Tom 172 1967

ИССЛЕДОВАНИЕ КОММУТАЦИОННОГО ПРОЦЕССА В ОБМОТКЕ УПРАВЛЕНИЯ БЕСКОЛЛЕКТОРНОГО ЭЛЕКТРОМАШИННОГО УСИЛИТЕЛЯ РЕГУЛИРУЕМОЙ ЧАСТОТЫ (БЭМУ—РЧ)

А. И. СКОРОСПЕШКИН, Б. Е. ТРОФИМЕНКО

(Рекомендована семинаром кафедр электрических машин и общей электротехники)

В связи с развитием систем на переменном токе выдвигается проблема создания электромашинных усилителей (коллекторных и бескол-

лекторных), работающих на переменном токе.

На кафедре электрических машин Томского политехнического института ведется разработка и исследование бесколлекторных электромашинных усилителей регулируемой частоты (БЭМУ-РЧ), представляющих собой электромашинно-полупроводниковую систему [1]. Одним из важнейших вопросов исследования такой системы является исследование работы полупроводникового коллектора во взаимосвязи с обмоткой управления.

В настоящей работе исследуется процесс коммутации в обмотке

управления БЭМУ—РЧ, снабженной тиристорным коллектором.

На рис. 1 представлена схема УПК с обмоткой управления. Обозначения на схеме:

Е_v — источник постоянного тока, питающий обмотку управления; $B_{1-\kappa}$; $A_{1-\kappa}$ — вентили управляемые и диоды, присоединенные по

схеме к положительной клемме источника Е,;

 $B'_{1-\kappa}$; $Д''_{1-\kappa}$ — вентили управляемые и диоды, присоединенные по схеме к отрицательной клемме источника Е_v;

 W_s — секция обмотки управления с индуктивностью L_s и активным сопротивлением г ;

С — коммутирующие емкости.

Схема УПК позволяет с различной частотой менять диаметральные точки подключения источника Е, к обмотке, тем самым получать вращающийся магнитный поток с необходимой частотой

$$f_{y} = \frac{t_{\Pi}}{K} , \qquad (1)$$

где f_{π} — частота переключения точек обмотки; K — количество отводов от ОУ (всегда четное).

При исследовании процесса коммутации рассматриваем случай установившегося режима, при котором частота переключения fn такова, что ток в ОУ за период следования импульсов переключения успевает возрасти до величины, определяемой ее активным сопротивлением и Е, при этом предполагаем, что другие цепи БЭМУ—РЧ не оказывают влияния на процесс коммутации в ОУ, пренебрегаем влиянием потерь в стали магнитопровода и явлением взаимной индукции.

Из рис. 1 видно, что схема симметрична, потому достаточно будет рассмотреть переходный процесс при переключении питания, например, с точек 1; $-\frac{K}{2}$ + 1 на точки 2; $\frac{K}{2}$ +2 (рис. 2).

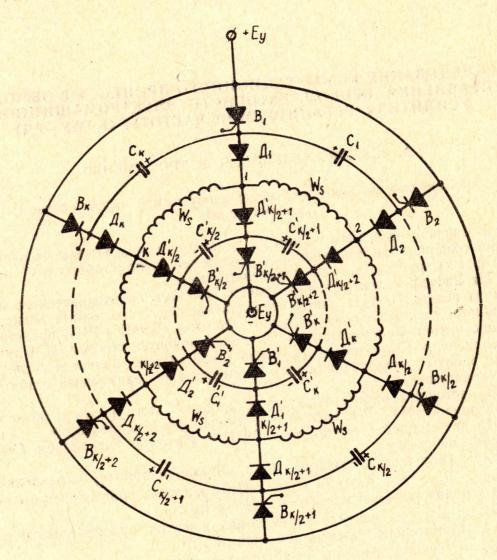


Рис. 1. Электрическая схема УПК с ОУ.

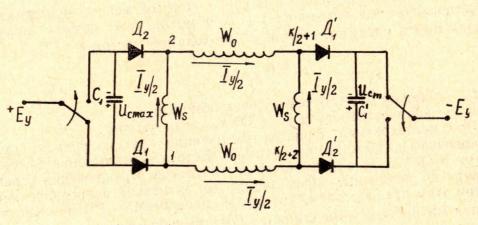


Рис. 2

1

Пусть до момента $t_0=0$ открыты тиристоры $B_{\bf b}$ $B_{\bf l}$, т. е. ОУ подключена к $E_{\bf y}$ точками 1, $\frac{K}{2}+1$. Через обмотку управления протекает ток, равный

$$I_{y} = \frac{4E_{y}}{r_{s} \cdot K} \,. \tag{2}$$

Коммутирующие конденсаторы заряжены (полярность показана на схеме), причем конденсаторы, расположенные между катодами B_{κ} — B_1 , B_1 — B_2 , B'_{κ} — B'_1 , B'_1 — B'_2 , заряжены до напряжения максимально возможного для схемы. Ниже будет показана $U_{\rm cmax}$ от параметров схемы и режима работы ее. В момент t_0-0 схема управления подает импульсы на управляющие электроды тиристоров B_2 , B'_2 , которые миновенно открываются, а тиристоры B_1 и B'_1 , также быстро обесточиваются конденсаторами С1 и С'1 соответственно, и к ним прикладывается обратное напряжение конденсаторов. Коммутирующие конденсаторы с этого момента теряют свой заряд по цепи В2-С1- $-\Pi_1$ — OY — Π'_1 — G'_1 — G'_2 до полной его потери. В течение этого времени диоды Д2 и Д'2 будут закрыты напряжением на конденсаторах С1 и С'1. Одновременно С1 и С'1 теряют заряд по путям С1В1В2 и С1'В1'В2' в течение времени восстановления обратного сопротивления тиристоров B_1 и B'_1 . Время восстановления обратного сопротивления B_1 , B'_1 и величина теряемого конденсаторами заряда через них так малы по отношению ко всему времени коммутации и к первоначальному заряду на обкладках С1, С1, что при рассмотрении процесса коммутации без существенного снижения точности принимаем $\Delta t_{\rm B} = 0$, $\Delta q = 0$. С момента времени, когда $U_c=0$, начинают проводить диоды \mathcal{A}_2 , \mathcal{A}'_2 . Ток в коммутируемых секциях W_s изменяет направление на обратное. Конденсаторы C_1 , C'_1 заряжаются до — $U_{\rm cmax}$ (полярность обратная полярности на схеме рис. 1). С приходом управляющих импульсов на следующую по схеме пару тиристоров В3, В'3 процесс повторяется.

Кратко рассмотрев физическую картину коммутационного процесса, переходим к его математическому исследованию, для чего сделаем ряд допущений:

- 1) тиристоры и диоды в схеме УПК имеют идеальную характеристику;
- 2) источник питания Е_у имеет внутреннее сопротивление, равное нулю;
- 3) в процессе коммутации участвуют только два конденсатора C_1 , C_1' , влияние остальных емкостей кольца незначительно;
 - 4) собственной емкостью и индуктивностью монтажа пренебрегаем.

Для аналитического исследования процесса разбиваем полное время коммутации на два этапа: первый этап времени t_0 — t_1 определяется временем разряда коммутирующих конденсаторов на ОУ; второй этап t_1 — t_2 — время установления обратного тока в секции W_s и заряда конденсатора до — U_{cmax} .

На рис. З представлена схема для исследования этапа t_0 — t_1 , где $L_{\rm v}$ — индуктивность всей обмотки управления,

гу — активное сопротивление ОУ.

Уравнение для определения тока имеет следующий вид:

$$E_{y} = L_{y} \cdot \frac{di_{y}}{dt} + i_{y} \cdot r_{y} - \frac{2}{C} \int_{t_{0}}^{t_{1}} i_{y} \cdot dt.$$
 (3)

Рис. 3. Схема для исследования первого этапа коммутации (t_0-t_1) .

Из уравнения (3) находим ток в обмотке управления

$$i_{y} = \left(\frac{E_{y} + 4U_{cmax}}{2L_{y}\omega_{y}}\sin\omega_{y} \cdot t + I_{y} \cdot \cos\omega_{y} \cdot t\right) \cdot e^{-\alpha_{y} \cdot t}, \tag{4}$$

где

$$\boldsymbol{\omega_y} \! = \! \sqrt{\frac{2}{L_{\boldsymbol{y} \cdot \boldsymbol{C}} - \boldsymbol{\alpha}^2 \boldsymbol{y}}} \! \approx \! \sqrt{\frac{2}{L_{\boldsymbol{y} \cdot \boldsymbol{C}}}} \,, \label{eq:objective_power_power}$$

$$\mathbf{\alpha_y} = \frac{\mathbf{r_y}}{2\mathbf{L_y}}$$
, причем $\mathbf{\alpha_y} \ll \frac{2}{\mathbf{L_y} \cdot \mathbf{C}}$, $\mathbf{i_y}(\mathbf{t}) = \mathbf{i_c}(\mathbf{t})$. (5)

В уравнении (4), определяющем ток через ОУ, членом $e^{-\alpha_y}$ можно пренебречь, так как $e^{-\alpha_y t} \approx 1$.

Из уравнения для напряжения на конденсаторе найдем аналитическое выражение времени первого этапа:

$$U_{c} = \frac{1}{C} \int_{ic}^{1} (t) \cdot dt = 0.$$
 (6)

Решая совместно (4, 5, 6), получим

$$t_1 = \frac{1}{\omega_y} \arcsin \frac{\alpha_y \cdot \omega_y \cdot (B^2 - A^2) + AB \cdot (\omega_y^2 - \alpha_y^2)}{(\alpha_y^2 + \omega_y^2) \cdot (A^2 + B^2)}, \qquad (7)$$

где

$$A = \frac{E_y + 4 \, U_{\text{cmax}}}{2 L_y \, \omega_y} \; , \; B = I_y \; . \label{eq:alpha}$$

Значение тока в ОУ в конце первого этапа определяем подстановкой t_1 из (7) в уравнение (4). Величину тока этого момента обозначим I_y^1 .

Итак, начало второго этапа характеризуется следующим: напряжение на коммутирующих конденсаторах равно нулю, в ОУ протекает ток I_y , диоды \mathcal{L}_2 , \mathcal{L}_2' начинают проводить.

На рис. 4 показана схема для исследования процесса коммутации во втором периоде t_1-t_2 , где W_0- параллельная ветвь обмотки без одной коммутируемой секции, L_0- индуктивность ее, r_0- активное сопротивление.

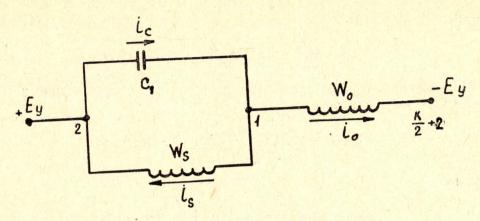


Рис. 4. Схема для исследования второго этапа коммутации (t_1-t_2) .

Исходные уравнения для определения токов второго этапа следующие:

$$E_{y} = \frac{1}{C} \int_{t_{1}}^{t_{2}} i_{c} \cdot dt + r_{0} \cdot i_{0} + L_{0} \cdot \frac{di_{0}}{dt};$$

$$0 = i_{s} \cdot r_{s} + L_{s} \cdot \frac{di_{s}}{dt} - \frac{1}{C} \int_{t_{1}}^{t_{2}} i_{c} \cdot dt.$$
(8)

Решая уравнения (8) относительно токов i_s , i_o , i_c операторным методом, получаем уравнение третьей степени. При нахождении оригинала по изображению первый не может быть практически выражен в общем виде через коэффициенты уравнения третьей степени. Поэтому, учитывая тот факт, что $L_o \gg L_s$, считаем ток через L_o в течение второго этапа постоянным, равным $i_{v1} = \frac{1}{2} I_v^{-1}$. Допущение отвечает точности, необходимости для практического расчета схемы. В действительности ток в L_s и L_o к концу второго этапа имеет величину $i'y_2| < |iy_1|$. Величина $\Delta i_v = i_{v1} - i_{v2}$ в дальнейшем будет определена.

Исходные уравнения для определения токов i_s и i_c для принятого выше условия:

$$L_{s} \cdot \frac{di_{s}}{dt} + r_{s} \cdot i_{s} = U_{c};$$

$$i_{y_{1}} = i_{s} + C \cdot \frac{dU_{c}}{dt}.$$
(9)

Из них находим

$$i_{s} = i_{v1} \cdot (2e^{-\alpha}_{s} \cdot \cos \omega_{s} \cdot t - 1); \tag{10}$$

$$i_{\mathbf{c}} = I_{\mathbf{y}^{1}} \cdot 1^{-\alpha \mathbf{s} \cdot \mathbf{t}} - \cos \omega_{\mathbf{s}} \cdot \mathbf{t}, \qquad (11)$$

где
$$\alpha_{\rm S}=\,rac{\Delta_{
m S}}{2L_{
m S}},\;\; \omega_{
m S}=\sqrt{rac{1}{L_{
m S}\cdot C}-\alpha_{
m S}}\,;\;rac{1}{L_{
m S}\cdot C}\gg\alpha_{
m S}.$$

Из уравнения (10) видно, что ток i_s установится равным — i_{y_1} при значении аргумента косинуса равным $\frac{\pi}{2}$ т. е. $\omega_s \cdot t = \frac{\pi}{2}$,

$$t_2 = \frac{\pi}{2\omega_s} \approx \frac{\pi}{2} \sqrt{L_s \cdot C} \,. \tag{12}$$

Напряжение, до которого зарядится конденсатор, за время t_1-t_2 , находим из уравнения:

$$U_{\text{cmax}} = \frac{I}{C} \int_{t_1}^{t_2} \frac{-\alpha_s t}{\cdot l_x \cos \omega_s t \cdot dt}, \qquad (13)$$

откуда

$$U_{c \max} = \frac{I_y^1}{C \cdot \omega_s} \approx I_y^1 \cdot \sqrt{\frac{L_s}{C}}. \tag{14}$$

Суммируя интервалы времени первого и второго этапов, определяем полное время коммутации.

$$t_{K} = \frac{1}{\omega_{y}} \arcsin \frac{\alpha_{y} \cdot \omega_{y} \cdot (B^{2} - A^{2}) + AB \cdot (\omega_{y}^{2} - \alpha_{y}^{2})}{(\alpha_{y}^{2} + \omega_{y}^{2}) \cdot (A^{2} + B^{2})} + \frac{\pi}{2\omega_{s}}.$$
 (15)

Учитывая тот факт, что в установившемся режиме $4U_{cmax}\gg E_y$ и для данной схемы $\alpha_y\ll \sqrt{\frac{2}{L_v\cdot C}}$ время первого этапа коммутации

запишется:

$$t_1 \approx L_y \cdot \frac{\sqrt{L_s \cdot C}}{2L_s + L_y}, \tag{16}$$

откуда

$$t_{\rm K} \approx L_{\rm y} \frac{\sqrt{L_{\rm s} \cdot C}}{2L_{\rm s} + L_{\rm y}} + \frac{\pi}{2} \sqrt{L_{\rm s} \cdot C} [{\rm ce}_{\rm K}].$$
 (17)

Определив время и ток коммутации в секции W_s , из условия постоянства тока в W_o , мы теперь можем рассчитать с достаточной точностью изменение тока в части обмотки W_o за период t_1 — t_2 .

Согласно рис. 4, запишем уравнение:

$$E_{\mathbf{y}} - L_{\mathbf{s}} \cdot \frac{d\mathbf{i}_{\mathbf{s}}}{dt} - L_{\mathbf{0}} \cdot \frac{d\mathbf{i}_{\mathbf{0}}}{dt} = 0, \tag{18}$$

откуда получаем

$$\Delta i_{y}\!=\!\int_{t_{1}}^{t_{2}}\!\!\frac{E_{y}}{L_{0}}\ dt-\frac{L_{s}}{L_{0}}\int\limits_{t_{y_{1}}}^{t_{y_{1}}}\!\!\!di_{s}\;.$$

Окончательно

$$\Delta i_{y} = \frac{E_{y} \cdot \pi}{L_{0} \cdot 2\omega_{s}} - \frac{L_{s}}{L_{0}} 2i_{y_{1}}. \tag{19}$$

К концу второго этапа в обмотке управления установится ток, равный

$$I_{y_2} = I_{y^1} - 2 \cdot \left(\frac{L_s}{L_o} I_{y^1} - \frac{E_y \cdot \mathbf{\tau}}{2L_o \cdot \omega_s} \right), \tag{20}$$

после чего он установится до исходной величины $I_{\mathbf{v}}$ по закону

$$i_{y} = I_{y_{2}} + \left(\frac{E_{y}}{r_{y}} - I_{y_{2}}\right) \cdot \left(1 - 1 - 1 - 1 - 1 - 1 - 1 - 1\right). \tag{21}$$

Практически было замечено, что при начальном включении схемы на низких частотах переключения коллектор не входил в установившийся режим работы. Наблюдался режим короткого замыкания, обусловленный тем, что тиристор, открывшийся в схеме первым, не закрывался при коммутации тока на следующий тиристор.

Исследуем процесс включения УПК на обмотку. Пусть подано напряжение питания, тиристоры заперты. В какой-то момент включаем схему управления, момент t_0 фиксирован подачей импульсов на тиристоры, например, B_1 , B_1' (рис. 1), которые открываются практически

мгновенно.

Постоянная времени цепи заряда емкостей С много меньше постоянной времени обмотки управления

$$\Sigma_{r} \cdot C^{1} \ll \frac{L_{y}}{r_{y} + \Sigma_{r}},$$

$$C^{1} = \frac{4 \cdot C}{K}.$$
(22)

 Σ г — сумма прямых сопротивлений двух диодов и двух открытых тиристоров Д₁, Д $\frac{\kappa}{2}+1$, В₁, В'₁; при этом Σ г \ll гу.

Поэтому принимаем, что конденсаторы заряжаются практически мгновенно (по отношению ко времени установления тока в ОУ) до величины

$$U_{c} = -\frac{E_{y} \cdot 2}{K} \cdot \tag{23}$$

В обмотке управления ток устанавливается по закону

$$i_{y} = \frac{E_{y}}{r_{y}} \cdot \left(1 - 1 - \frac{r_{y}}{L_{y}} \cdot t\right). \tag{24}$$

Выше указывалось, что время первого этапа коммутации t_1 — есть время, в течение которого к предыдущему тиристору в кольце УПК прикладывается обратное напряжение, равное напряжению на коммутирующем конденсаторе. Напряжение же U_c за t_0 — t_1 падает до нуля, т. е.

$$t_1 \geqslant t_B$$
 (25)

будет условием устойчивого запуска коллектора.

t_в — время восстановления управляющих свойств тиристора в пря-

мом направлении.

Из уравнения (7) видно, что t_1 зависит от параметров обмотки и УПК, U_{cmax} , $E_{\boldsymbol{y}}$, $I_{\boldsymbol{y}}$. При $E_{\boldsymbol{y}} = \text{const}$, $U_{\boldsymbol{c}} = \frac{2 \cdot E_{\boldsymbol{y}}}{K} = \text{const}$ параметры ОУ остаются постоянными, изменяться может только $i_{\boldsymbol{y}}$.

Из уравнения (24) видно, что i_y зависит от t. За время $t=T_{\Pi}=\frac{1}{f_{\Pi}}$ ток в обмотке возрастает до $i_{y\Pi}$.

Из уравнения (23) находим частоту переключения

$$f_{\mathbf{n}} = \frac{1}{\tau_{\mathbf{y}} \cdot \ln \frac{E_{\mathbf{y}}}{E_{\mathbf{y}} - i_{\mathbf{y}\mathbf{n}} \cdot r_{\mathbf{y}}}}.$$
 (26)

Из (7) получаем

$$\sin \omega_y t = \frac{4E_y \cdot L_y \cdot \omega_y \cdot K (K+8) \cdot i_{yn}}{[E_y \cdot (K+8)]^2 + (4L_y \cdot \omega_y \cdot K \cdot i_{yn})^2},$$

решая относительно іуп, находим

$$i_{y\pi} = \frac{2 \cdot E_y \cdot (K+8)}{8 \cdot L_y \cdot \omega_y \cdot K \cdot \sin \omega_y \cdot t}. \tag{27}$$

Подставляя (27) в (26), находим частоту устойчивого запуска коллектора

$$f_n \geqslant \frac{1}{\tau_y \cdot l_n \frac{S}{S - r_y \cdot (K + 8)}},$$
 (28)

где

$$S = 2L_{y} \cdot \omega_{y} \cdot K \cdot \sin \omega_{y} \cdot t_{B}.$$

На основании теоретического анализа и полученных выше аналитических выражений был спроектирован, изготовлен и испытан опытный образец тиристорного коллектора с обмоткой управления для БЭМУ—РЧ. УПК выполнен по схеме рис. 1.

Обмотка управления представляет собой кольцевую обмотку якорного типа с K=12, индуктивностью $L_y=52,5\cdot 10^{-3}$ пн, активным сопротивлением $r_{\mathbf{v}}=0,36$ ом.

Полная индуктивность секции $L_s = 2,6\cdot 10^{-3}$ гн. Активное сопротивление секции $r_s = 0,12$ ом. Индуктивность части обмотки $L_o = 36,0\cdot 10^{-3}$ гн.

В табл. 1 приведены теоретические и экспериментальные данные времен первого и второго этапов коммутации для ОУ с приведенными выше параметрами. Как видно из таблицы, расчетные данные достаточно точно соответствуют экспериментальным.

Таблица 1

	Теоретические данные	Экспериментальные данные
I _y [a]	от 1 до 10	от 1 до 10
С [мкф]	10	10
t ₁ [мксек]	148	140
t ₂ [мксек]	258	300
С [мкф]	5	5
t ₁ [мксек]	104	100
t ₂ [мксек]	180	210
С [мкф]	1	1
t ₁ [мксек]	46	45
t ₂ [мксек]	81	105

На рис. 5 построены кривые изменения тока в коммутируемой секции для $I_y = 5$ а. Каждая из трех кривых соответствует определенной величине коммутируемой емкости: а) C=10 мкф; б) C=5 мкф; в) C=1 мкф.

На рис. 6 а приведена осциллограмма тока в параллельной ветви ОУ с учетом коммутации, а на рис. 6 б ток коммутируемой секции.

Экспериментальная проверка граничной частоты устойчивого запуска коллектора полностью подтвердила полученные теоретические данные.

Таким образом, результаты проделанной работы можно сформулировать следующим образом:

1. Разработана схема тиристорного коллектора, изготовлен опытный образец УПК, учитывающий особенности работы обмотки управле-

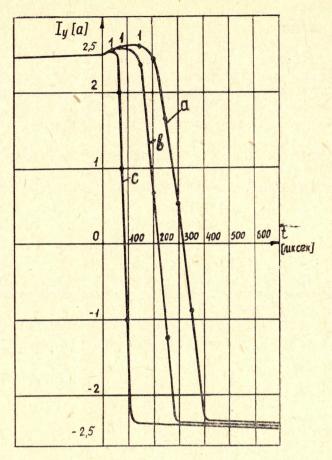


Рис. 5. Кривые тока коммутации в секции. а) C=10 мкф, б) C=5 мкф, в) C=1 мкф. Точки 1 на кривых соответствуют концу первого этапа.

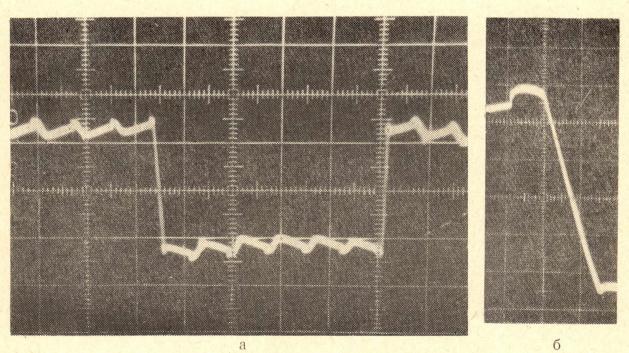


Рис. 6а. Ток секции с учетом коммутации.

Рис. 6б. Ток коммутации в секции.

ния в схеме бесколлекторного электромашинного усилителя регулируемой частоты.

2. Рассмотрена физическая картина процесса коммутации и на ее

основе составлены схемы замещения.

3. Получены уравнения тока в обмотке управления и коммутируемой секции, перенапряжения на коммутируемой секции и конденсаторе, действительное для любых режимов работы УПК и ОУ.

4. Определено время коммутации, частота устойчивого запуска

УПК.

5. Опытная проверка подтвердила правильность теоретических положений.

Опытный образец УПК устойчиво работает при различных режимах.

ЛИТЕРАТУРА

1. Э. Ф. Оберган, А. И. Скороспешкин. Синхронный генератор с регулированием частоты посредством полупроводникового коллектора, Известия ТПИ, т. 145, 1966.

2. М. И. Конторович. Операционное исчисление и нестационарные явления в электрических цепях, Гос. изд. тех.-теор. литературы, Москва, 1953.