ИССЛЕДОВАНИЕ НЕИТРАЛЬНЫХ МАСЕЛ ТОРФЯНОЙ СМОЛЫ

К. К. СТРАМКОВСКАЯ, Л. А. ПОНОМАРЕВА

(Представлена научным семинаром химико-технологического факультета)

Детальное изучение вещественного состава смол термического разложения твердых топлив и выделяемых из них масел позволит определить наиболее рациональные пути использования этих продуктов.

В настоящей работе исследовались легкие нейтральные масла смолтермического разложения торфа при температурах 600, 700 и 800°С. Смолы были получены как из чистого торфа, так и из топливо-плавильных материалов (ТПМ), представляющих собой формовки из торфа и железной руды. Характеристика исходного топлива и условия получения смолы описаны в одной из статей настоящего сборника [1].

Для выделения нейтральных легких масел смола разгонялась с водяным паром. Полученный отгон обрабатывался 5%-ной щелочью для нейтрализации кислых веществ, затем из нейтрализованного отгона серным эфиром извлекались легкие масла. Эфирная вытяжка обрабатывалась 10%-ной серной кислотой для удаления оснований, высушивалась прокаленным сульфатом натрия, и эфир отгонялся.

Выход нейтральных масел в расчете на безводную смолу приведен в табл. 1.

Таблица 1 Выход нейтральных масел, летучих с водяным паром, % на безводную смолу

	Для режима пиролиза			
Топливо	600°C	700°C	800°C	
Торф Васюганский вер- ховой	12,6	8,2	10,3	
Торф Таганский низин- ный	16,3			
Топливо-плавильные материалы из Таганского торфа и железной руды (ТПМ)	11,3			

Выделенные таким образом нейтральные масла из Васюганского торфа без дополнительной разгонки исследовались газо-жидкостной хроматографией на хроматографе ХЛ-4 с детектором по теплопроводности.

Масла же из смолы Таганского торфа и ТПМ были дополнительно разогнаны, и хроматографическому анализу подвергалась фракция, выкипающая до 200°С, выход которой составляет 26,2—26,8% от нейтральных летучих с водяным паром.

В качестве неподвижной фазы при анализе использовался апиезон L, нанесенный на кирпич ИНЗ-600 (0,25—0,5), газом-носителем служил водород, который пропускался через колонку со скоростью 200 мл/мин. Рабочая температура колонки 155°C.

Результаты анализа нейтральных масел, приведенные в табл. 2, 3,

указывают на очень сложный их состав.

Таблица 2 Состав нейтральных масел, летучих с водяным паром смолы термического разложения Васюганского торфа

10		Содержание в %		
№ Наименование п.п. компонентов	600°C	700°C	/800°C	
1	бензол	1,32	1,49	2,39
2	октан	1,25	0,79	0,40
3	толуол	3,80	5,27	3,03
4	этилбензол	2,60	2,98	2,61
5	п-+м-ксилол	4,21	5,07	4,22
6	о-ксилол	8,91	8,00	12,60
7	н-пропилбензол	8,12	5,95	4,36
8	мезитилен	3,12	2,70	2,86
9	псевдокумол	6,28	10,50	9,66
10	1, 2, 3-триметилбензол	3,86	2,68	9,00
11	инден	27,30	15,60	16,90
12	1-метилинден	8,65	9,80	4,36
13	5-метилинден	2,03	2,48	1,98
14	тетралин	3,90	7,15	4,75
15	нафталин	6,56	14,30	17,00
16	неидентифицированная часть	8,09	5,24	3,88
	Итого:	100	100	100

Полученные хроматограммы содержали по 19—22 пика. Качественная идентификация осуществлялась методом добавок и по известным в литературе временам удерживания отдельных компонентов. Количественный расчет проводился методом внутренней нормализации.

Преобладающее содержание в этих маслах (до 80%) составляют соединения ароматического характера, главным образом алкилзаме-

шенные бензола.

Как видно из таблицы, нейтральные масла всех смол, полученных при 600, 700 и 800°С, имеют одинаковый качественный состав, но коли-

чественное содержание отдельных компонентов меняется с изменением

условий пиролиза и природы исходного сырья.

Таблица 3 Состав нейтральных масел, кипящих до 200°C

№	Наименование	Содержание в % на мас- ла из смолы	
п.п. компонентов		тор- фа	тпм
1	бензол	1,00	1,00
. 2	толуол	2,22	2,62
3	октан	0,49	0,84
4	этилбензол	7,20	7,19
5	м-+ п-ксилол	7,25	6,70
6	о-ксилол	7,15	7,26
7	и-пронплбензол	4,70	5,56
8	н-пропилбензол	4,21	3,79
9	псевдокумол	5,15	6,05
10	мезитилен	4,67	5,05
11	1, 2, 3-триметилбензол	12,65	7,04
12	индан	8,51	9,87
13	инден	7,90	6,74
14	1-метилинден	1,01	2,67
15	5-метилинден	3,17	7,41
16	3-метилинден	6,68	2,78
17	нафталин	3,92	2,67
18	неидентифицированная часть	12,38	14,75
	Итого:	100	100

маслах В исследованных низкокипящих ароматических углеводородов бензола и толуола небольшое количество. При пиролизе Васюганского торфа содержание бензола в масле 600градусного режима 1,3% и увеличивается до 2,4% при температуре 800°С. Содержание толуола с 3,8% увеличивается до 5,27% с увеличением температуры пиролиза с 600 до 700°С. С дальнейшим повышением температуры до 800°C содержание этого продукта в нейтральных маслах, летучих с водяным паром, снова уменьшается до 3,0%.

В этих маслах, как показывают данные анализа, большое количество ксилолов — очень ценного для органического синтеза сырья.

В маслах 600-градусного режима преимущественным компонентом (27,3%) является инден. Однако при температуре пиролиза 800° содержание его падает до 17% с одновременным увеличением концентрации нафталина в этом масле также до 17%.

Что касается влияния железной руды на состав легких нейтральных масел, то данные табл. 3 показывают, что по оскомпонентам гмол, полученных из торфа и с

добавкой руды, почти не отличаются.

Выводы

1. Показана возможность количественного анализа сложной смеси нейтральных масел смол термического разложения, торфа газожидкостной хроматографией и определены условия этого анализа.

2. Определен состав легких нейтральных масел смол термического разложения торфа, полученных при температурах пиролиза 600,

700 и 800°С.

ЛИТЕРАТУРА

1. К. К. Страмковская, А. Т. Рубанов, Ю. Ли. Исследование торфяной смолы. Настоящий сборник стр. 123.