorithm was developed for the automated analysis of the values of the parameters of the consumed current and the position of the manipulator.en
dc.format.mimetypeapplication/pdf-
dc.language.isoenen
dc.publisherIOP Publishingen
dc.relation.ispartofIOP Conference Series: Materials Science and Engineering. Vol. 1019 : 14th International Forum on Strategic Technology (IFOST 2019). — Bristol, 2021en
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rightsAttribution-NonCommercial 4.0 Internationalen
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/-
dc.subjectалгоритмыru
dc.subjectаномалииru
dc.subjectавтоматическое обнаружениеru
dc.subjectпромышленные роботыru
dc.subjectпрограммное обеспечениеru
dc.subjectмашинное обучениеru
dc.subjectпромышленные манипуляторыru
dc.titleAutomated anomalies detection in the work of industrial robotsen
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/conferencePaper-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dcterms.audienceResearchesen
local.description.firstpage012095-
local.filepathhttps://doi.org/10.1088/1757-899X/1019/1/012095-
local.identifier.bibrecRU\TPU\network\34776-
local.identifier.perskeyRU\TPU\pers\46770-
local.identifier.perskeyRU\TPU\pers\31388-
local.identifier.perskeyRU\TPU\pers\31381-
local.localtypeДокладru
local.volume1019-
local.conference.name14th International Forum on Strategic Technology (IFOST 2019)en
local.conference.date2019-
dc.identifier.doi10.1088/1757-899X/1019/1/012095-
Располагается в коллекциях:Материалы конференций

Файлы этого ресурса:
Файл Описание РазмерФормат 
doi.org_10.1088_1757-899X_1019_1_012095.pdf619,5 kBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons