1970

РАДИОЛИЗ ТВЕРДЫХ НЕОРГАНИЧЕСКИХ СОЛЕЙ С КИСЛОРОДОСОДЕРЖАЩИМИ АНИОНАМИ

Ю. А. ЗАХАРОВ, В. А. НЕВОСТРУЕВ

(Представлена научным семинаром кафедры радиационной химии)

Уровень, темпы и объем исследований в области радиационной химии твердых неорганических соединений в последние годы все более возрастают. В связи с этим объем информации, содержащейся в специальной литературе по этим вопросам, в настоящее время весьма велик. Для изданий, вышедших до 1962 года, эта информация систематизирована В. В. Свиридовым [1], более поздние обзоры в этой области отсутствуют.

В то же время именно для последних лет характерно углубление исследований, использование спектроскопии различных диапазонов, тонких аналитических методов изучения продуктов радиолиза, что привело к отсутствовавшей ранее возможности говорить о деталях механизма радиолиза некоторых групп солей. В наибольшей мере это относится к радиолизу кислородосодержащих соединений — сложному, как правило, многостадийному процессу, включающему образование большого числа промежуточных парамагнитных частиц.

Из числа кислородосодержащих неорганических солей наиболее пристальное внимание привлекает группа радиационнонестабильных соединений, исследование радиолиза которых удобно с методической точки зрения (простая структура и возможность получения монокристаллов, присутствие в продуктах радикалов и молекул, рассчитываемых и определяемых спектроскопически и т. д.). Закономерности радиолиза этих солей изучены относительно наиболее подробно, а использованные при этом приемы, методы, полученные результаты и выводы помимо частного интереса могут быть использованы (в методическом и постановочном планах) при изучении радиолиза других соединений.

В соответствии с изложенным в настоящем обзоре систематизированы и обсуждаются данные по радиационным превращениям в группе наиболее подробно изученных в этом плане солей, в основном в нитратах, нитритах, хлоратах, броматах и перхлоратах щелочных металлов. Особое внимание при этом уделяется новейшим исследованиям и сформированным на их основании взглядам.

II. Радиолиз нитратов

Наиболее интенсивно из всех неорганических солей с кислородосодержащим анионом изучаются нитраты. При этом в названной группе солей подробнее всех изучены нитраты щелочных металлов [2—10], менее подробно — нитраты серебра [2, 11], щелочноземельных металлов [2, 12—13] и свинца [2, 14—16].

1. ПРОДУКТЫ РАДИОЛИЗА

а) Результаты химического анализа

Общепринятой методикой определения конечных продуктов радиолиза нитратов является определение нитрита по реакции диазотирования после растворения облученного нитрата в воде. В подавляющем большинстве работ, как появившихся в литературе после выхода в свет монографии Свиридова [1], так и рассмотренных в этой книге, анализ растворов облученных нитратов проводился только на нитрит. В тех работах, где анализировались газы, выделяющиеся при растворении (см. например [2, 7, 16], было показано, что газообразным продуктом радиолиза является кислород. Соотношение $G(NO_2^-)/G(O_2) \simeq 2$ выдерживается во всех случаях, за исключением начальной стадии радиолиза нитрата свинца [16].

Однако, как было показано Каннингемом [7], в выход продукта радиолиза, определяемого как нитрит по реакции диазотирования, могут вносить вклад и радикальные продукты, такие как O^- , O_2^- , NO_2 и NO. Действительно, сопоставлением результатов двух методов анализа (цериевого и диазотирования) в этой работе было установлено, что при облучении KNO3 и NaNO3 при 77°K радиационно-химический выход собственно нитрита составляет, по крайней мере, не более половины того значения, которое получается при анализе на нитрит методом диазотирования. Это отклонение меньше при облучении нитрата калия при комнатной температуре, но остается значительным в случае NaNO₃. По-видимому, можно считать доказанным, что основными продуктами радиолиза при комнатной температуре, во всяком случае для нитратов калия и натрия, являются $NO, NO_2^- + NO_2$ и кислород. Отмеченное в работе [17] наличие азота в газообразных продуктах радиолиза, как показано Каннингемом [7], является результатом десорбции воздуха при облучении нитратов. Следует отметить, что кислород, определяемый после растворения облученного нитрата в воде, присутствует в кристаллической решетке при малых дозах, по-видимому, не только в виде молекул или атомов, а также в виде ионов O^- , O_2^- и O_2^{-2} , чем и объясняется в некоторой мере его задерживание в решетке в ходе облучения. В связи с этим кажутся неприемлемыми предположения [18] о возможности образования металла в ходе облучения нитратов.

Так как химический анализ облученных нитратов проводится после растворения их в воде, в процессе которого может изменяться химическое состояние продуктов радиолиза, то трудно этим методом обнаруживать как первичные продукты радиолиза, так и конечные в решетке нитрата. Наиболее достоверные сведения о них можно получить исследованием спектров оптического поглощения и спектров ЭПР облученных нитратов, поскольку эти методы не требуют разрушения кристаллической решетки.

б) Оптическое поглощение в облученных нитратах

Одной из первых работ по исследованию оптического поглощения в облученном NaNO₃ была работа Принсгейма [19]. При температуре жидкого азота была обнаружена полоса поглощения с максимумом при

335 три, и при комнатной температуре, кроме этой полосы, появляется

еще одна с максимумом при 355 ти.

Первая из полос автором была приписана электронноизбыточному центру, вторая — ионам NO_2^- , так как нитрат натрия, к которому в расплаве был добавлен нитрит, также имеет полосу поглощения с максимумом около 355 $m\mu$. Максимумы поглощения при $\sim 350~m\mu$ были обнаружены также Джонсоном [16] при изучении спектров отражения в облученных KNO_3 и $Pb(NO_3)_2$. Наиболее подробному изучению этого вопроса в случае KNO_3 посвящена работа Каннингэма [4], поэтому нам кажется интересным более подробное рассмотрение этой работы. На рис. 1, взятом из работы [4], представлен спектр поглощения кристалла

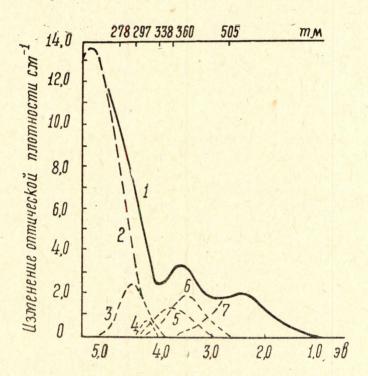


Рис. 1. Спектр оптического поглощения в KNO₃, облученном γ-лучами при 4,2°K [3]. Точки представляют экспериментальные значения. Кривая 1 получена сложением кривых 2, 3, 4, 5, 6 и 7

 KNO_3 , облученного при $4,2^{\circ}K$. В интервале доз, меньших 10^{20} 98/e, были обнаружены как при $4,2^{\circ}K$, так и при $77^{\circ}K$ шесть полос поглощения с максимумами при длинах волн 520, 355, 325, 290, 268 и 250 $m\mu$. Изучение поведения этих полос при облучении светом определенной длины волны и с изменением температуры, а также сравнение с поведением сигналов ЭПР при такого рода обработке позволило автору идентифи-

цировать эти полосы поглощения.

Так, например, полосы при 268 и 250 $m\mu$ слегка уменьшаются при хранении облученного при 4,2°К кристалла при этой же температуре в течение 30 mun, дальнейшее же хранение еще в течение 1 часа не приводит к изменениям поглощения при этих длинах волн. Отжиг в течение 16 часов при 77°К кристалла, облученного при этой же температуре, в два раза уменьшает поглощение при 268 и 520 $m\mu$ и в три раза — при 250 $m\mu$. Исходя из аналогичного поведения сигналов ЭПР [3, 4], приписываемых ион-радикалам NO_2^{-2} и радикалам NO_3 , а также из экспериментов с обесцвечиванием этих полос и сигналов ЭПР, поглощение при

268 и 520 $m\mu$ было приписано ион-радикалам NO_2^{-2} , а поглощение при 250 $m\mu$ — радикалам NO_3 .

Облучение светом с длиной волны 520-680 три уменьшает поглощение при 520, 290, 268 и 250 тр. Так как свет с такой длиной волны должны поглощать ион-радикалы NO_2^{-2} то ослабление поглощения при 520 и $268~m\mu$ было приписано уменьшению NO_2^{-2} за счет ионизации. Ослабление же полос при 290 и 250 три было объяснено уменьшением концентрации дырочных центров за счет захвата электрона, освобождаемого при ионизации NO_2^{-2} . Таким образом, эти эксперименты также подтверждают вышеприведенную идентификацию полос поглощения при 520, 268 и 250 тр. Нужно отметить, что полосы поглощения при 325 и $355 \, m\mu$ при такой обработке остаются неизменными, что было объяснено электронноизбыточной природой центров, ответственных за эти полосы. Уменьшается при хранении кристаллов при 77°К также и поглощение при 325 $m\mu$, причем если подвергать отжигу кристаллы с предварительно обесцвеченными светом полосами, приписываемыми NO_2^{-2} , то уменьшение поглощения при 325 $m\mu$ сопровождается появлением и ростом поглощения при 270 и 520 тм.

Исходя из этих данных и данных, касающихся поведения сигнала ЭПР, приписываемого NO_3^{-2} [3], полоса поглощения при 325 $m\mu$ была

отнесена к ион-радикалам NO322

Центр, ответственный за полосу при 290 $m\mu$, который устойчив при температурах жидкого гелия и жидкого азота, но отжигается при нагреве до комнатной температуры, не был идентифицирован. Что касается полосы поглощения при 355 $m\mu$, которая Принсгеймом [19] приписывается нитрит-ионам и которая устойчива при нагреве кристалла вплоть до комнатной температуры, то она в этой работе также не идентифицирована. Принадлежность этой полосы ионам NO_2 в работе [4] подвергается сомнению, так как из-за весьма малого коэффициента экстинкции нитрита при 355 $m\mu$ поглощение, вызываемое им в получаемых в этой работе концентрациях, определенных химическим путем, лежит за пределами ошибки эксперимента. В более поздней работе [20] эту полосу поглощения (C-центр) Каннингэм идентифицировал как оксигипонитрит-ион $N_2O_3^{-2}$.

При облучении KNO $_3$ дозой больше 10^{20} 98/z была обнаружена дополнительно появляющаяся полоса поглощения при $410~m\mu$. Так как сигнал ЭПР, приписываемый NO $_2$ [3], также появляется при дозах, превышающих 10^{20} 98/z, эта полоса поглощения была приписана NO $_2$. Обесцвечивание полосы NO_2^{-2} светом с длиной волны больше $520~m\mu$ также приводит к уменьшению полосы $410~m\mu$, что, по-видимому, обусловлено захватом электрона молекулой NO $_2$. Уместно здесь заметить, что в работах [21, 22] было установлено отсутствие сигнала, приписываемого NO_2 в KNO $_3$, облученном при температуре жидкого азота, если исходный нитрат не содержит нитрита или, если чистый нитрат не прогревается между облучениями до комнатной температуры. Однако этот результат, по-видимому, не противоречит данным Каннингэма, так как испольуемые в работе [21] дозы были меньше 10^{20} 98/z, хотя в более поздней работе этих авторов [5] был обнаружен NO_2 в KNO $_3$, облучен-

ном при 77°K дозой 2 · 10¹⁹ эв/г.

В нитрате натрия [20], облученном при 77°К, обнаружена одна полоса поглощения с максимумом при 335 $m\mu$ (рис. 2). Однако анализ формы кривой и эксперименты с обесцвечиванием УФ светом позволили автору идентифицировать две частицы, ответственные за эту полосу

 $(NO_2^{-2} \text{ и } NO_3^{-2})$ и обнаружить поглощение при $\sim 410~m\mu$, приписываемое NO_2 . Интересно отметить, что в этой работе [20] было замечено ингибирующее влияние ионов Ag^+ , введенных в решетку KNO_3

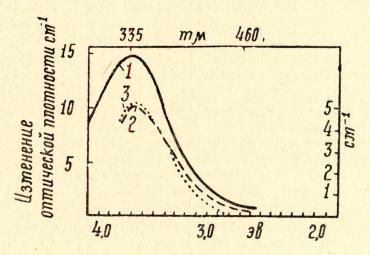


Рис. 2. Поглощение света в $NaNO_3$. 1— облучение рентгеновскими лучами при 77° К в течение 75 минут (правая шкала); 2— облучение γ -лучами при 77° К в течение 30 минут (левая шкала); 3— то же, что и 2, после облучения светом с $\lambda > 510$ $m\mu$ при 77° К в течение 40 минут

и $NaNO_3$, на рост полос поглощения, относимых к азотнокислородным центрам.

в) Спектры ЭПР в облученных нитратах

Относительно подробно сигналы электронного парамагнитного резонанса изучены в облученных нитратах натрия [24—29] и калия [3, 5, 7, 21, 22]. Имеются также сведения о спектрах ЭПР в облученном нитрате серебра [11], стронция [12] и свинца [15]. Во всех исследованных нитратах установлено наличие NO2. Радикал NO3 обнаружен в KNO₃ [3, 5], NaNO₃ [26] и Pb (NO₃)₂ [15], а NO₃⁻²—в KNO₃ [3, 5, 21, 22] и в Sr (NO₃) 2 [12]. Подобная же парамагнитная частица обнаружена и в AgNO₃, однако, неспаренный электрон в этом случае не локализован лишь на анионе, а имеет расщепление также и на ядре серебра [11]. На наличие NO, NO $_2^{-2}$ и O $_2^{-2}$ в облученном KNO $_3$ указывается лишь в работе [3]. Таким образом, в одном и том же нитрате и в одних и тех же или близких условиях различными авторами обнаружены различные парамагнитные частицы. Так, например, при облучении KNO₃ дозой меньше $10^{20} \ 3 \beta/\epsilon$, которая считается Каннингэмом пороговой для образования NO₂, при 77°K Зельдес [5] идентифицировал наличие NO₃⁻², NO_3 и NO_2 , тогда как Каннингэмом был обнаружен только NO_2^{-2} [3]. Хотя дозы и различались в этих работах примерно на порядок, нельзя объяснить различие результатов, цитируемых автором, лишь разницей в дозе облучения. Эти разногласия более отчетливо видны из характеристик спектров, приписываемых парамагнитным частицам в облученном KNO₃, приводимых в табл. 1.

Несмотря на то, что спектры ЭПР в облученном NaNO₃ изучались во многих работах, достоверно расшифрован лишь спектр, приписываемый двуокиси азота. В двух работах [26, 29], кроме NO₂, идентифицированы радикалы NO₃. Как видно из табл. 2, в которой приведены харак-

Таблица 1 Характеристика спектров ЭПР парамагнитных частиц в облученном KNO₃

Предпол. радикал	Значения <i>g</i> -фактора	Постоянные СТС (гаусс)	Литера- тура	Примечание
NO	2,008 2,010 2,005	3,5 4,0 31	[3]	Первичный продукт при 77°К и 4°К.
NO ₂	1,9996 1,9932 2,0055 1,999	62,9 50,3 48,7 113	[21] [3]	Прогрев до комнатной температуры между двумя облуч. при 77° К или присутствие в нитрате KNO_2 . Порошок KNO_3 , доза $> 3.10^{20} 9 8/z$.
NO ₃ ⁻²	2,025 2,025 2,008	9 9 9	[3]	4°К, доза 3.1018 эв/г. При 77°К отсутствует, при отжиге при 77°К в теч. 2 час. уменьшается в двое.
	2,0057 2,0057 2,0015	63,4 31,8 31,8	[21]	77°K, доза 4.10 ¹⁹ эв/г Н \\ a.
NO_{2}^{-2}	2,006 2,006 2,002	61 32 32	[3]	Первичный про- дукт при 4 и 77°К. Ось кристалла с ⊥
				оси вращения и <i>H</i> .
NO_3	2,006 2,006 2,001	0 0 0	[3]	4°K.
	2,0232 2,0232 2,0031	4,3 3,5 3,5	[5]	77°K, быстро рас- падается при этой температуре.
O ₂ -	1,958	0	[3]	Синглет. Появляется при нагреве до 77°К облученного кристалла при 4°К или при измерении при 4°К облученного при 77°К кристалла.

теристики сигналов ЭПР в $NaNO_3$ и условия облучения, радикалу NO_3 приписываются разные спектры. Джеси и Кацумата [26] этому радикалу приписывают спектр, аналогичный найденному в облученном KNO_3 Каннингэмом [3]. Адде же идентифицировал NO_3 в согласии с Зельде-

сом [5] (ср. спектры NO₃ в табл. 1 и 2).

Таким образом, можно считать установленным наличие NO_2 и NO_3 в облученном $NaNO_3$. Если сравнить данные табл. 1 и 2, то очевидно, что наличие NO_2 не вызывает сомнения и в KNO_3 . В работе [27] было показано, что матрица практически не оказывает влияния на характеристики спектра Θ 1P, обусловленного O2. Поэтому не вызывает сомнения присутствие O3 и в других нитратах, так как и в них наблюдается характерный спектр Θ 1P, как это видно из табл. 3.

Сравнивая данные, приведенные в табл. 1, 2 и 3, нетрудно заметить некоторые противоречия в идентификации отдельных парамагнитных частиц. В связи с этим нам кажутся уместными следующие замечания.

1. Если спектральные характеристики определенных парамагнитных частиц остаются одинаковыми или близкими в решетке различных нитратов (что и имеет место, по-видимому, на самом деле), то спектр Θ приписываемый Каннингэмом O_2^{-2} в E KNO3 [3], Зельдесом E RNO3 [22], Мосли и Маултоном E RNO3 [11], Джаккардом E RNO3 в KC1, содержащем нитрат [23], должен быть отнесен к одной из этих

Таблица 2 Характеристика спектров ЭПР в NaNO₃

	•								
Условия облу- чения	Парамагнит- ная частица	g < 111 >	g⊥ ⟨1111⟩	A < 111 >	<i>A</i> ⊥ ⟨111⟩	Литература	Примечание		
300°К 10—250 <i>Mpaд</i>	NO ₂	2,0059	3113454	48,0	58,4	[25]			
77°K	NO_2	2,0058		50,5	59,1]27]			
170°K	NO_2	2,0056	1,9966	51,1	58,4	[28]			
300°K	NO_2	2,0050	1,9970	53,0	57,8	[28]			
300°K	NO_2	2,006	1,9989	53	59	[26]	Исчезает при 400°К		
300°K 10 ⁷ −10 ⁸ p	3	2,006	2,0097	0	0	[26]	_ "		
300°К —"—		2,0064	2,0147	0	0	[26]	Устойчив свы- ше 530°К.		
300°К −"−	3	2,006	2,0237	0	0	[26]	Исчезает при		
77°K —"—	NO_3	2,0004	2,0053	0	0	[26]	400°К, при 300°К необратимо переходит в три предыдущие.		
77°K 1018 38/2	NO_3	2,0022	2,0217	4,11	3,51	[29]	дыдущие.		
77°К и 300°К	3	2,0030	2,0225	0	0	[29]			

парамагнитных частиц. То же самое относится и к идентификации спектров, приписываемых Каннингэмом в KNO_3 [3] и Жданским и Шроубеком в $Sr(NO_3)_2$ [12] частице NO_3^{-2} , а Ливингстоном и Зельдесом в KNO_3 [5] и Гольдингом и Хенчмэном в $Pb(NO_3)_2$ [15] частице NO_3 . Этот вопрос был рассметрен в работе Аткинса и Симоноса [30] довольно подробно. На основании сравнения характеристик этих спектров со спектрами изоэлектронных радикалов первый спектр ими был приписан радикалам NO_3^{-2} и второй — NO_3^0 .

2. Спектр, приписываемый Каннингэмом [3] и Джаккардом [23] ра-

дикалам NO, в работе [30] относится к частицам NO_2^{-2} .

В работе [7], однако, Каннингэмом было показано химическим анализом и методом ЭПР накопление NO с дозой с приемлемой сходимостью. Эти данные показаны на рис. 3. В силу этого, а также вследствие весьма сильной анизотропии постоянной сверхтонкого расщепления точка зрения Каннингэма по этому вопросу, вероятно, более близка к действительности.

Что же касается идентификации радикалов NO_3 и NO_3^{-2} пока трудно отдать предпочтение какому-либо из имеющихся в литературе на этот счет мнений. Желательным было бы также, как и в случае NO_3 какое-нибудь независимое доказательство наличия их в кристалле. Имеющиеся данные по оптическим спектрам, разумеется, могут служить

Парамагнитная частица	Облучаемая	Значение _g-фактора		Постоянные СТ расшепления (гаусс)			Литера-	Примечание	
частица	COMB	g_x	gy	g_z	A_{x}	Ay	Az	1370	
NO_3	AgNO ₃	2,009	1,9978	2,0039	50,7	48,5	69,6	[11]	Облучение при 77°К. Спектр растет параллельно с исчезновением спектра Ag^{+2} при нагреве кристаллов от 77 до 140°К.
<u> </u>	Sr (NO ₃) ₂	1,9975	1,9975	2,0054	59	59	50	[12]	Температура комнатная. Образуется при $\sim 10^7 \ p$ или при $\sim 10^5 \ p$, если нитрат содержитнитрит.
"	Pb (NO ₃) ₂	1,995	1,995	2,004	57	57	50	[15]	Температура комнат- ная.
NO ₃	Pb (NO ₃) ₂	2,029	2,029	1,998	~1	~1	~2	[15]	
NO_3^{-2}	AgNO ₃	2,002	2,007	2,000	35,8	37,1	67,4	[11]	Температура 77°К. Неспаренный электрон не локализован лишь на NO ₃ , а имеет СТ расщепление также на Ag.
, ,	Sr (NO ₃) ₂	2,0081	2,0081	2,0027	0	0	1,2	[12]	Температура комнатная. Доза $\sim 10^5 p$.

некоторым подтверждением точки зрения Каннингэма, но эти данные нельзя считать полностью независимыми от ЭПР, так как идентификация полос поглощения сделана в какой-то мере, исходя из данных ЭПР.

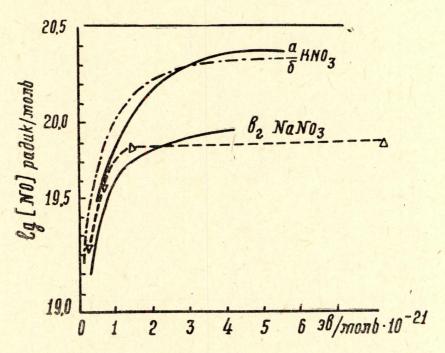


Рис. 3. Образование NO в облученных при 77°К KNO3 и NaNO3. Кривые a и b — результаты химического анализа, δ и e — полученные методом ЭПР

Как мы видели выше, указанные противоречия присущи также и идентификации спектров ЭПР в облученном NaNO₃.

2. КИНЕТИКА РАДИОЛИЗА

Выше уже было отмечено, что продуктами радиолиза нитратов являются различные окислы и оксианионы азота и кислород, а не только нитрит и кислород, как полагалось до опубликования работы Канингэма [7]. Однако в этой же работе было показано, что концентрация радикальных продуктов (NO, в частности) быстро достигает насыщения как при облучении при 77°К (рис. 3), так и при комнатной температуре. Исходя из этого, а также ввиду отсутствия данных по кинетике накопления отдельных продуктов радиолиза, которые вносят вклад в концентрацию, определяемую реакцией диазотирования, мы в дальнейшем будем рассматривать кинетические закономерности радиолиза нитратов по выходу нитрата. При этом следует иметь в виду, что величина $G(NO_2^-)$ включает в себя несколько величин [7]: $G(NO_2^-)$, $G(NO_2)$, G(NO), $G(O^-)$ и др.

a) Зависимость радиационно-химического выхода от поглощенной дозы

Независимость $G(NO_2^-)$ от дозы для отдельных нитратов отмечалась во многих работах [7, 8, 10, 16, 18, 31—33]. Наряду с этим, однако, в некоторых случаях было обнаружено уменьшение радиационно-химического выхода нитрита с увеличением дозы. Наиболее характерным такой ход радиолиза является для нитрата калия [32, 34, 35], причем на-

копление нитрита в этом случае описывалось двумя пересекающимися прямыми, имеющими разный наклон. Как было показано работами Джонсона [2, 32], отклонение от линейности накопления нитрита с увеличением дозы, вообще говоря, присуще для любого нитрата, а апроксимация этой зависимости к прямой линии возможна только в интервале небольших доз, различных для разных нитратов. Отсюда становится понятным и тот факт, что в случае KNO_3 особенно часто обнаруживалась нелинейность накопления NO_2 с дозой, так как отклонение от линейности для KNO_3 наступает уже при величине дозы, равной $3 \cdot 10^{21}$ 98/2, тогда как в случае $NaNO_3$ эта доза равна $\sim 2 \cdot 10^{22}$ 98/2, и не достигалась во многих работах.

В работе Каннингэма и Хила [35], в которой использовались дозы выше 10^{23} 98/2, также наблюдалось уменьшение G (NO_2^-) с ростом дозы для ряда нитратов. Для KNO_3 кинетика радиолиза была описана

уравнением

$$\alpha = 1 - e^{bD}, \tag{1}$$

где α — доля разложившегося нитрата, D — поглощенная доза.

Наиболее подробно этот вопрос для нитратов калия, цезия, натрия бария, свинца и серебра был изучен Джонсоном [2, 32]. В этих работах, применяя следующую кинетическую схему разложения:

$$MNO_3, m \rightarrow MNO_2 + O,$$
 (2)

$$O + NO_2^- \to NO_3^-, \tag{3}$$

$$O + NO_3^- \rightarrow NO_2^- + O_2 \tag{4}$$

и из предположения о стационарной концентрации атомов кислорода, было получено уравнение второго порядка для накопления нитрита вида

$$a [NO_2^-]^2 + [NO_2^-] = bD,$$
 (5)

где a и b — постоянные для данной соли, D — поглощенная доза.

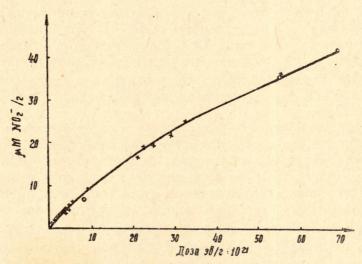


Рис. 4. Образование нитрита в NaNO $_3$ [2]. o, x — экспериментальные точки, представляющие соответственно $[{\rm O}_2]$ и 1/2 $[{\rm NO}_2^-]$ Сплошная линия подсчитана по уравнению (5)

Применимость уравнения (5) оказалась достаточно хорошей для CsNO₃, NaNO₃, Ba(NO₃)₂ и Pb(NO₃)₂. В качестве иллюстрации на рис. 4 показано экспериментально найденное накопление нитрита и кислорода

в NaNO $_3$ и подсчитанное по уравнению (5) накопление нитрита. В отличие от изложенного, в случае KNO $_3$ и AgNO $_3$ описание радиолиза этим уравнением оказалось невозможным. Нужно отметить, что уравнение (5) было получено без учета изменения концентрации в ходе облучения. Из вышеприведенной схемы радиолиза (уравнения 2—4) при учете непостоянства [NO $_3$] в работе [2] было получено уравнение следующего вида:

$$a\lg(1-\alpha) + \frac{\alpha}{1-\alpha} = bD, \tag{6}$$

где $\alpha = \frac{[NO_2^-]}{[NO_3^-]_0}$; a и b — постоянные,

D — поглощенная доза, которая оказалась применимой для описания накопления нитрита в KNO_3 .

Для кинетики радиолиза AgNO₃ не удалось найти подходящего

уравнения из схемы разложения по реакциям (2-4).

Нетрудно заметить, что все три кинетические уравнения (1, 5, 6) при достаточно низких дозах можно упростить с некоторым приближением в выражение вида

$$[NO_2^-] = bD \tag{7}$$

что и наблюдается в большинстве работ, выполненных с использованием небольших поглощенных доз.

Применимость кинетических уравнений, выведенных из схемы радиолиза (2—4), ни в коей мере не может служить, разумеется, подтверждением механизма радиолиза по реакциям (2—4), а говорит лишь о том, что при больших дозах облучения необходимо учитывать обратные реакции.

б) Влияние мощности дозы и ЛПЭ

Влияние мощности дозы на радиолиз нитратов изучалось попутно при решении других вопросов в работах [10, 33, 35]. Специально же этот вопрос рассмотрен Джонсоном [36]. При изменении мощности дозы от 10^{17} до 10^{20} эв/г сек на примерах нитратов калия, натрия, цезия и свинца было показано в этой работе отсутствие влияния ее на G (NO $_2$), как и в работах [10, 33, 35] в области других мощностей доз и других видов излучений.

Интересно отметить, что полученные в этой работе с использованием электронов с энергией 1 и 0,5 M значения G согласуются с величинами, полученным для γ -облучения. Таким образом, вывод о том, что мощность дозы не оказывает влияния на радиационно-химический выход нитрита в широком интервале значений (от $\sim 10^{15}$ до 10^{20} 3 в/г c е κ), позволил однозначно интерпретировать результаты по влиянию вида излучения на G (NO_2). В табл. 4, которая заимствована из работы Хоханаделя [10], приведены величины G (NO_2), полученые при радиолизе нитратов различными видами излучения. Близость величин G (NO_2), полученных при действии рентгеновских и γ -лучей при 150°C, к значениям G (NO_2), полученным при действии α -лучей, позволила автору сделать заключение об образовании тепловых клиньев в треках α -частиц. Поэтому увеличение радиационно-химического выхода нитрита с увеличением ЛПЭ было приписано локальному разогреву по трекам тяжелых частиц. Из зависимости G (NO_2) от температуры

при облучении легкими видами излучений была оценена кажущаяся энергия активации, равная 2,8 ккал/моль.

Таблица 4 Влияние ЛПЭ на G(NO2) в нитратах [10]

Облучаемая	а — част	. 3,4 Мэв	ү-лучи	Co ⁶⁰	Рентгеновские лучи 44,5 кэв		
СОЛЬ	25°C	120°C	30°C 150°C		15°C	150°C	
LiNO ₃	0,7		0,02-0,2	0,03 — 0,4	0,02	(200.3	
NaNO ₃	1,3	1,1	0,27	1,0	0,4	1,1	
KNO ₃	2,2		1,5	3,0	2,0	3,0	
CsNO ₃	1,4		1,6	2,3	1,4	1,2	
Ba (NO ₃) ₂	1,6		1,8	1,6	1,8	1,8	

(в) Роль природы катиона

С первых же работ, посвященных рассматриваемому вопросу, была замечена определенная зависимость $G(NO_2^-)$ от природы катиона в нитратах, которая отсутствует в случае водных растворов. Общепринятым объяснением этой зависимости в настоящее время является учет влияния свободного объема решетки на вероятность обратной реакции (3). Этот вопрос достаточно подробно рассмотрен в предыдущих обзорах [1, 37], поэтому мы не будем останавливаться на нем детально. Целесообразно отметить, однако, что, несмотря на существующую корреляцию между $G(NO_2^-)$ и величиной свободного объема, не следует искать причины в изменении $G(NO_2)$, например, по ряду от LiNO₃ к CsNO₃ лишь в разнице величины свободного объема в том же ряду, особено в начальной стадии радиолиза. По-видимому, существенную роль должны играть не столько пространственные характеристики решетки, сколько электронные, так как излучение взаимодействует с электронными оболочками составляющих решетку. Во всех рассмотренных здесь работах акцентируется внимание лишь на взаимодействии излучений с нитрат-ионом. Поэтому следовало бы ожидать увеличения $G(NO_2)$ с увеличением электронной доли аниона в ряду однотипных солей, например, нитратов щелочных металлов. Вероятно, вследствие противоположной зависимости, наблюдаемой на опыте, этот вопрос в литературе оставляется без должного внимания. На наш взгляд, наряду с NO₃ в выход продуктов радиолиза существенный вклад должно вносить взаимодействие с излучением катионов. Подобная точка зрения уже высказывалась в литературе [3, 4, 38] без детализации и впервые экспериментально была подтверждена на примере AgNO₃ [11].

Действительно, если бы образование продуктов радиолиза в нитратах было обусловлено лишь взаимодействием NO_3^- с излучением, то $G(NO_2^-)$, подсчитанный на 100 эв энергии, поглощенной только анионом, должен был бы быть одинаковым в одной и той же соли при использовании различных излучений. Подсчитанные нами радиационно-химические выходы нитрита на 100 эв энергии, поглощенной только катионом $G^{\kappa}_{(NO_2^-)}$ или анионом $G^{\alpha}_{(NO_2^-)}$, исходя из литературных данных по $G_{(NO_2^-)}$ для KNO_3 и $NaNO_3$, приведены в табл. 5. Анализ этой таблицы позволяет высказать следующие соображения:

Соль	Вид излучения	G^a (NO $_2^-$)	G^{κ} (NO ₂ ⁻)	Литературный источник для подсчета G^a и G^κ
KNO ₃	γ — Co ⁶⁰	2,4±0,2	4 ,0 <u>±</u> 0,3	[32-34]
KNO ₃	РЛ—45 кэв	24,5	2,1	[35]
KNO ₃	РЛ—200 кэв	22,8	2,4	[8]
KNO ₃	$\alpha = 3,4$ Mə β	3,4	6,1	[10]
KNO ₃	e — 1,0 и 0,5 Мэв	2,3	4,2	[36]
NaNO ₃	γ — Co ⁶⁰	$0,25\pm0,05$	0,7±0,1	[32, 34]
NaNO ₃	РЛ—45 кэв	0,8	0,7	[35]
NaNO ₃	РЛ—200 кэв	0,6	0,7	[8]
NaNO ₃	e-1,0 и $0,5$ Мэв	0,3	0,8	[36]
NaNO ₃	$\alpha = 3,4$ Mə θ	1,7	5,5	[10]
			77.2	

- 1. Как и следует ожидать, для γ -лучей Co^{60} и электронов, поглощение энергии которых пропорционально лишь электронной плотности, совпадают как $G^{a}_{(NO_{2})}$, так и $G^{\kappa}_{(NO_{2})}$ в одной и той же соли.
- 2. Радиационно-химический выход нитрита по аниону в случае рентгеновских лучей на порядок отличается от $G^{a}_{(NO_{2}^{-})}$ в случае γ -облучения в KNO_{3} и в три раза в $NaNO_{3}$, а соответствующие значения $G^{\kappa}_{(NO_{2}^{-})}$ отличаются лишь в два раза для KNO_{3} и совпадают для $NaNO_{3}$. Так как закономерности поглощения энергии мягких рентгеновских и γ -лучей Co^{60} сильно отличаются, именно здесь и должен проявиться вклад аниона и катиона в выход нитрита. Эти результаты позволяют поэтому говорить о наибольшем вкладе в выход нитрита катиона, а не аниона.
- 3. Весьма сильное различие в величинах $G_{(NO_2^-)}^{\kappa}$ для KNO_3 и $NaNO_3$, а также несовпадение $G_{(NO_2^-)}^{\alpha}$ и $G_{(NO_2^-)}^{\kappa}$ для α -лучей, с соответствующими значениями для γ -лучей и электронов позволяют заключить, что процессы взаимодействия катиона с излучением не единственный источник радиолиза. Существенное влияние оказывают, по-видимому, также пространственные факторы в случае легких видов излучения и трековые явления в случае α -частиц.

г) Влияние других факторов

Данные по величине $G_{(NO_2^-)}$, полученные различными авторами, как показано в монографии Свиридова, весьма сильно отличаются. К настоящему времени уже имеются некоторые экспериментальные факты, позволяющие рассмотреть возможные причины расхождения результатов различных авторов. Одной из таких возможных причин может быть неодинаковая дисперсность облучаемых нитратов. В работе [2] было замечено, например, что в кристаллах различной дисперсности наблюдается различный $G(O_2)$. Так как наличие захваченного кислорода способствует протеканию обратных реакций, то дис-

персность должна оказывать влияние и на $G_{(NO_2^-)}$. Нами был изучен этот вопрос более подробно [8] и было показано, что влияние размеров облучаемых кристаллов особенно велико для мелкодисперсных порошков, причем с увеличением дисперсности растет не только $G(O_2)$, но также и $G(NO_2^-)$.

В этой же работе нами изучено влияние гетерофазных примесей полупроводниковых окислов на скорость радиолиза KNO_3 и $NaNO_3$. При этом оказалось, что окислы с наименьшей работой выхода электрона ф наиболее сильно ускоряют радиолиз, в то время как окислы, обладающие большой ф, замедляют его. Так как каталитическая активность изученных нами окислов коррелируется с работой выхода электрона, было предположено, что добавки — до — поры электронов ($I_{\partial O O}$. $< I_{CO AU}$) ускоряют радиолиз, в то время как окислы — акцепторы

по отношению к нитратам замедляют распад.

Подобные данные были получены Каннингэмом [20, 31] с гомофазной добавкой AgNO₃ в решетке облучаемого нитрата натрия. Уменьшение скорости радиолиза нитрата натрия в присутствии ионов Ag + в решетке было отнесено к акцепторным свойствам Ag +. С другой стороны, ведение ионов Tl +, являющихся донорами электронов, как показано в [39], ускоряет радиолиз KNO₃. Хотя экспериментальных данных в этом плане еще не достаточно, чтобы делать однозначные выводы о механизме влияния примесей, можно констатировать, что чистота облучаемой соли так же, как и дисперсность кристаллов оказывает существенное влияние на радиационно-химическую устойчивость.

3. МЕХАНИЗМ РАДИОЛИЗА

Наблюдаемое соотношение $G(NO_2^-)/G(O_2) \simeq 2$, а также соответствие кинетики накопления нитрита и кислорода уравнению, выведенному на основе реакций (2—4), послужили основанием для интерпретации механизма радиолиза нитратов по вышеприведенным уравнениям. Однако в последнее время в работах Каннингэма [4, 7, 20, 31] и работах по изучению спектров ЭПР в облученных нитратах, рассмотренных выше, убедительно показана сложность как первичных, так и вторичных радиационно-химических процессов при облучении нитратов. Отмеченные выше противоречия в интерпретации спектров ЭПР в облученных нитратах касаются в основном идентификации, а не наличия тех или иных парамагнитных частиц. Поэтому в настоящее время имеется возможность описать отдельные предположительные стадии радиолиза нитратов, основываясь на экспериментальных данных, рассмотренных выше.

В качестве первичных процессов следует назвать процессы ионизации и возбуждения:

$$NO_3^- \longrightarrow NO_3^{-*}, NO_3, \overline{e},$$
 (8a)

$$Me^+ \longrightarrow Me_e^{++} + \overline{e}.$$
 (8⁶)¹)

Так как возбуждение электронных оболочек катиона не приводит к химическим реакциям, процесс $Me^+ \longrightarrow Me^+ *$ можно не учитывать. Если образование NO_3 при облучении нитратов экспериментально

Если образование NO_3 при облучении нитратов экспериментально наблюдалось многими авторами (табл. 1, 3), то реакция (8^6) на опыте

 $^{^{1}}$) Здесь и далее 4 означает нормальный катион (Na $^{+}$ K $^{+}$, Sr $^{++}$, Ba $^{++}$ т. д.), а 4 — ионизованный катион, т. е. потерявший дополнительный электрон (Na $^{++}$, K $^{++}$, Sr $^{+++}$, и т. д.).

установлена лишь в работе [11]. Нужно сказать, что NO_3 может образоваться, по-видимому, не только в результате реакции (8^a), но и за счет следующей реакции:

$$Me^{++} + NO_3^- \rightarrow Me^+ + NO_3,$$
 (9)

что подтверждается ролью катиона, рассмотренной выше. Образованные в реакциях (8 $^{\rm a}$) и (9) радикалы NO₃ неустойчивы уже при 77°K (при комнатной температуре NO₃ найден лишь в нитрате свинца [15]) и могут разлагаться по реакциям:

$$NO_3 \rightarrow NO_2 + O_1$$
 (10^a)

$$NO_3 \rightarrow NO + O_2 \tag{10^6}$$

нли служат ловушками термализованных электронов:

$$NO_3 + e \rightarrow NO_3^{-*} \stackrel{\longrightarrow}{\leftarrow} NO_2^- + O.$$
 (11)

Так как стационарные концентрации NO_3 и термализованных электронов незначительны, реакция (11), по-видимому, маловероятна. С другой стороны, Каннингэм [3, 7] нашел, что NO является первичным продуктом, а NO_2 появляется лишь при больших значениях поглощенной дозы. В работах [21, 22] также отмечается, что NO_2 является вторичным продуктом. Поэтому реакции (10 a) и (11) представляются маловероятными в отличие от (10 o).

Распад NO_3^{-*} , получающихся по реакциям (8°) и (11), должен вносить, по-видимому, определенный вклад в продукты радиолиза. Так как сродство к электрону NO_3 превышает энергию связи N-O, осколочный атом кислорода должен иметь избыточную кинетическую энергию около 0.2 θ 6, если считать, что энергия сродства к электроду радикала NO_3 локализуется на определенной связи. С другой стороны, в твердом теле должен проявляться эффект клетки в максимальной мере. Вследствие названных причин энергия возбуждения NO_3^{-*} частично будет диссипировать по кристаллической решетке, а часть NO_3^{-*} будет распадаться на нитрит и атомы кислорода.

Вторичный электрон, термализуясь в ходе неупругих и упругих соударений, стабилизируется на какой-нибудь ловушке. Такими ловушками могут быть первоначально имеющиеся в решетке дефекты, продукты ионизации катиона или аниона, продукты радиолиза, получающиеся при вторичных (см. ниже) процессах (O, O₂, NO₂ и др.), и, наконец, нормальные узлы решетки. В последнем случае естественно ожидать для нитратов щелочных и щелочноземельных металлов, что термализованный электрон будет стабилизироваться на анионе, а не на катио-

не, так как окислительно-восстановительный потенциал $\frac{N^{+5}}{N^{+4}}$ должен

быть гораздо выше, чем для Me^+/Me . Следовательно, основным первичным продуктом, кроме NO_3 , будет результат стабилизации термализованого электрона, а именно:

$$NO_3^- + \overline{e} \to NO_3^{-2} \tag{12}$$

или в случае $AgNO_3$, где катион также является эффективным акцептором электронов,

$$AgNO_3 + \overline{e} \rightarrow (AgNO_3)^-$$
.

Реакция (12) подтверждена во многих работах [3, 4, 5, 11, 12, 20, 21, 26] и имеет место лишь при 77 или 4° К. При нагревании выше 77° К NO_3^{-2}

исчезает. Этот ион-радикал не наблюдался, если облучение велось при

 300° K, ни в каких нитратах, кроме Sr (NO₃)₂ [12].

В нитратах калия и натрия полоса поглощения и спектр ЭПР, приписываемые NO_3^{-2} полностью исчезают при прогреве до 300°К облученных кристаллов. При этой температуре устойчивы лишь полосы оптического поглощения, приписываемые $N_2O_3^{-2}$ и NO_2 [4, 20]. Следовательно, в образование конечных продуктов радиолиза, кроме реакции 10^6 должны вносить вклад частицы с избытком электронов:

$$NO_3^{-2} \to NO_2^- + O^-,$$
 (13)

$$NO_3^{-2} \to NO_2 + O^{-2},$$
 (14)

$$NO_3^{-2} \to NO_2^{-2} + O,$$
 (15)

$$NO_3^{-2} \to NO + O_2^{-2}$$
. (16)

Относительный вклад в выход конечных продуктов радиолиза превращений окисленных радикальных частиц с недостатком электрона (реакции 8—11) и восстановленных—с избытком электрона (реакции 12—16)— пока трудно оценить. Весьма вероятно, что эти две группы реакций приводят к различным продуктам. Как уже отмечалось выше, относительная значимость отдельных реакций внутри каждой группы также неодинакова.

Следует отметить, что скорости вышерассмотренных реакций являются лишь функцией дозы и электронных долей катиона и аниона. Большинство из них должны быть независимыми от свободного объема, так как являются необратимыми процессами. Действительно, в работе [7] было найдено, что G(NO) в KNO_3 и $NaNO_3$ одинаков при облучении при 300° К и отличается весьма незначительно при облучении при 77° К. Этот факт является экспериментальным доказательством рассмотренной выше роли катиона и согласуется с отсутствием влияния мощности дозы на радиолиз нитратов.

$$NO + O \rightarrow NO_2,$$
 (17)

$$NO + O_2^- \xrightarrow{\longrightarrow} NO_3^{-*} \xrightarrow{\longleftarrow} NO_2^- + O.$$
 (18)

$$NO + NO_3 \rightarrow N_2O_4^* \xrightarrow{--} 2NO, \tag{19}$$

$$NO + NO_2^{-2} \rightarrow N_2O_3^{-2}$$
. (20)

Кроме того,

$$O + O \rightarrow O_2. \tag{21}$$

Следовательно, нельзя считать [1], что радиолиз нитратов не сопровождается образованем вакантных узлов решетки. Однако образование молекулярного кислорода с избытком перекрывает образование вакансий и создает внутреннее давление в кристаллах, что приводит к разрушению кристаллической решетки. По-видимому, в процессе разупорядочивания решетки немаловажную роль играет также ионизация катиона. Так как реакция (9), например, сильно экзотермична, то выделяющаяся при этом энергия может превратиться в тепловую энергию катиона, что приведет к смещению его из узла решетки. Наблюдаемые в работе [32] изменения плотности и теплоты растворения облученных NaNO₃ и KNO₃ находятся в согласии с этими предположениями.

Поскольку относительно более подробно изучены процессы радиолиза нитратов калия и натрия, наши рассуждения касаются в основном именно этих процессов. Эти рассуждения можно без большого риска, по-видимому, перенести на нитраты щелочноземельных металлов. Что же касается нитратов тяжелых металлов или металлов, проявляющих переменную валентность, то здесь нужна осторожность в интерпретации механизма, так как в этом случае могут идти совершенно другие электронно-ионные процессы, важность которых вытекает из рассмотрения влияния примесей на радиолиз нитратов [8, 20, 31, 39].

III. Радиолиз нитритов

Нитриты щелочных металлов являются радиационно весьма устойчивыми соединениями. Согласно последним полученным в этой области результатам [41] облучение $NaNO_2$ до доз ~ 250 мрад не приводит к появлению заметного оптически количества электронных центров окраски, коллоидного металла или газообразных продуктов радиолиза. Единственными наводимыми радиацией парамагнитными молекулами являются NO_2 и N_2O_4 (в интерпретации [40—43]). Спектр ЭПР $NaNO_2$, облученного при температуре 77° K, состоит согласно [40, 42] из трех линий равной интенсивности с полным расщеплением 136 гаусс. Этот сильно анизотропный триплет авторы [40, 42] с достаточным основанием отнесли к молекуле NO_2 , лежащей в плоскости bc кристалла [44]. Полученные при низкой температуре молекулы NO_2 нестабильны и гибнут

полностью при нагреве кристаллов до комнатной температуры.

Облучение кристаллов NaNO₂ при комнатной температуре приводит к последствиям, несколько отличным от имеющих место для низких температур. Спектр ЭПР NaNO₂, облученного дозами около 100 мрад, состоит в этом случае из анизотропного триплета и накладывающегося квинтета. Выполненный авторами [43] расчет молекулы NO₂ и исследование симметрии триплета показали, что он относится к NO₂, лежащей в плоскости *ас* кристалла, т. е. развернутой на 90° по отношению к положению NO2 при низкотемпературном радиолизе. Пятикомпонентный спектр с соотношением интенсивностей компонент 1:2:3:2:1 дает, вероятнее всего, расположенный в плоскости bc ион-радикал N_2O_4 . неспаренный электрон которого имеет равные плотности на обоих ядрах азота. Симметрия N₂O₁ и характер кинетической кривой накопления ${
m N_2O^{-4}}$ позволяют предположить [41], что ион-радикал образуется в результате перемещения аниона NO 2 (или, что более вероятно, молекулы NO₂) в соседнюю катионную вакансию (с поворотом на 180°) и образованием связи N-N в плоскости bc. При этом могут быть использованы вакансии, либо уже имеющиеся до облучения в кристалле (преимущественно), либо наведенные радиацией. В соответствии с этой точкой зрения отсутствие N₂O₄ при низкотемпературном облучении NaNO₂ может быть связано с заторможением вращения NO2 и с малым числом вакансий в нитрите при температуре 77°К.

Перечисленные данные хорошо согласуются с имеющимися в литературе результатами по оптическим спектрам (в видимой и ИК-области) в облученном NaNO₂ [44—46]. При комнатной температуре в спектре поглощения облученного NaNO₂ имеется широкий максимум в области 550—400 mµ, относящийся к NO₂. Исследования спектров в поля-

ризованном свете подтвердили вывод о расположении молекулы при комнатной температуре в плоскости кристалла ас.

IV. Процессы при облучении хлоратов, броматов и иодатов

Радиолиз хлоратов, броматов и иодатов щелочных металлов изучен далеко не равномерно. В то время, как для двух первых групп солей в последние годы достаточно подробно был исследован состав конечных продуктов радиолиза, их выходы, кинетика накопления и гибели молекулярных продуктов, для иодатов подобные сведения отсутствуют. Оптические спектры и сигналы ЭПР в литературе описаны лишь для хлоратов, на броматах работы этого плана носят характер коротких сообщений, поведение же иодатов не изучено совершенно. Такая неравномерность в изучении свойств облученных материалов связана с большей радиационной стабильностью броматов и иодатов, а для последних — и с более сложной структурой и строением решетки.

1. СОСТАВ ПРОДУКТОВ РАДИОЛИЗА

После первых работ по радиолизу хлоратов [17, 62], в которых было установлено наличие в продуктах кислорода, Cl^- и ClO_2^- , впервые вопрос о составе продуктов радиолиза был подробно исследован Хил-

лом [58].

Путем анализа растворов облученного $KClO_3$ и из спектров поглощения кристаллов им был определен следующий состав продуктов: O_2 , Cl^- , ClO^- , ClO_2^- , ClO_4^- , а также присутствие в небольших количествах Cl_2O_6 и ClO_2 . При этом O_2 , Cl^- , ClO^- и ClO_2^- определялись непосредственно, а присутствие ClO_4 было предположено из данных по дефициту свободного (O_2) и связанного кислорода в продуктах и подтверждено изучением UKC-спектров облученной соли. Вывод же о наличии Cl_2O_6 и ClO_2 сделан из анализа оптических спектров. В этой же работе показано, что перечисленные хлорокисные продукты в действительности образуются в твердом теле, а не появляются при растворении облученных кристаллов, о последнем свидетельствует наличие в спектрах оптического поглощения $KClO_3$ полос, присущих хлорокисным молекулам (см. ниже).

В первых работах по радиационной химии броматов [68, 69] было установлено, что облучение их в ядерном реакторе смешанным излучением) γ -лучи, быстрые и медленные нейтроны) приводит к накоплению продуктов радиолиза — Br_2 , Br_- , BrO_- , BrO_2 , при этом величина $G(\mathrm{BrO}_3)$ постоянна (накопление продуктов линейно с дозой облучения). В более поздних работах [71—74] было показано, что формы окисленных радиолитических продуктов брома в облученных броматах аналогичны хлорокисным продуктам, найденным при радиолизе хлоратов: Br_- , BrO_- , BrO_2 . Среди продуктов есть также O_2 , наличие же

 BrO_4^- окончательно не установлено.

2. КИНЕТИЧЕСКИЕ ЗАКОНОМЕРНОСТИ РАДИОЛИЗА

Величины G некоторых продуктов радиолиза хлората калия, впервые найденные в работах [17, 62], составляют для облучения соли рентгеновскими лучами при комнатной температуре: 1,57, 1,2 и 0,4 для кислорода, ClO_2^- и Cl^- соответственно Радиолитический кислород пол-

ностью задерживается в решетке $KClO_3$ (до 8% превращения, после чего происходит растрескивание кристаллов). Накопление Cl^- и Cl_2^- линейно в области изученных в [62] доз и зависит от температуры прогрева после облучения.

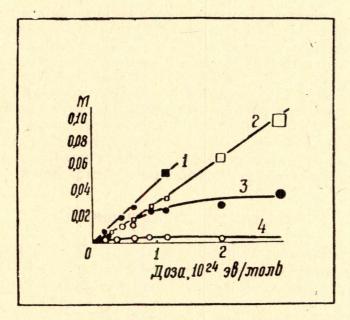


Рис. 5. Кривые накопления основных продуктов радиолиза в $KClO_3$ при комнатной температуре: $1-O_2$; $2-Cl^-$; $3-ClO_2^-$; $4-ClO^-$

Кривые накопления основных продуктов радиолиза $KClO_3$, полученные впервые в [58], показаны на рис. 5. Рассчитанные из этих данных, а также по результатам проведения радиолиза при — 196° С величины «начального» радиационного выхода (G при дозе $0.38 \cdot 10^{23}$ 98/s составляют:

- a) при $t = 25^{\circ}\text{C} 1.3$; 0.5; 2.0; 2.5; 0.2;
- б) при $t=-196^{\circ}\text{C}-1,1;\ 0.5;\ 1.5;\ 2.0$ и 0.2 для C1, C1O $^{-}$, C1 $_{2}^{-}$, O $_{2}$ и ClO $_{2}$ соответственно.

Характерным для кинетики радиолиза КСlO₃ является следующее:

- 1. Постоянная скорость накопления Cl^- и O_2 и насыщение кривых накопления ClO_2^- и ClO_2^-
- 2. Незначительное влияние на величины G температуры в области 77—300° K.
- 3. Вероятное образование в заметных количествах ClO_4 или Cl_2O_5 . В единственной работе [63] по радиолизу хлоратов $NaClO_3$ под действием тяжелого излучения (α -частицы) было показано, что радиационный выход G_{Cl} в этом случае равен 2,12 (при комнатной температуре) и в отличие от эффектов при γ -облучении не изменяется после прогрева облученной соли. Основываясь на этом факте, автор [63] ввел предположение о большой роли термических эффектов (в треке) при радиолизе хлоратов α -излучением.

К работам по радиолизу хлоратов примыкает группа работ по исследованию эффекта Сцилларда-Чалмерса в этом классе соединений [64—66]. Среди продуктов в облученных нейтронами хлоратах отмечается присутствие Cl^- , ClO_2^- , ClO^- , Cl_2^- и ClO_4^- ; образующийся по реакции (n, γ) изотоп Cl^{36} почти полностью удерживается в форме Cl^- . В работе [65], по данным распределения наведенной активности

(т. е. содержания Cl^{36}) в формах ClO_3^- и ClO_4^- , сделан вывод о более вероятном получении ClO_4^- при окислении ClO_3^- , чем по реакции окисления Cl^- .

В процессе радиолиза $KBrO_3$ под действием смешанного реакторного излучения доля разложившегося бромата возрастает линейно с ростом дозы облучения [68—69]. При этом согласно [70] $G_{Br} = 1 \pm 0.1$ для γ -излучения и быстрых электронов широкого спектра энергий и составляет 23—30 (G_{Cl} -) для смешанных нейтронов.

Наиболее подробно радиолиз броматов щелочных металлов исследован в поздних работах Бойда с соавторами [71—74]. Данные по выходу основных продуктов радиолиза под действием γ -излучения Со 60 [71] све-

дены в табл. 6.

Таблица 6 Величины G_0 радиолиза бромато в щелочных металлах при облучении их γ -радиацией Co^{60}

Продукты Соль	$G \left(\text{BrO}_2^- + \text{BrO}^- \right)$	<i>G</i> (Br−)	G (-BrO ₃ -)
LiBrO ₃	0,21	0,13	0,23
$NaBrO_3$	0,64	0,88	1,48
KBrO ₃	0,46	1,07	1,53
RbBrO ₃	0,82	1,02	1,85
$CsBrO_3$	0,49	2,23	2,73

Накопление Br $^-$, линейное в начальной стадии радиолиза (ориентировочно до $1\cdot 10^{23}$ 98/z), далее начинает протекать с постепенно уменьшающейся скоростью для всех броматов, кроме LiBrO₃, степень отклонения от линейности возрастает по ряду от NaBrO₃ к CsBrO₃, для последних справедлива следующая зависимость выхода (y) от поглощенной дозы $(x): y = \kappa_1 x/1 + \kappa_2 \cdot \sqrt{x}$ еще в большей степени по ходу радиолиза уменьшается величина $G(\text{BrO}^- + \text{BrO}_2^-)$.

В интервале температур 77—358°К скорость радиолиза лишь очень слабо зависит от температуры облучения. Отношения $\frac{G(\mathrm{Br}^-)}{G(\mathrm{Br}^-)}$ и

 $G(-BrO_3^-)$ при 357 и 77°К являются наименьшими для CsBrO₃ [1, 16] и максимальными для RbBrO₃ [1, 47]. Для CsBrO₃ скорость накопления Br-практически не зависит и от мощности дозы облучения. Изотопный состав (для LlBrO₃) и способ получения соединений (для LiBrO₃ и RbBrO₃) лишь слабо влияют на скорость радиолиза броматов.

Одним из центральных выводов работы [71] является установление авторами корреляции между величиной свободного объема броматов и радиационной стабильностью их, подобной имеющим место для ряда других неорганических солей [75]. Эта корреляция является, однако, справедливой лишь для группы подобных соединений (броматы щелочных металлов).

В более поздней работе [72] Бойд с соавторами установили, что величины G продуктов радиолиза броматов в поле нейтронного облуче-

ния значительно выше, чем в случае у-облучения. Вследствие этого и с целью выяснения вопроса о специфике протекания радиолиза под действием нейтронов теми же авторами был подробно изучен радиолиз броматов в поле смешанного реакторного облучения [73]. Аналитически было установлено, что в суммарной поглощаемой дозе более половины приходится на внутреннее облучение броматов излучением, которое генерируется нестабильными продуктами реакции (n, γ) и ядрами отдачи. В смешанном реакторном излучении доля «чистого» у-излучения составляет более 50% общей дозы, поглощаемой броматами. Величины радиационных выходов, полученные при радиолизе в таких условиях, приведены в табл. 7.

Таблица 7 Вначения С основных продуктов радиолиза броматов в поле реакторного излучения

Продукты	G (— BrO ₃ ⁻)	G (Br-)	G (BrO-)	G (BrO ₂ ⁻)
Li ⁷ BrO ₃	0,47			
NaBrO ₃	1,4	0,59	0,22	0,59
$KBrO_3$	1,3	0,63	0,2	0,54
RbBrO ₃	2,4	0,96	2,23	0.31
$CsBrO_3$	3,4	0,61		
LiBrO ₃	1,4	0,58	0,26	0,47

Сравнение данных табл. 6 и 7 показывает, что для всех броматов, кроме LiBrO₃, выходы продуктов при γ - и реакторном облучении весьма близки. Увеличение выхода для LiBrO₃ связано с высокой эффективностью захвата нейтронов ядрами Li⁶. Изотопный состав LiBrO₃ в этом случае в отличие от ситуации при у-радиолизе, естественно, влияет на скорость процесса.

Из числа броматов щелочных металлов радиолиз наиболее детально

исследован для CsBrO₃ [74].

Кинетические закономерности накопления продуктов оказались в этом случае качественно подобными, имеющими место для КС1О3 (см. выше). Кривые накопления бромокисных продуктов идут с насыщением, так что при дозах порядка 10^{24} эв/г выход их практически становится равным нулю. В отличие от бромокисных продуктов накопление Br – и O₂ линейно вплоть до высоких доз. Весьма выражены отжиговые явления, в связи с чем относительное содержание в продуктах Вги окислов брома зависит от температуры радиолиза. Выходы всех продуктов не зависят от мощности дозы облучения. Температурная зависимость скорости радиолиза оказалась для CsBrO₃ сложной, что связано со сложностью отжиговых процессов в броматах, идущих как с образованием конечных продуктов процесса, так и с обратным окислением продуктов до BrO3.

ЭПР и оптические спектры в облученных солях

В настоящее время относительно подробно исследован вид спектра ЭПР лишь в облученных сравнительно небольшими дозами (< 106 рад) хлоратах калия и натрия. Данные о сигналах в CsClO₃ и RbClO₃ крайне ограниченны, что касается броматов и иодатов, то имеется лишь общее указание на возможность наблюдения сигналов в этих солях и краткое описание формы их в порошкообразных материалах [47].

Спектр ЭПР в облученных хлоратах щелочных металлов имеет сложный вид (рис. 6) и полностью и достаточно корректно еще не расшифрован.

По поводу идентификации каждого сигнала в спектре в литературе

имеются, как правило, разноречивые мнения.

После качественного описания сигналов в облученном КСlO₃ [48] подробно ЭПР этой соли впервые был изучен Хасти с соавторами [48, 50].

Согласно [48] спектр облученного при 20°С КСІО₃ состоит из двух групп линий широкого центрального синглета с g-фактором больше 2 и группы из четырех сильно анизотропных квартетов с относительно меньшей интенсивностью, которые отнесены авторами к одному синглету. 16 линий спектра полностью исчезают при прогреве кристаллов до 105°С, при этом кристалл становится непрозрачным, молочного цвета.

Результаты проведенного авторами расчета величины СТС квартетов дали ему основание для предположения, что этот сигнал относится к группировке С10-С103 с обобществленным валентным электроном. При этом радикал С10 получается в результате развала ClO_3^0 . Четыре реализуемых в спектре квартета относятся к различным комбинациям изотопов $C1^{35}$ и $C1^{37}$ в комплексе С10-С13, имеющих различные величины ядерных магнитных моментов. Центральный синглет авторы приписывают радикалу О2 (без каких-либо четких на то оснований). Авторы [49] считают, напротив, что центральный синглет в спектре

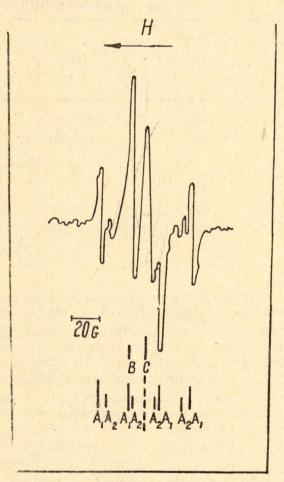


Рис. 6. Спектр ЭПР облученного $NaClO_3$ (облучение и съемка при комнатной температуре). A_1 и A_2 — два квартета (Cl^{35} и Cl^{37}); B и C — синглеты

облученного NaClO₃ следует (как и в KClO₃) отнести более вероятно к радикалу О₃ (g=2,003-2,015), чем к О₂ , так как последний обладает большой анизотропией [50], не характерной для синглета в спектре NaClO₃. В отличие от [48] в работе [49] помимо синглета и сложного многоквартетного спектра было показано наличие слаборазрешенного публета (табл. 8) и еще двух линий, скрытых квартетами. Первый дублет был предположительно приписан радикалу ClO₂ (g=2,01 по 51). а второй — кислороду или кислородному образованию (табл. 8).

В этой же работе авторами сделан вывод об отсутствии сигнала

в NaBrO₃, облученном γ-излучением.

Аткинс с соавторами, исследовавшие аналогию между спектрами замороженных в различных матрицах хлорокисных радикалов (ClO, ClO₂, ClO₃) и формой сигналов ЭПР в облученных хлоратах и перхло-

ратах, считают, что с большей вероятностью ложный сигнал в хлоратах относится к образованию Cl—ClO₃, нежели к ион-радикалу ClO—ClO₃. Что касается центрального синглета, то авторы [51] с определенностью относят его к O₃— на основании присутствия подобного сигнала у KO₃ и из корреляции с оптическим спектром озонида.

Таблица 8 Характер сигналов ЭПР в облученных хлоратах

Радикал Работа	$O_3^- (O_2^-)$	ClO ₂	CIO	C1O ₃ ⁰ C1O — C1O ₃ ⁻
[58] [49]		$g = 2,01 \ A = 57$	g = 2,022	g = 2,0023
[51]]52] [53] [61]	g = 2,008 g = 2,0338	g = 2,0102 $g = 2,0032$		g = 2,0124 2,003

В наиболее поздней работе, посвященной спектрам ЭПР в облученном NaClO₃ [52], показано, что при дозах облучения до $\sim 10^5$ рентген заметны три парамагнитных центра, при дальнейшем облучении число их возрастает. Многоквартетный спектр (найденный также и во всех предыдущих работах) авторы в отличие от [48] и [51] относят к радикалу ClO₃ на основании того, что установленная форма центра — пирамида с осью вдоль направления <111> кристалла — отвечает форме ClO 0_3 расположенного в нормальном месте хлорат-аниона. Аксиальная симметрия, установленная экспериментально для центра, не позволяет приписать его к ClO₂, имеющему, вероятнее, ромбическую симметрию [51]. К подобному выводу о природе сигнала пришли и в [61], кроме него, здесь в КСlO₃ обнаружили еще три центра, один из которых отнесли к ClO₂ . Помимо сложного сигнала авторы нашли еще два центральных синглета, которые они не идентифицировали.

Положение g-фактора одного из синглетов ($g=2{,}008$) близко к положению сигналов, приписанных в работах [48] и [49] ион-радикалу O_3^- . Центр, ответственный за второй сигнал ($g_{\parallel}=2{,}007;~g_{\perp}=2{,}02$), не установлен.

Результаты, полученные в [53], показывают, что характер сигналов ЭПР в порошкообразных солях, облученных при комнатной температуре, качественно подобен во всех хлоратах щелочных и щелочноземельных металлов. Установленные же в этой работе величины g-факторов центров отличаются от найденных ранее для монокристаллов. Не вводя новых предположений об идентификации сигналов, автор придерживается на этот счет точки зрения [48].

Как следует из изложенного, единой точки зрения по вопросу о моделях центров, ответственных за поглощение в хлоратах в области СВЧ, не существует.

В настоящее время с достаточной определенностью можно, видимо, расшифровать центральный синглет, приписав его к О . Из предлагае-

мых моделей многоквартетного спектра, по-видимому, более вероятной

является радикал ClO₃ .

В отличие от выполненных ранее в работах [47, 54] впервые получены сведения о спектрах ЭПР хлоратов щелочных металлов при температуре 77°К облучения и съемки, данные о кинетике накопления и закономерностях отжига сигналов в ряде хлоратов и о связи скорости накопления с параметрами кристаллической решетки. Облучение солей при низких

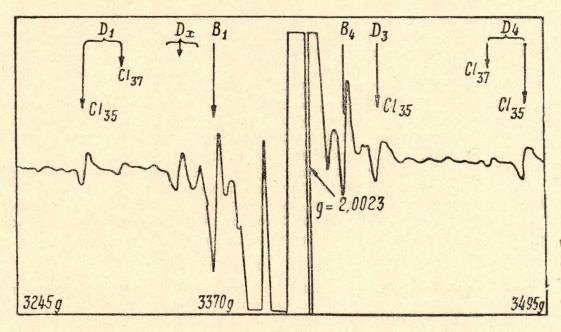


Рис. 7. Спектр ЭПР облученного ${\rm KClO_3}$ ($\stackrel{\rightarrow}{H}$ [111]), D- многоквартетный сигнал

температурах большими дозами (до $10^8 \ pad$) дало возможность впервые получить сигналы в броматах и иодатах и отчетливо наблюдать ранее не обнаруженные сигналы в $KClO_3$.

В работах [55, 57], носящих в основном характер кратких сообщений, описаны сигналы ядерного квадрупольного резонанса на ядрах Cl³⁵

в хлоратах калия и натрия.

Авторы отмечают уширение линий после облучения хлоратов, являющееся следствием возмущения кристаллического поля радикалами и ионами — продуктами радиолиза. Интересен вывод одной из цитируемых работ о большей величине G при облучении $NaClO_3$ нейтронами по сравнению с радиолизом γ -излучением.

Сведения о оптических спектрах поглощения в облученных солях

типа *MeHalO*₃ крайне ограниченны.

Хилл, исследовавший спектры поглощения тонких монокристалличеких пластинок $KClO_3$ [58], облученных рентгеновскими лучами до высоких доз ($\sim 10^{23}$ $_{98/2}$), установил наличие в спектрах трех полос поглощения — при 260 $m\mu$, 310 $m\mu$ и в области — 450 $m\mu$. По аналогии с положением полос поглощения хлорокисных анионов в водных растворах [59] он отнес эти полосы соответственно к ClO_1 , ClO_2 и Cl_2O_6 , присутствие которых подтвердил анализом раствора облученной соли. В отличие от данных Хилла в работах [48] и [60] в облученном $KClO_3$ была замечена лишь одна интенсивная полоса с максимумом при 461 $m\mu$, устойчивая при комнатной температуре. При тех же условиях в $NaClO_3$ в [60] наблюдали два пика поглощения, сдвинутых в коротковолновую область спектра. Более тщательное изучение окрашивания

NaClO₃ при комнатной температуре, выполненное в [67], показало, что в спектре облученной соли выделяются три области поглощения — около 260 и с максимумами при 302 и 420 ми. Эти центры не наводятся при облучении хлората светом (область 220—400 тр), при аддитивном окрашивании и прогреве кристаллов в атмосфере кислорода. Центры поглощения оптически стабильны, но разрушаются при прогреве облученного кристалла до 140°С.

Поглощение в области длин волн, меньших 260 три и при 302 тр. естественно, также как и у КСlO₃, связать с СlO и СlO₂. Если считать, что в облученном NaClO₃ все полосы поглощения сдвинуты в коротковолновую область спектра относительно полос в КСlO₃, то можно предположить, что полоса 420 мм в NaClO₃ аналогична полосе при 460 тр у КСЮ3. В работе [48] максимум в КСЮ3 при 460 тр приписан к центру O_2 , расположенному в анионной вакансии. И, наконец, в работе [53] содержится еще одно предположение, согласно которому окраска облученных хлоратов (автор, к сожалению, не говорит, о какой полосе поглощения идет речь) относится к центрам СІО—СІО 3

Имеющееся различие в данных [58] и [48, 53, 60] может быть связано с тем, что в последних работах облучение проведено сравнительно малыми дозами, не позволившими, видимо, получить полосы от р'яда продуктов. Что касается модели центра, ответственного за полосу $460~m\mu$, то наиболее вероятными следует считать молекулы Cl₂O₆ или O 7.

О механизме радиолиза

Приводимые выше данные по спектрам оптического поглощения и ЭПР, а также по характеру и накоплению конечных продуктов при радиолизе хлоратов щелочных металлов дают основание для построения предположительного механизма радиационного разложения этой группы соединений. В наибольшей мере названные положения применимы лишь к хлоратам натрия и калия, поскольку необходимые экспериментальные данные получены лишь для этих двух солей.

При радиолизе хлоратов вероятны следующие элементарные стадии:

2.
$$C1O_3^- \longrightarrow C1O_3^0 + e^*$$
;

2.
$$ClO_3 \longrightarrow ClO_3^a + e^a;$$

3. $e^* \rightarrow e;$
4. $ClO_3^0 \longrightarrow ClO + O_2,$
 $-\rightarrow Cl + O_2 + O;$
5. $ClO_2 + e \longrightarrow -$ I PROJEKTH 1. $a = 1$ J.

5.
$$ClO_3 + e \longrightarrow | -$$
 продукты 1, $a-1$, д;

6.
$$O_2^- + O \longrightarrow O_3^-$$
, $O_2/\square a + e \longrightarrow O_2^-/\square a$;

7.
$$O + O \longrightarrow O_2$$
; (a) $C1 + C1 \longrightarrow C1_2$; (6)

8.
$$C1O_2^- \longrightarrow C1^- + O_2$$
, (a)

$$C10^{-} \rightarrow C1^{-} + O; \tag{6}$$

9.
$$C1O_2^- + O_2 \longrightarrow C1O_3^- + O$$
, (a)

$$C10^{-} + O_2 \longrightarrow C1O_3^{-};$$
 (6)

10. $C10_3^- + O \longrightarrow C10_4^-$.

При радиолизе в качестве первичных стадий вероятны как возбуждение 1, так и ионизация 2 анионов. При диссоциации возбужденных ClO_3^{-*} может образоваться широкий круг хлорокисных продуктов, определяемых аналитически или спектроскопически (реакции 1, а—1, g). Образование хлорокисных анионов (стадии 1, а—1, в) является, однако, более вероятным, чем реакции 1, г и 1, д—в силу более высокого сродства к электрону хлорокисных образований [76], чем кислорода. Образующиеся при этом продукты отчетливо определены аналитически (см. выше), а присутствие части из них непосредственно в кристаллах установлено также при изучении оптических спектров поглощения в облученных кристаллах.

Экспериментальными фактами, подтверждающими ионизацию

в хлоратах, являются следующие:

1. наличие многоквартетного сигнала в спектрах облученных $NaClO_3$ и $KClO_3$, относимого, вероятнее всего, к ClO_3^0 ;

2) образование при радиолизе небольших количеств Cl₂O₆ [58],

получающейся при биомолекулярном взаимодействии С1О3 .

После акта ионизации возбужденный электрон теряет свою энергию (стадия термализации электрона (3), после чего захватывается какой-нибудь ловушкой.

Радикал ClO_3^0 , будучи неустойчивым образованием, может термически разлагаться (особенно при радиолизе в области повышенных температур); образующиеся при этом радикалы ClO и ClO_2 могут присутствовать в продуктах радиолиза, однако вопрос об их присутствии в качестве промежуточных или конечных образований четко решен лишь для ClO_2^0 .

Ввиду высокого сродства радикала ClO_3^0 к электрону (E=3,96 эв, по [76]) рекомбинация их может также приводить к разрыву связей внутри радикала. Возможность этого определяется в значительной мере соотношением между энергией сродства ClO_3^0 к электрону и энергией разрыва связей Cl-O в хлорате. Последняя величина составляет в $KClO_3$ 2,38 эв [17]. Следовательно, можно допустить, что рекомбинация носит характер диссоциативного присоединения электрона к ClO (реакции 5).

В спектрах ЭПР облученных хлоратов один из синглетов отнесен к кислородному радикалу — это дает основание для введения реакции 6, при этом, судя по позднейшим работам, более вероятной является стадия 6, а.

По аналогии с броматами можно считать, что отжиг продуктов радиолиза, имеющий место, видимо, и в самом процессе радиолиза при средних и высоких температурах, проходит как по пути термического превращения нестабильных продуктов (реакции 8, a, б), так и с обратным окислением хлорокисных продуктов радиолитическим кислородом (реакции 9, a, б). При радиолизе хлоратов в качестве первичных актов

идут, видимо, параллельно реакции 1 и 2. Определить дальнейшую судьбу образующихся в стадии 2 радикалов ClO_3^0 (распад или диссоциативная рекомбинация с электроном) в настоящее время окончательно невозможно. Однако данные по отсутствию влияния мощности дозы на накопление парамагнитных частиц в хлоратах позволяют предположить, что более вероятным процессом является распад ClO_3^0 (реакции 4). В связи с этим и в соответствии с изложенным выше можно надеяться, что в хлоратах образование нейтральных хлорокисных радикалов (ClO, ClO_2) и анионов (ClO^- , ClO_2^-) происходит по разным реакциям (соответственно 4 и 1).

Поскольку в ряде работ было показано присутствие в продуктах радиолиза хлоратов аниона ClO_4 , а в работе [65] содержится утверждение об образовании ClO_4 путем доокисления хлорат-аниона, в качестве

предположительной следует ввести реакцию 10.

Подобно приводимой схеме радиолиза Баберкин [62] также считает вероятным параллельное протекание возбуждения и ионизации, приводящих к образованию продуктов радиолиза, но роль ионизационных процессов считает при этом незначительной.

Хилл в своей работе [58] в качестве первичного процесса рассматривает лишь возбуждение хлорат-анионов; совокупность рассматриваемых им элементарных стадий радиолиза не учитывает, однако, образования ряда радикальных продуктов, наличие которых было установлено позднее методом ЭПР.

Образование в качестве первичных продуктов при радиолизе хлоратов катионов Me^{++} по реакции

$$Me^+ \rightarrow Me^{++} + e$$
 (11)

и дальнейшее взаимодействие Ме++ с соседним анионом

$$Me^{++} + ClO_3^- \rightarrow Me^+ + ClO_3^0$$
 (12)

в принципе, видимо, возможно так же, как это предположено выше для нитратов. Для хлоратов, однако, оценить вклад катиона в общий выход

продуктов пока невозможно.

Образование радикалов и конечных молекулярных продуктов при радиолизе броматов щелочных металлов изучено относительно гораздо менее подробно, чем в случае хлоратов. В литературе в достаточной степени освещен лишь вопрос о составе и накоплении бромида и бромокисных анионов с низкой степенью окисления брома. В связи с этим приводимый в [72—73] механизм радиолиза броматов выглядит менее определенным и обоснованным, чем совокупность элементарных стадий, которую можно представить для хлоратов. Разумно предположить (и сопоставление состава молекулярных продуктов радиолиза хлоратов и броматов подтверждает это), что характер элементарных стадий радиолиза броматов в основном должен быть подобен имеющим место при радиолизе хлоратов. Имеющиеся же для этих двух групп солей различия в механизмах радиолиза могут быть определенно установлены лишь при тщательном сравнительном изучении оптических и ЭПР-спектров солей.

V. Радиолиз перхлоратов

Из группы солей, рассматриваемых в настоящем обзоре, перхлораты наименее устойчивы к действию излучения. В качестве продуктов радиолиза перхлората калия после растворения облученной соли в воде Хиллом [77] были идентифицированы Cl^- , Cl_3^- и O_2 . Однако Баберкиным [62] было найдено, что хлорид появляется лишь после прогрева

облученных образцов выше 370°К. В работе [77] было также предположено образование гипохлорита и хлорита, наличие которых в облученных перхлоратах щелочных и щелочноземельных металлов экспериментально было показано в более поздних работах [38, 78, 79]. Накопление основных продуктов радиолиза с поглощенной дозой мало отличается от линейности. Величины радиационно-химического выхода продуктов радиолиза перхлоратов различных металлов приведены в табл. 9.

Таблица 9 Радиационно-химические выходы продуктов радиолиза перхлоратов при комнатной температуре

					The second second second			To be the second
Соль	G (ClO ₃)	$G(\text{CIO}_2^-)$	G (CIO ₂)	G (CIO [–])	G (CI ⁻)	$G(O_2)$	$G(-C10_4^-)$	Литература
LiC1O ₄	2,80	0,15	0,59	0,10	0,12	2,15	3,76	78
NaClO ₄	3,57	0,17	0,11	0,09	0,42	2,96	4,36	[78]
NaClO ₄	2,8	0,75	0,08	0,1	0,43	_	4,2	[38]
KC1O ₄	2,99	0,18	0,12	0,09	0,45	2,68	3,83	[78]
KC1O ₄		_	-	_	0,94	_	3,46	[79]
RbC1O ₄	4,06	0,20	0,12	0,14	0,75	3,84	5,27	[78]
RbC1O ₄	-	-		-	1,14	-	4,86	[79]
CsClO ₄	5,28	0,22	0,10	0,17	1,07	5,28	6,84	[78]
CsClO ₄	-	-	- /	() T	1,94		8,84	[79]
$Mg(C1O_4)_2$	4,29	0,14	0,07	0,03	0,15	2,62	4,67	[78]
Ca (C1O ₄) ₂	3,44	0,00	0,51	0,08	0,12	1,99	4,15	[78]
Sr (C1O ₄) ₂	3,90	0,19	0,14	0,11	0,19	2,61	4,53	[78]
Ba (C1O ₄) ₂	1,76	0,84	0,42	0,12	0,06	2,18	3,20	[78]
	I COLOR	13-76-50	1					12/5/15/20

Как видно из этой таблицы, основными продуктами радиолиза перхлоратов являются хлорат и кислород. Остальные продукты образуются с относительно небольшими выходами. В работах [38, 78] показано, что $G(-ClO_4)$ в $KClO_4$ и $NaClO_4$ почти не зависит от температуры в широком интервале температур. Из табл. 10, взятой из работы Принса и Джонсона [78], можно видеть, что с увеличением температуры облучения $KClO_4$ $G(ClO_2)$ и $G(ClO_2)$ монотонно уменьшаются, а $G(ClO_1)$ проходит через максимум. Эти факты автором были приписаны термическому разложению указанных продуктов.

Методом ЭПР также подтверждена неустойчивость молекул ClO₂ выше 340°К [80]. При комнатной температуре в облученном КClO₄, кроме ClO₂ [80, 81], обнаружены парамагнитные частицы O₃ и неидентифицированный радикал. При 77°К дополнительно появляются радикалы ClO₃ [80]. Радикал ClO₃ был найден также в облученном NH₄ClO₄ [82—84] при комнатной температуре. Однако в этих условиях он весьма нестабилен. Наличие других парамагнитных частиц, образующихся при облучении КClO₄, в NH₄ClO₄ не обнаруживалось. Кроме ClO₃, в облученном перхлорате аммония образуются устойчивые при 300°К ион-радикалы NH₃ [82—86]. Следует отметить, что отличаются не только промежуточные продукты радиолиза перхлоратов аммония и калия, но также и конечные, определяемые химическими методами.

Так, в работах [87, 88] было показано, что основными продуктами радиолиза NH_4ClO_4 являются Cl_2 и Cl^- , что связано с окислением иона аммония. В перхлоратах же металлов первой и второй группы периодической системы природа катиона оказывает влияние лишь на величину радиационно-химического выхода. Зависимость $G(-ClO_4)$ от природы

Таблица 10 Влияние температуры облучения на радиолиз КС1О₄ [78]

t° C	G (-C104)	G (CIO3)	G (CIO ₂)	G (C10 ₂)	G (C10-)	G (CI-)	G (O ₂)
-196	4,0	2,7	0,58	0,18	0,00	0,5	3,0
-80	4,0	2,8	0,49	0,17	0,00	0,6	2,7
-16	3,7	2,8	0,26	0,06	0,06	0,5	2,4
-8	3,5	2.6	0,26	0,09	0,06	0,5	2,6
0	3,4	2,6	0,20	0,07	0,06	0,5	2,2
20	3,7	2,9	0,19	0,09	0,08	0,5	2,5
72	4,1	3,3	0,19	0,09	0,00	0,5	2,7
260	4,9	4,2	0,00	0,00	0,00	0,7	2,0
295	3 8	2,9	0,00	0,00	0,00	0,9	1,0

катиона, как и в других слоях, приписывается изменению величины свободного объема кристаллической решетки [78, 79]. Обращает на себя внимание тот факт, что в случае перхлоратов влияние природы катиона гораздо менее выражено, чем в случае, например, нитратов. По-видимому, это связано с тем, что преобладающее значение в радиационно-химической устойчивости перхлоратов в ряду катионов щелочных и щелочно-земельных металлов имеет не свободный объем, а электронная доля катиона и аниона [38]. Однако для уверенной интерпретации механизма радиолиза перхлоратов пока недостаточно имеющихся в литературе сведений. В связи с этим весьма желательным является изучение промежуточных продуктов радиолиза перхлоратов. Накопление экспериментальных результатов, подобных данным по спектрам ЭПР в облученных перхлоратах [80-85] и спектрам оптического поглощения [59] позволит более детально изучить промежуточные стадии радиолиза перхлоратов. С этой точки зрения предлагаемые в работах [78, 80] схемы отдельных промежуточных стадий радиолиза следует рассматривать как весьма предположительные.

VI. Отжиг радиационных нарушений

Рядом исследователей в основном в последние годы было предпринято изучение процессов восстановления свойств и стехиометрического состава облученных материалов под действием разного рода воздействий на облученные соединения.

Выполненные в этом направлении работы составляют две группы исследований с несколько различными постановочными задачами.

Большинство работ посвящено изучению отжиговых явлений в препаратах (в основном неорганических кислородосодержащих радиационно стабильных солях), облученных медленными нейтронами. Рас-

смотрены в основном вопросы разделения изотопов с использованием эффекта Спилларда-Чалмерса и изменение во времени распределения изотопов между отдельными химическими формами в облученных материалах. Ввиду косвенного отношения данного вопроса к предмету радиационной химии твердых соединений, а также в связи с появлением в этой области в последнее время двух подробных обзоров [89, 90] мы в настоящей работе подробно не рассматриваем вопросы отжигового перераспределения ядер отдачи.

Сравнительно небольшое число публикаций, подлежащих рассмотрению, посвящено вопросам изменений при послерадиационном отжиге концентрации продуктов радиолиза в твердых солях.

1. ОТЖИГОВЫЕ ЯВЛЕНИЯ В ОБЛУЧЕННЫХ НИТРАТАХ

Большинство работ по отжигу продуктов радиолиза выполнено с использованием в качестве объектов нитратов бария и некоторых тяжелых металлов. Первые качественные наблюдения отжига радиационных продуктов в нитратах получены, однако, на KNO_3 [91]. В этой и последующих работах изучалось изменение во времени концентрации нитрита в нитратах, облученных γ -радиацией или быстрыми электронами.

Имеющийся в литературе материал посвящен исключительно кинетике термического отжига, послерадиационные изменения продуктов

под влиянием других фактов изучены крайне слабо.

роль [93, 96].

В работе [92] установлено, что при прогреве кристаллов Pb (NO_3) $_2$ при $t=150^{\circ}$ С концентрация нитрита в них уменьшается со скоростью, максимальной в начальный период отжига и приобретающей постоянное значение после 30-40 часов прогрева. Кислород воздуха не участвует в отжиге; термическое разложение твердых растворов Pb (NO_3) $_2-Pb$ (NO_2) $_2$ при 150° С также не наблюдается [93]. Все это дало основание авторам считать, что при отжиге облученных нитратов происходит окисление нитрата молекулярным кислородом — продуктом радиолиза. В серии работ было установлено, что весьма важную роль в отжиге играют нарушения кристаллической решетки нитратов. Всякого рода обработка облученных кристаллов, приводящая к возрастанию дефектности их, может быть причиной увеличения скорости отжига.

Так, в [94] показано, что прессование
$$\left(40\frac{T}{c\,{\it M}^2}\right)$$
 облученного порошка

Рb (NO₃) 2 приводит к заметному возрастанию скорости отжига. Подобный же (количественно) эффект дает растирание облученного нитрата свинца, осуществляемое перед началом прогрева его при 150°С [95]. В обоих случаях ускорение характерно для начальной (быстрой) стадии отжига, постоянная же скорость процесса на поздних стадиях остается неизменной. При этом растирание кристаллов само вызывает лишь очень слабый отжиг, прессование же облученного $Pb(NO_3)_2$, напротив, приводит само к значительному уменьшению концентрации нитрита. Доля отжига составляет в этом случае 0,141 для давления прессования $10\frac{T}{cM^2}$ и 0,181 для $20\frac{T}{cM^2}$ [14]. Ускорение отжига после прессования авторы связывают предположительно с образованием при больших неравномерных нагрузках значительного числа точечных [13] дефектов — вакансий и междоузельных ионов [13], играющих в отжиге важную

89

Исследование отжига в облученном $Ba(NO_3)_2$ [13] показало, что в этом случае процесс проходит при температурах более высоких, чем для $Pb(NO_3)_2$. В отличие от $Pb(NO_3)_2$ для нитрата бария характерно полное прекращение отжига после 20-40 часов прогрева и меньшая глубина процесса (т. е. бо́льшая необратимость радиолиза). Некоторые результаты по термическому отжигу нитритов в облученном $TlNO_3$ и нитратах щелочных металлов содержатся в [39, 97, 98]. Приводимые в этих работах данные показывают, что скорость отжига в нитратах зависит как от макросвойств кристаллической решетки [98] (свободный объем), так и от микронарушений и дефектов матрицы, содержание которых можно регулировать введением в нитраты иновалентных примесных ионов [39].

Зависимость скорости отжига от макросвойств приводит к закономерному изменению скорости и глубины отжига в нитратах щелочных металлов по ряду от $NaNO_3$ к $CsNO_3$. При этом температурный коэффициент скорости отжига в нитратах существенно больше аналогичной величины для скорости радиолиза. Вследствие этого рядовые зависимости скорости радиолиза нитратов щелочных металлов при повышенных температурах и при облучении α -частицами (высокие температуры в треках) оказываются выраженными заметно слабее [10]. С другой стороны, на важную роль микронарушений указывает изменение скорости отжига при введении в решетку нитратов катионов большей валентности, сопровождающемся возрастанием числа катионных вакансий в нитратах.

2. ОТЖИГОВЫЕ ЯВЛЕНИЯ В ДРУГИХ КИСЛОРОДОСОДЕРЖАЩИХ СОЛЯХ

Образующиеся при радиолизе оксигалоидных соединений различные формы окисления галоидов являются термически неустойчивыми продуктами и могут претерпевать различные превращения при хранении облученных солей. Кинетика такого рода превращений в хлорате натрия описана в [63, 99]. Прогрев NaClO₃ в области температур 100— 210°C приводит к возрастанию выхода Cl — за счет термолиза хлорокисных продуктов радиолиза (ClO_2 , — ClO_2). Термостатирование же облученной соли при 50°C вызывает более сложные изменения во времени $G_{\mathrm{Cl}}-$ — быстрое начальное возрастание $G_{\mathrm{Cl}}-$ и последующее падение до значения, меньшего чем $G_{\rm CI}-$ в неотложенном хлорате. Сложный характер кинетической кривой отжига дает основание для предположения о том, что наряду с процессом разложения галоидокисных форм существенную роль при нагреве играют конкурирующие с ними реакции рекомбинации этих форм с кислородом, захваченным матрицей, которые приводят к восстановлению разрушенного радиацией аниона. В работах [71, 74, 100, 101] приведены экспериментальные результаты, подтверждающие расход при отжиге окисленных форм галоида по этим двум каналам одновременно и со скоростями, не сильно отличающимися друг от друга (для CsBrO₃ и KBrO₃).

Отжиг, протекающий, вероятно, в форме термического разложения хлорокисных продуктов, характерен также и для перхлоратов щелочных металлов [78], хотя в этом случае вопрос о характере отжига (окисление или термолиз) авторами специально не исследовался. Результаты, сообщаемые в [78], позволяют предположить, что в перхлоратах подобно тому, как это имеет место в нитратах щелочных металлов [98], скорость отжига существенно зависит от свободного объема кристаллической решетки, причем она наибольшая у перхлоратов, имеющих максимальный свободный объем.

Существование такого рода корреляции для нитратов и перхлоратов щелочных металлов позволяет поставить вопрос об общности связи между скоростью отжига продуктов радиолиза и величиной свободного объема решетки для всего класса неорганических солей. Существование такой связи понятно для случая, когда отжиг проходит, как рекомбинация (но не термолиз) радиолитических продуктов. Улучшение условий взаимной диффузии продуктов в ряду однотипных солей параллельно с ростом свободного объема должно, естественно, вызывать увеличение скорости отжига в этой же последовательности.

Существенный интерес представляют работы, в которых изучалось влияние разного рода воздействий на радиационностабильные соли (в основном хроматы, бихроматы и фосфаты) поле облучения их медленными нейтронами [102—108]. В этих работах было установлено, что обработка облученных солей более мягкой радиацией, не вызывающей радиолиза их (свет, у-лучи, быстрые электроны), а также прессование или растирание их вызывают ускорение последующего термического отжига продуктов реакции Сцилларда-Чалмерса. Так же, как и в описанных выше подобных экспериментах с нитратами, детальный механизм такого рода стимулирующих воздействий неясен.

На эффективность удерживания продуктов процесса Сцилларда-Чалмерса существенное влияние оказывают также вводимые в решетку кристалла примесные ионы [109, 110]. Авторы считают, что это указывает на важную роль ионных и электронных элементарных процессов в осуществлении отжига в облученных нейтронами неорганических солях.

ЛИТЕРАТУРА

1. В. В. Свиридов. Фотохимия и радиационная химия твердых неорганичесвеществ. Минск, 1964.
2. Т. Н. Сhen, E. R. Johnson. J. Phys. Chem., 66, 2249, 1962.
3. J. Cunningham. J. Phys. Chem., 66, 779, 1962.
4. J. Cunningham. J. Phys. Chem. Solids, 23, 843, 1962.
5. R. Livingston, H. Zeldes. J. Chem. Phys., 41, 4011, 1964.

- 6. Ю. А. Кулюпин, А. Ф. Яценко. ФТТ, **5**, 3334, 1963.
 7. J. Cunningham. J. Phys. Chem., **67**, 1772, 1963.
 8. Ю. А. Захаров, В. А. Невоструев. ЖФХ, 1966 (в печати).
 9. S. R. Logan. Nature, **199**, 369, 1963.
 10. С. J. Hochanadel. Rad. Res., **16**, 286, 1962.
 11. W. C. Mosley, W. G. Moulton. J. Chem. Phys., **43**, 1207, 1965.
- 12. K. Zdansky, Z. Sroubek. Чехосл. физ. журнал, B14, 121, 1964.

- 12. К. Zdansky, Z. Sfoubek. Чехосл. физ. журнал, В14, 121, 1904.
 13. S. R. Mohanty, S. P. Upadhyay. J. Inorg. Nucl. Chem., 25, 309, 1963.
 14. S. R. Mohanty, S. P. Upadhyay. Nature, 201, 921, 1964.
 15. R. M. Golding, M. Henchman. J. Chem. Phys., 40, 1554, 1964.
 16. E. R. Johnson. J. Amer. Chem. Soc., 80, 4460, 1958.
 17. G. Hennig, R. Lees, M. S. Matheson. J. Chem. Phys., 21, 664, 1953.
 18. A. C. Баберкин, М. А. Проскурин, В. Д. Орехов. В сб. Действие 18. А. С. Баберкин, М. А. Проскурин, В. Д. Орехов. В сб. Действие монизирующих излучений на неорганические и органические системы, стр. 186, М., 1958. 19. Р. Pringsheim. J. Chem. Phys., 23, 369, 1955. 20. J. Cunningham. J. Chem. Phys., 41, 3522, 1964. 21. H. Zeldes. В сб. Рагатад. Resonance, vol. 2, Acad. Press., стр. 764, 1963. 22. H. Zeldes, R. Livingston. J. Chem. Phys., 37, 3017, 1962. 23. С. Jaccard. Phys. Rev., 124, 60, 1961. 24. W. B. Ard. J. Chem. Phys., 23, 1967, 1955. 25. R. Adde, P. Petit. C. r. Acad. sci., 256, 4862, 1963. 26. K. Gesi, V. U. Kazumata. J. Phys. Soc. Japan, 19, 1981, 1964. 27. R. Adde. C. r. Acad. Sci., 260, 504, 1965. 28. R. Adde. C. r. Acad. Sci., 260, 2781, 1965. 29. R. Adde. C. r. Acad. Sci., 261, 685, 1965. 30. P. W. Atkins, M. C. R. Symons. J. Chem. Soc., 4794, 1962. 31. J. Cunningham. J. Amer. Chem. Soc., 85, 3716, 1963. 32. E. R. Johnson, J. Forten. Disc. Faraday Soc., 31, 238, 1961. 33. C. J. Hochanadel, T. W. Dewis. J. Chem. Phys., 27, 333, 1957.

34. J. Cunningham. J. Phys. Chem., **65**, 628, 1961. 35. J. Cunningham, H. G. Heal. Trans. Faraday Soc., **54**, 1355, 1958. 36. E. R. Johnson. J. Phys. Chem., **66**, 755, 1962. 37. A. C. Баберкин. Проблемы физ. химин, **2**, 163, 1959, ЖФХ, 35, 373, 1961.

38. В. Н. Белевский. Автореферат дисс., Москва, 1965. 39. В. В. Болдырев, В. М. Лыхин, А. Н. Обливанцев. Кин. и кат.

40. H. Zeldes, R. Livingston. J. Chem. Phys., 35, 563, 1961.

- 41. N. M. Atherton, R. N. Dixon, G. N. Kirby. Nature, 206, 83, 1965. 42. P. W. Atkins, N. Keen, M. C. R. Symons. J. Chem. Soc., 2873, 1962. 43. J. Tateno, K. Gesi J. Chem. Phys., 40, 1317, 1964. 44. N. M. Atherton, R. N. Dixon, G. N. Kirby. Trans. Farad. Soc., 60,
- 1688, 1964.

45. K. Gesi, J. Takagi. Japan, J. Appl. Phys., 3, 1267, 1964.

46. L. Zisen. Acta Chem. Scand., 12, 578, 1958.
47. Л. В. Сериков, Ю. А. Захаров. Сб. трудов конференции химиков г. Томска, 1966 (в печати).
48. Т. Е. Hasty. Bull. Amer. Phys. Soc., 3, 299, 1958; Т. Е. Hasty, W. B. Ard,

W. G. Moulton. Phys. Rev. 116, 1459, 1959.

49 C. Ramasastry, S. B. S. Sastry, Y. V. Murthy. J. Phys. Soc. Japan,

19, 770, 1964.
50. Т. Hasty. J. Phys. Chem., 123, 167, 1962.
51. Р. W. Atkins, J. A. Brivati, N. Keen, M. C. R. Symons. J. Chem. Soc., 4785, 1962.
52. Г. Т. Gamble. J. Chem. Phys., 42, 3542, 1965.
53. Г. И. Субботин. Оптика и спектроскопия, 18, 175, 1965.
54. Ю. А. Захаров, Л. В. Сериков. Сб. трудов конференции химиков

г. Томска, 1966 (в печати).

55. L. Rendall, W. C. Moulton J. Chem. Phys., 31, 730, 1959. 56. В. С. Гречишкин. Природа, 8, 85, 1959. 57. J. Depireuk. J. Dushesue Nature, 181, 759, 1958.

58. Н. G. Неаl. Canad. J. Chem., 37, 979, 1959. 59. В. А. Невоструев, Ю. А. Захаров, И. Ф. Колесникова. Настоящий сборник.

60. W. E. Webb, W. G. Moulton, W. B. Ard. Bull. Amer. Phys. Soc. Series, 11, 4, 389, 1959.

61. J. Fauart, B. Thieblemant. C. R. Acad. Sci., **261**, 1501, 1965. 62. A. C. Баберкин, М. А. Проскурин, В. О. Орехов. Действие ионизирующих излучений на неорганические и органические системы, стр. 193, АН СССР,

- 63. C. I. Hochanadel. J. Phys. Chem., 67, 229, 1963.
 64. K. J. Mc. Callum, O. S. Holmes. Canad. J. of Chem., 29, 691, 1951.
 65. L. J. Sharman, K. J. Mc. Callum. J. Chem. Phys., 23, 597, 1955.
 66. C. W. Owens, F. S. Rowland. J. Inorg. Nucl. Chem., 24, 133, 1962.
 67. S. B. S. Sastry, C. Ramasastry. J. Phys. Soc. of Japan, 18, 1220, 1963.
 68. G. Boyd, J. Cobble, S. Wekler. J. Amer. Chem. Soc., 74, 217, 1952.
 69. J. Cobble, G. Boud. J. Amer. Chem. Soc., 74, 1272, 1952.
 70. G. Boyd, J. Cobble. J. Phys. Chem., 63, 919, 1959.
 71. G. Boyd, E. W. Graham, O. V. Larson. J. Phys. Chem., 66, 300, 1962.
 72. G. Boyd, Q. V. Larson. J. Phys. Chem., 68, 2627, 1964.

73. G. Boyd, Q. V. Larson. J. Phys. Chem., 68, 2627, 1964. 74. G. Boyd, Q. V. Larson. J. Phys. Chem., 69, 1413, 1965. 75. А. Н. Обливанцев, В. М. Лыхин, В. В. Болдырев [и др.]. Настоя-

щий сборник. 76. Справочник. Потенциалы ионизации и сродство к электрону. Изд. АН

CCCP, 1962.
77. H. G. Heal. Can. J. Chem., 31, 91, 1953.

78. L. A. Prince, E. R. Johnson. J. Phys. Chem., 69, 359, 1965.

79. А. Н. Обливанцев, В. М. Лыхин, В. В. Болдырев. Журн. ВХО им. Д. И. Менделеева, 10, 598, 1965. 80. А. В. Дубовицкий, Г. Б. Манелис. Кинетика и катализ, 6, 828, 1965. 81. Т. Со1е. Proc. Natl. Acad. Sci. U. S., 46, 506, 1960.

82. Ю. М. Боярчук и др. Кинетика и катализ, 5, 823, 1964. 83. Т. Соle. J. Chem. Phys., 35, 1169, 1961. 84. А. В. Дубовицкий, Н. Я. Бубен, Г. Б. Манелис. ЖСХ, 5, 40, 1964. 85. J. S. Hyde, E. S. Freeman. J. Phys. Chem., 65, 1636, 1961.

86. М. Fujimoto, J. R. Morton. Can. J. Chem., 43, 1012, 1965. 87. В. А. Невоструев, Г. Н. Баженова, Ю. А. Захаров. Труды конференции молодых ученых-химиков г. Томска, 1966, стр. 88. G. Odian, T. Acker, Th. Pletzke. J. Phys. Chem., 69, 2477, 1965.

89. М. А. Мурин, Р. В. Богданов, С. М. Томилов. Успехи химии, 33, 619, 1964.

90. S. R. Mohanty. J. Scient. Res. Banaras. 2, № 2, 1961-62, Lindu Univ.

90. S. R. Мойапту. J. Scient. Res. Banaras. 2, № 2, 1901-02, Епици Опіч. 91. М. А. Проскурин, В. Д. Орехов. Труды конференции по мирному пользованию атомной энергии. М., 41, 1955.

92. А. G. Maddock, S. R. Mohanty. Nature, 182, 1797, 1958.

93. А. І. Маddock, S. R. Mohanty. Disc. Far. Soc., 31, 193, 1961.

94. S. R. Mohanty, S. R. Upadhyay. Nature, 199, 169, 1963.

95. S. R. Mohanty, S. R. Upadhyay. Indian, J. of Chem., 1, 456, 1963.

96. А. Вееs. Adv. in Phys., 1, 43, 1952.

97. А. G. Maddock. Radioch. Acta, 1, 85, 1963.

98. Ю. А. Захаров, Е. П. Абакумов. Настоящий сборник.

99. Р. F. Patrick, К. J. Мс. Саllum. Nature, 194, 767, 1962.

100. G. Е. Воуd. Naturwissen, 52, № 11, 1965.

101. Т. Апderson. Nature, 200, 1094, 1963.

102. J. H. Green, G. Harbottle. Trans. Farad. Soc., 49, 1413, 1953.

103. R. F. C. Claridge, A. G. Maddock. Nature, 184, 1932, 1959.

104. А. G. Maddock, J. I. Vargas. Nature, 1184, 1931, 1959.

105. А. G. Maddock. Trans, Farad. Soc., 59, № 26, 26, 1963.

106. N. Getoff. Nature, 199, 593, 1963.

107. N. Getoff. Radioch. Acta, 1, 49, 1963.

108. M. Vlatkovic, A. Aten. J. Inorg. Nucl. Chem., 24, 139, 1962.

109. T. Anderson, A. G. Maddock. Trans Farad. Soc., 59, 2363, 1963. 91. М. А. Проскурин, В. Д. Орехов. Труды конференции по мирному ис-