# И З В Е С Т И Я томского ордена трудового красного знамени политехнического института имени С. М. Кирова

Том 110

1962

## ПЕРЕНОС ТЕПЛА ПРИ КАПЕЛЬНОЙ КОНДЕНСАЦИИ ПАРА

#### В. В. ИВАНОВ

### (Представлено профессором доктором Г. И. Фуксом)

Одним из способов интенсификации теплопередачи в теплообменных аппаратах может служить искусственное получение капельной конденсации. Эта форма конденсации сопровождается очень высокими (до 200000 ккал/м<sup>2</sup>. час. °С) коэффициентами теплоотдачи и, следовательно, дает возможность, не изменяя тепловой нагрузки, уменьшать поверхности охлаждения. Применение термостойких, не растворимых в конденсате полимерных гидрофобизаторов открывает широкие возможности для практического использования капельной конденсации. Так, Калберг и Кендалл [1], применяя в качестве гидрофобизатора силиконовый лак, получили покрытие, сохраняющее после 1500 часов работы свои первоначальные свойства.

Важной проблемой является создание теории переноса тепла при капельной конденсации, которая позволила бы анализировать процессы, происходящие в теплообменниках с несмачиваемой поверхностью, конструировать подобные аппараты и ускорить их внедрение в промышленность. Кроме того, изучение переноса тепла при капельной конденсации необходимо для проектирования теплообменников ртутносиловых установок, где этот процесс имеет место [8]. Хотя механизм капельной конденсации в настоящее время достаточно хорошо изучен [2, 3, 4], попытки теоретически рассчитать теплоотдачу [5, 6] не привели к удовлетворительным результатам. Полученные уравнения не позволяют объяснить всю совокупность достоверных опытных данных и не могут служить надежной основой для практических расчетов.

В данной работе излагаются результаты теоретических и экспериментальных исследований теплообмена при капельной конденсации.

Вывод уравнения для коэффициента теплоотдачи при капельной конденсации

Будем исходить из следующих положений:

1. Перенос тепла при капельной конденсации рассматривается как процесс теплопроводности через капли и охлаждаемую стенку. При этом термическое сопротивление на границе пар—поверхность капель отсутствует, а сама поверхность капель имеет температуру насыщения.

II. Процесс стационарен, точнее, усреднен за рассматриваемое время: а) температурное поле считается установившимся и неизменным во времени; б) влияние пульсаций, связанных с периодичностью процесса образования и отрыва капель, не учитывается, поскольку пульсирующий режим заменяется стационарной моделью.



на охлаждаемой стенке.

Тогда средний за время т коэффициент теплоотдачи при капельной конденсации определится уравнением

$$\overline{a} = \frac{Q}{(t_{H} - t_{cm})F\tau} , \qquad (1)$$

где <u>Q</u> — тепловой поток от пара к охлаж-

дающей воде через поверхность конденсации F; (t<sub>н</sub>-t<sub>cm</sub>)-средний за время т температурный перепад от насыщенного пара к стенке.

Если площадь поверхности, покрытая каплями,  $F_{\kappa}$ , то, в соответствии с рис. 1, Q можно выразнить как можно выразить как Рис. 1. Капельная конденсация величину -

$$\frac{Q}{z} = K_{n\kappa}(t_{\mu}-t_{s})F_{\kappa}+K_{0}(t_{\mu}-t_{s})(F-F_{\kappa})$$
(2)

Здесь  $K_{n\kappa}$ —коэффициент теплопередачи через капли и стенку под ними к охлаждающей воде;  $K_0$ —коэффициент теплопередачи от пара к "обнаженной" стенке и через стенку к охлаждающей воде;  $(t_{\mu}-t_{s})$ средняя разница температур между паром и охлаждающей водой.

Исходя из соотношения термических сопротивлений, имеем

$$\frac{1}{K_{n\kappa}} = \frac{1}{K_{\kappa}} + \frac{1}{K}; \qquad (3)$$

$$\frac{1}{K_0} = \frac{1}{\alpha_n} + \frac{1}{K}.$$
 (4)

В этих формулах К<sub>к</sub>-коэффициент теплопередачи через капли; а<sub>п</sub>-коэффициент теплоотдачи от пара к "обнаженной" поверхности; *К*-коэффициент теплопередачи через стенку ко охлаждающей воде,  $=\frac{\delta_{cm}}{\lambda_{cm}}+\frac{1}{\alpha_s}$ , где  $\alpha_s$ —коэффициент теплоотдачи от стенки к причем охлаждающей воде.

Объединяя (1), (2), (3) и (4), получим нов у си

$$\begin{bmatrix} \overline{\alpha}(t_{\mu}-t_{cm})F = \begin{bmatrix} K(t_{\mu}-t_{cm})+K(t_{cm}-t_{\mu}) \end{bmatrix} \begin{bmatrix} \frac{K_{\kappa}F_{\kappa}}{K+K_{\kappa}}+\frac{\alpha_{\mu}(F-F_{\kappa})}{K+\alpha_{\mu}} \end{bmatrix};$$
88

Заменяя  $K(t_{cm}-t_{s})=\tilde{\alpha}(t_{\mu}-t_{cm})$ , решаем последнее уравнение относительно  $\alpha$ 



Рассмотрим теперь 2 частных случая формулы (5).

1.  $F_{\kappa}=0$ , а  $\alpha = \alpha_n$ . Физически это означает, что происходит не конденсация, а только охлаждение перегретого пара, причем коэффициент теплоотдачи  $\alpha_n$  может быть рассчитан по уравнениям конвективного теплообмена.

II.  $F_{\kappa} = F$ , и  $\alpha = K_{\kappa}$ . В этом случае отдельные капли, сливаясь вместе, образуют "единую каплю" — пленку, которая полностью покрывает поверхность охлаждения, и капельная конденсация переходит в пленочную.

С практической точки зрения большой интерес представляет исследование теплоотдачи при капельной конденсации чистого пара, как это может иметь место в теплообменниках, работающих не под вакуумом, а при избыточном давлении. В этих условиях присосы воздуха исключаются, и тепловое сопротивление парогазового слоя у поверхности охлаждения перестает быть существенным фактором:

 $\frac{1}{\alpha_n} \approx 0$  и  $\alpha_n \rightarrow \infty$ . Коэффициент теплоотдачи при капельной конденса-

ции чистого пара найдем из (5)

$$\overline{\alpha}_{\alpha_{n\to\infty}} = \frac{F}{F_{\kappa}} \left( K_{\kappa} + K \right) - K.$$
(6)

Величина К<sub>к</sub> может быть определена из соотношения

$$K_{\kappa} = \frac{Q_{\kappa}}{F_{\kappa}(t_{\kappa} - t_{\kappa})} , \qquad ((7)$$

где  $Q_{\kappa}$ —тепловой поток, проходящий через капли, а  $(t_{\kappa}-t_{\kappa})$ —средняя разница температур между поверхностью капель и их основанием.

Можно показать, что температурное поле внутри единичной капли, имеющей форму шарового сегмента радиуса R<sup>2</sup> (рис. 2), дается следующим выражением:

$$\frac{\underline{t}(r,\Theta)-\underline{t}_{\kappa}}{\underline{t}_{\kappa}-\underline{t}_{\kappa}} = \frac{\sum_{n=1}^{\infty} \left[ P_{n-1}\left(\cos\beta\right)-P_{n+1}\left(\cos\beta\right) \right] \left[ \left(\frac{r}{R}\right)^{n} P_{n}(\cos\Theta)-(\cos\beta)^{n}(-1)^{n} \right]}{1+\cos\beta-\sum_{n=1}^{\infty} \left[ P_{n-1}\left(\cos\beta\right)-P_{n+1}(\cos\beta) \right] (\cos\beta)^{n}(-1)^{n}}$$
(8)

89

(5)

Здесь  $t_{\mu}$ -температура сферической поверхности,  $t_{\kappa}$ - температура основания капли,  $\beta$ -угол смачивания,  $P_n(x)$ -полиномы Лежандра *n*-го порядка, а *r* и  $\Theta$ -текущие координаты. Для частного случая полушара  $\left(\beta = \frac{\pi}{2}\right)$  уравнение (8) принимает вид  $t(r, \Theta) = t$   $\sum_{n=1}^{\infty} (r_n) = t$ 

$$\frac{t(r,\Theta)-t_{\kappa}}{t_{\kappa}-t_{\kappa}} = \sum_{n=0}^{\infty} \left(-1\right)^{n} \frac{1\cdot 3\cdot 5\cdots (2n-1)(4n+3)}{2\cdot 4\cdot 6\cdots (2n+2)} \left(\frac{r}{R}\right)^{2n+1} P_{2n+1}(\cos\Theta),$$

что соответствует решению, приведенному в [9].



Рис. 2. Изотермы внутри сферической капли.

Тепло через рассматриваемый шаровой сегмент может быть подсчитано с помощью температурного градиента у поверхности

$$Q = \lambda \int_{0}^{\beta} \left( \frac{\partial t}{\partial r} \right)_{r=R} 2\pi R^{2} \sin \Theta d\Theta,$$

где *коэффициент теплопроводности конденсата.* Находя градиент температуры по уравнению (8), будем иметь

$$Q = 2\pi\lambda (t_n - t_\kappa)R \frac{\sum_{n=1}^{\infty} \left[ P_{n-1}(\cos\beta) - P_{n+1}(\cos\beta) \right] n}{1 + \cos\beta - \sum_{n=1}^{\infty} \left[ P_{n-1}(\cos\beta) - P_{n+1}(\cos\beta) \right] (\cos\beta)^n (-1)^n} \cdot \int_{-\infty}^{0} P_n(\cos\theta) d(\cos\theta)$$

Интеграл в последнем равенстве равен [9]

$$\int P_n(\cos\Theta)d(\cos\Theta) = \frac{1}{2n+1} \left[ P_{n-1}(\cos\beta) - P_{n+1}(\cos\beta) \right]$$

90

Поэтому

$$Q = 2\pi\lambda (t_{\mu} - t_{\kappa})R \cdot \frac{\sum_{n=1}^{\infty} \frac{n}{2n+1} \left[ P_{n-1}(\cos\beta) - P_{n+1}(\cos\beta) \right]^{2}}{1 + \cos\beta - \sum_{n=1}^{\infty} \left[ P_{n-1}(\cos\beta) - P_{n+1}(\cos\beta) \right] (\cos\beta)^{n} (-1)^{n}}$$
(9)

Подставляя в (9) различные значения угла В, получим

$$Q = \pi \lambda (t_{\mu} - t_{\kappa}) R \psi(\beta), \qquad (10)$$

где  $\psi(\beta)$  — безразмерная функция угла смачивания, которая находится по кривой (рис. 3).



Рис. 3. Графики функций  $\psi(\beta)$  и  $f(\beta)$ .

Коэффициент теплопередачи через единичную каплю определим как

$$K_{\rm eg} = \frac{Q}{F_0(t_{\mu} - t_{\kappa})} \,. \tag{11}$$

Здесь  $F_0 = \pi R_0^2$  — площадь основания капли, причем  $R_0 = R \sin\beta$  (рис. 2). Объединяя (10) и (11), получим

$$K_{\rm eg} = \frac{\lambda \Psi(\beta)}{R_0 \sin \beta} = \frac{\lambda f(\beta)}{R_0} . \tag{12}$$

Функция  $f(\beta) = \frac{\psi(\beta)}{\sin \beta}$  представлена на рис. 3.

Если на несмачиваемой охлаждаемой стенке сконденсировано N различных по размерам капель, то тепловой поток через них равен

$$Q_{\kappa} = Q_1 + Q_2 + \cdots + Q_N,$$

где  $Q_1$ -тепловой поток через каплю радиуса  $R_1$ ,  $Q_2$ -тепловой поток через каплю радиуса  $R_2$  и т. д. Как показывает непосредственная обработка фотоснимков процесса капельной конденсации, поверхность стенки покрыта каплями различных размеров, но примерно одинаковых по форме ( $\beta = idem$ ).

$$Q_{\kappa} = \pi \lambda (t_{\kappa} - t_{\kappa}) \psi(\beta) \left( \frac{R_1 + R_2 + \dots + R_N}{N} \right) N = \pi \lambda (t_{\kappa} - t_{\kappa}) \psi(\beta) R_{cp} N$$
(13)

Сопоставляя теперь (6), (7) и (13), получим

$$\overline{\alpha} = \frac{F}{F_{\kappa}} \left[ \frac{\pi \lambda \psi(\beta) R_{cp} N}{F_{k}} + K \right] - K.$$

Последнее соотношение может быть значительно упрощено, если положить  $F_{\kappa} = N \pi R_{ocp}^2$ . Физическое содержание такого допущения заключается в замене различных капель, находящихся на поверхности, одинаковыми, среднего размера. При этом расчетное и действительное значения  $F_{\kappa}$  будут тем ближе, чем меньше разнятся между собой размеры отдельных капель и чем больше их число. Учитывая это, получим следующее выражение для  $\alpha$ .

$$\overline{\alpha} = \frac{F}{F_{\kappa}} \left[ \frac{\lambda f(\beta)}{R_{ocp}} + K \right] - K.$$
(14)

Уравнение (14) позволяет выявить некоторые существенные черты механизма переноса тепла при капельной конденсации. Оно позволяет также оценить значения коэффициента теплоотдачи  $\alpha$  через величины, допускающие непосредственное измерение:  $F_{\kappa}$ ,  $\beta$  и  $R_{ocp}$ . С этой целью была проделана обработка большого числа фотоснимков процесса капельной конденсации. Подсчет  $F_{\kappa}$  и  $R_{ocp}$  проводился на илоской охлаждаемой стенке, покрытой определенным гидрофобизатором. На стенке был нанесен линейный масштаб (видимое на снимках I деление соответствует 5 *мм*).

Как оказалось, площадь, занятая каплями, и средний размер кашель в широких пределах не зависят от тепловой нагрузки поверх-

ности охлаждения 
$$-q_{\kappa}\left[\frac{\kappa\kappa a\Lambda}{m^2 4ac}\right]$$
.

Проделанные опыты показали приближенное постоянство  $\alpha$  в широком интервале изменения  $q_{\kappa}$ , что подтверждает ранее полученные результаты некоторых исследователей [7]. Качественно этот эффект хорошо согласуется с уравнением (14). Действительно, если  $F_{\kappa}$ ,  $R_{ocp}$  и  $\beta$  не зависят от тепловой нагрузки, то влияние  $q_{\kappa}$  на  $\alpha$  сказывается лишь через величину K. Сопоставление экспериментальных данных показывает, что с ростом  $q_{\kappa}$  коэффициент K возрастает примерно от 2800 до 5500  $\kappa \kappa a \Lambda / M^2 4 a c$ . °C. тогда как  $\alpha$  в изучаемой области колеблется в пределах от 20000 до 200000  $\kappa \kappa a \Lambda / M^2 4 a c$ . °C. Вследствие этого, величина K дает несущественную поправку к уравнению (14), и коэффициент теплоотдачи при капельной конденсации, согласно (14), практически не зависит от  $q_{\kappa}$ .

Для расчета теплоотдачи необходимо знать связь площади, занятой каплями, и среднего размера капель с температурным напором между паром и охлаждаемой стенкой. Решение этого вопроса осложняется тем, что для каждой величины  $F_{\kappa}$  и  $R_{ocp}$  имеет место своя температурная зависимость, не поддающаяся теоретическому расчету. В этих условиях единственно надежным методом определения  $F_{\kappa}$ ,  $R_{ocp}$  и  $\beta$  является эксперимент. Анализ фотокадров процесса капель-

92



Рис. 4. Фотоснимки процесса капельной конденсации на вертикальной охлаждаемой стенке, покрытой керосином.

ной конденсации позволил установить некоторое влияние температурного напора на  $F_{\kappa}$  и  $R_{ocp}$ . Опыты проводились в широком интервале из-менения  $(t_{\kappa} - t_{cm})$ : от 0,8 до 20°С.

Количественная обработка сильно увеличенных фотографий процесса капельной конденсации показала, что F<sub>к</sub> в изучаемой области составляет  $\approx$  (35÷55)% от всей поверхности охлаждения,  $R_{ocp}$ (0,1÷0,5) мм, а угол β для олеиновой и стеариновой кислот, керосина, машинного масла СУ колеблется в пределах примерно от 90 до 100°. Приближенно для расчетов можно положить β≈95°, тем более, что входящая в (14) функция f(3) вблизи точки  $\beta = 95^{\circ}$  меняется очень слабо (рис. 3).

Подстановка этих значений Гк, Rocp и β в уравнение (14) дает пределы изменения а с ростом ( $t_{\mu} - t_{cm}$ ) от 135000 до 20000 ккал/м<sup>2</sup> час °С.

Полученные значения а в общем удовлетворительно согласуются с опытными данными. Поэтому соотношение (14) в первом приближении может быть применимо для оценки коэффициента теплоотдачи при капельной конденсации, если из опыта известны  $F_{\kappa}$ ,  $R_{\rho c \rho}$  и  $\beta$ .

### ЛИТЕРАТУРА

1. Kullberg G, Kendall H., Chem. Eng. Prog., 56, № 1, 1960.

2. Emmons H., Trans. Am. Inst. Chem. Eng., 35, 1939.

 Burnons H., Engineering, 172, № 4464, 1951.
 Hampson H., Engineering, 179, № 4655, 1955.
 Fatica N., Katz D., Chem. Eng. Prog., 45, № 11, 1949.
 Sugawara S., Michiyoshi J., Mem. Fac. Eng. 18, № 11, 1956.
 Гребер Г., Эрк С. и Григулль У. Основы учения о теплообмене. ГИИЛ. 1958.

8. Ложкин А. Н., Канаев А. А. Бинарные установки, Машгиз. 1946. 9. Кошляков Н. С.: Основные дифференциальные уравнения математической физики. ОНТИ, 1936.