Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://earchive.tpu.ru/handle/11683/81929
Название: Оптимизация работы компрессорной установки с применением технологий искусственного интеллекта
Другие названия: Optimization of compressor unit operation using artificial intelligence technologies
Авторы: Власов, Александр Евгеньевич
Лазарева, Любовь Владимировна
Ключевые слова: нейронные сети; алгоритмы машинного обучения; оптимизация работы; компрессорная установка; neural networks; machine learning algorithms; operation optimization; compressor installation
Дата публикации: 2023
Издатель: Томский политехнический университет
Библиографическое описание: Власов, А. Е. Оптимизация работы компрессорной установки с применением технологий искусственного интеллекта / А. Е. Власов, Л. В. Лазарева // Известия Томского политехнического университета [Известия ТПУ]. Промышленная кибернетика. — 2023. — Т. 1, № 4. — С. 28-33.
Аннотация: В работе была рассмотрена возможность использования нейронных сетей и алгоритмов машинного обучения для оптимизации расхода топливного газа компрессорной установкой. Были исследованы зависимости предложенных данных с автоматизированной системы управления технологическим процессом компрессорной станции и их влияние на расход агрегатом топливного газа. Примененные методы корреляционного анализа и изучение технологического процесса перекачки газа позволили выделить 18 признаков, имеющих наибольшее влияние на целевой параметр, которые далее были использованы для построения имитационной модели - нейронной сети, позволяющей по входным данным предсказывать расход топливного газа. На основе модели был построен оптимизатор с применением градиентного спуска, который при установленных ограничениях входных данных находит оптимальные параметры работы компрессорной установки в заданных диапазонах, минимизирующих расход топливного газа. Разработанный алгоритм позволяет снизить расход газа единичного агрегата на 2 %
Abstract. The work examined the possibility of using neural networks and machine learning algorithms to optimize fuel gas con-sumption by a compressor unit. The authors have studied the dependences of the proposed data from the automated process con-trol system of the compressor station and their impact on fuel gas consumption of the unit. The applied methods of correlation anal-ysis and the study of the technological process of gas pumping made it possible to identify 18 features that have the greatest impact on the target parameter. These features were then used to build a simulation model -a neural network, which allows predicting fuel gas consumption based on input data. Based on the model, an optimizer was built using gradient descent, which, under established input data restrictions, finds the optimal operating parameters of the compressor unit in specified ranges that minimize fuel gas consumption. The developed algorithm allows reducing the gas consumption of a single unit by 2 %
URI: http://earchive.tpu.ru/handle/11683/81929
ISSN: 2949-5407
Располагается в коллекциях:Известия Томского политехнического университета. Промышленная кибернетика

Файлы этого ресурса:
Файл РазмерФормат 
b_TPU_IndCyb-2023-v1-i4-04.pdf1,36 MBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons