ИЗВЕСТИЯ

ТОМСКОГО ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА имени С. М. КИРОВА

Том 184

1970

РАДИКАЛОРЕКОМБИНАЦИОННАЯ ЛЮМИНЕСЦЕНЦИЯ ТВЕРДЫХ ТЕЛ. І. УСТАНОВКА ДЛЯ ИССЛЕДОВАНИЯ РАДИКАЛОРЕКОМБИНАЦИОННОЙ ЛЮМИНЕСЦЕНЦИИ

В. В. СТЫРОВ

(Представлена проф. В. А. Соколовым)

В последние годы экспериментальное и теоретическое исследование получило относительно малоизученный вид неравновесного излучениякандолюминесценцию [1, 2]. Установлено, что за возникновение люминесценции твердых тел в пламенах ответственны процессы рекомбинации на поверхности твердого тела свободных радикалов и атомов, присутствующих в пламени. Однако детальному изучению механизма возникновения такой люминесценции мешает сложность физико-химической природы пламени. Поэтому целесообразно, отвлекаясь от пламени, изучать люминесценцию под действием свободных радикалов и атомов, создаваемых искусственным путем, например, с помощью электрического разряда (радикалорекомбинационная люминесценция — РРЛ). Изучение радикалорекомбинационной люминесценции помимо чисто научного интереса (каталитические свойства поверхности, миграция энергии рекомбинации к центрам свечения, участие поверхностных уровней в люминесценции) имеет и прикладное значение. Так, в 1960 г. [3] был высказан новый принцип повышения световой отдачи ламп накаливания за счет добавления к излучению вольфрама свечения люминофора на стенках лампы, возбуждаемого в результате рекомбинации на его поверхности атомарного водорода. При этом для получения атомарного водорода предлагается использовать его диссоциацию на поверхности раскаленного вольфрама. Однако с типичными люминофорами повысить светоотдачу пока не удалось из-за низкого квантового выхода процесса [4]. Число работ по радикалорекомбинационной люминесценции весьма мало, и методика ее изучения не разработана. Представляет интерес дальнейшее изучение радикалорекомбинационной люминесценции и нахождение ее максимального квантового выхода. Этим целям служит описываемая здесь установка.

Вакуумная установка (рис. 1) предназначена для возбуждения и регистрации спектров радикалорекомбинационной люминесценции порошков, пленок и монокристаллов в широком диапазоне температур (77—1273°K) и в атмосфере атомов различных газов. Установка позволяет также изучать зависимость люминесценции от примеси другого газа, от концентрации атомов в газовой фазе и др. Свободные атомы простых газов (H, N, O) получаются в безэлектродном высокочастотном разряде. Для возбуждения разряда применим любой ВЧ генератор мощностью ~ 200 вт (мы применяли генератор 20 мгц, 200 вт мастерских Сиб. ФТИ, а также генератор ЛДІ-1 Таганрогского завода с регу-

3

Рис. 1. Схема вакуумной установки для исследования РРЛ.

лируемой выходной мощностью до 4 квт, 40 мгц). Применение безэлектродного разряда имеет то преимущество по сравнению с низкочастотным электродным (т. н. трубка Вуда), что, во-первых, выход атомов значительно увеличивается вследствие уменьшения их гибели на металлических электродах, во-вторых, продукты разряда не загрязняются выделениями из электродов. Кварцевая разрядная трубка 1 диаметром 32 мм присоединяется на охлаждаемых водой шлифах 2 (охлаждение предохраняет вакуумную смазку от размягчения при разогреве трубки). Высокочастотная мощность подается на разрядную трубку, как показано на рис. 1. Кварц применен из-за его малого угла потерь на ВЧ частотах и высокой температуры плавления. Давление газа в разрядной трубке измеряется укороченным манометром Мак-Леода 3, масляным U-образным манометром 4 (высоковакуумное силиконовое масло). Свободные атомы получаются в проточной системе. Откачка ведется форвакуумным насосом ВН-461М5 и диффузонным насосом Н1-С2 6. Система позволяет получить вакуум до 10-4 тор,

измеряемый вакууметром 26. Скорость потока газа и давление в разрядной трубке регулируются системой параллельно включенных через небольшие вакуумные краны капилляров 7. Способ изготовления и калибровки капилляров описан в 5. Диаметры капилляров лежат в пределах 0,05-0,2 мм, а их пропускная способность при перепаде давления в одну атмосферу может меняться от 3 ДО 90 см/мин. Чтобы не производить откачку системы через капилляры, включены обходные краны 9,10. Установка позволяет получать на месте водород и кислород электро-

Рис. 2. Измеритель концентрации атомов типа Вреде-Хартека: 1—щель, 2—алюминиевая фольга, 3—вольфрамовая нить, 4—платиновые вводы

литическим способом и очищать их от примесей. Водород очищается от примеси кислорода пропусканием через очистительную колонку 11 с раствором пирогаллола А и осушается от паров электролита пропусканием через ловушку 12, охлаждаемую жидким азотом. Чистый водород собирается в резервуаре 13 объемом 10 л. Кислород осушается пропусканием через ловушку 14, охлаждаемую жидким азотом, и собирается в резервуаре 15 объемом 5 л. Давление водорода и кислорода измеряется ртутными U-образными манометрами 16, 17. Разборная ловушка 18 служит для предотвращения попадания влаги в насос и масляных паров в вакуумную систему. Люминофор 19 помещается на конце кварцевой пробки шлифа 20 в трубке 21. Трубка снабжена кварцевым окном 22 и рогом Вуда 23, поглощающим рассеянный свет разряда. Люминофор наносится на стеклянную или кварцевую подложку и подогревается через кварцевую стенку миниатюрной электрической печкой 24. На место печки для охлаждения может быть залит хладоагент. Вблизи люминофора в стенку трубки впаян измеритель концентрации атомов типа Вреде-Хартека (рис. 2). Главная его часть — узкая щель 1 (Ø 0,15 мм) — диаметром значительно меньше, чем длина свободного пробега. Позади щели расположен кусок алюминиевой фольги 2, на котором атомы, проходящие через щель, превращаются в моле-

кулы в результате рекомбинации. Таким образом, перед щелью существуют атомы и молекулы, за щелью — только молекулы. В результате устанавливается разность давлений ΔP , регистрируемая двумя одинаковыми микроманометрами Пирани [6], включенными дифференциально в два плеча моста Уитстона. Разбалансировка моста при включении разряда служит мерой ΔP . Зависимость сопротивления манометра Пирани от давления при данном токе нагрева находится в результате предварительной градуировки по манометру Мак Леода. Градуировочный график показан на рис. 3. Степень диссоциации α вычисляется по формуле [6].

$$\alpha = 3.41 \frac{\Delta P}{P}$$

Давление измеряется Мак Леодом. Мы могли регистрировать

Рис. З. Градуировочный график манометра Пирани

 $\Delta P = 10^{-4}$ тор при $P = 10^{-1}$ тор. Рабочей нитью 3 манометра Пирани служила вольфрамовая спираль от лампочки 220 в, 15 вт, впаянная через платиновые вводы 4.

> Спектры люминесценции на установке регистрируются нашей автоматически. Конденсор 25 собирает свет на входную щель монохроматора УМ-2, на выходе которого стоит ФЭУ-29 или ФЭУ-22. Сигнал с ФЭУ поступает через балансный катодный повторитель на автоматический потенциометр ЭПП 09 (10 mv на всю шкалу). Развертка спектра производится с моторчика помощью Уоррена (2 об/мин).

Для изучения влияния примеси того или иного газа на радикалорекомбинационнную люминесценцию ниже разряда припаивается

колба, наполненная посторонним газом. Для определения квантового выхода радикалорекомбинационной люминесценции измеряется тем или иным способом (например, с помощью отградуированного ФЭУ) абсолютный поток излучения. Число рекомбинаций в секундах вычисляется из известной концентрации атомов в газовой фазе и коэффициента рекомбинации на данной поверхности. Некоторые результаты, полученные на этой установке, приводятся в следующей статье.

ЛИТЕРАТУРА

1. В. А. Соколов. Оптика и спектроскопия. 4, 409 (1958).

2. Ф. Ф. Волькенштейн, А. Н. Горбань, В. А. Соколов. В сб. «Поверх-

2. Ф. Ф. Болькенштенн, н. п. гороаны, Б. н. Соконов. Б. С. анорри ностные свойства полупроводников», АН СССР, М., 1962, стр. 179. 3. Патент США. 1960. кл. 2. 920, 222 4. Г. Н. Рохлин, З. Н. Кобина, Е. Б. Волкова. Светотехника, № 1, 8, 1965. 5. А. Н. Зайдель, А. А. Петров, Г. В. Вайнберг. «Спектральноизотопный метод определения водорода в металлах». Издательство ЛГУ, 1957.

6. I. C. Greeves and I. W. Linnett. Trans. Far. Soc., 55, 1338 (1059).