И З В Е С Т И Я ТОМСКОГО ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА имени С. М. КИРОВА

Том 184

1970

ВЛИЯНИЕ ХАРАКТЕРИСТИК МАГНИТОПРОВОДА НА КОНТРОЛЬ КАЧЕСТВА ИЗДЕЛИЙ ПО КОЭРЦИТИВНОЙ СИЛЕ И ОСТАТОЧНОЙ ИНДУКЦИИ НА ПЕРЕМЕННОМ ТОКЕ

В. П. ДОЛГОПОЛОВ, И. Г. ЛЕЩЕНКО

(Представлена научным семинаром факультета автоматики и вычислительной техники)

В литературе [1] описаны коэрцитиметры переменного тока с намагничивающими устройствами (датчиками) в виде соленоида, в который помещается контрольное и контролируемое изделия. Магнитная цепь при этом получается незамкнутой и получить большие намагничивающие поля в таких датчиках оказывается затруднительным. Для получения большого магнитного потока через испытуемое изделие можно применить намагничивающие устройства с дополнительным, замыкающим изделие, магнитопроводом из магнитно-мягкого материала.

Принцип действия коэрцитиметра переменного тока заключается в измерении интервала времени между моментами перехода через нуль напряженности и индукции в контролируемом изделии при перемагничивании его в синусоидальном магнитном поле. Синусоидальным намангичивающее поле (или ток) будет в том случае, если индуктивное сопротивление намагничивающего устройства будет много меньше активного сопротивления цепи намагничивающего тока, что обеспечивается включением последовательно с намагничивающей обмоткой большого активного сопротивления.

Рис. 1

Схематично датчик с замыкающим магнитопроводом изображен на рис. 1 *a*, на котором обозначено: 1 — магнитопровод, 2 — контролируемое изделие, 3 — намагничивающая обмотка, 4 — измерительная обмотка. Для упрощения анализа заменим магнитопровод и изделие полукольцами из соответствующих им материалов, но с одинаковыми геометрическими размерами и обмоткой, равномерно распределенной по обоим 110 полукольцам (рис. 1 б — обозначения те же, что и на рис. 1 а). Положим, что средние длины полуколец равны каждая единице, т. е. $l_1 = l_2 = l = 1$. Отметим, что магнитная цепь, состоящая из полуколец, является последовательной цепью, поэтому индукция в каждой точке цепи в лю-

Рис. 2

бой момент времени будет одинаковой. При этом наличие потоков рассеяния и воздушных зазоров не учитываем и считаем, что магнитный поток равномерно распределяется по сечению полуколец.

Обратимся теперь к рис. 2. Положим, что динамическая петля перемагничивания 1 относится к магнитопроводу 1 на рис. 1 б, а петля 2 —

111

к контролируемому изделию (значения индукции и напряженности взяты в условных единицах). Так как индукция в обоих полукольцах одинакова, то, взяв сумму произведений амплитуд напряженностей петель каждого полукольца на их средние длины, найдем амплитуду полной м. д. с., необходимой для проведения магнитного потока через оба полукольца: $F_{mn} = H_{m1} \cdot l_1 + H_{m2} \cdot l_2$. Зная амплитудное значение м. д. с., можно построить и всю синусоидальную кривую м. д. с., выражающую в другом масштабе ток *i* в намагничивающей обмотке. Часть ее изображена в нижней части рис. 2 и обозначена через F_n (*i*).

Дальнейшие построения выполняются следующим образом. Задаемся каким-либо значением индукции в полукольцах. При этом значении индукции на петлях отыскиваем соответствующие ей напряженности поля H_1 и H_2 для каждого полукольца. Умножая эти напряженности на длины полуколец и складывая полученные значения, находим значение м. д. с., необходимой для создания заданной индукции в цепи. Отыскав это значение на синусоиде $F_n(i)$, откладываем в соответствующих масштабах заданное значение индукции и значения м. д. с. в каждом из полуколец. Проведя такие же операции для других значений индукций, получим кривые F_1 , F_2 , $B_{1,2}$. Заметим, что кривые $F_1 = f(\omega t)$ и $F_2 = f(\omega t)$ во времени изменяются не синусоидально, несмотря на то, что $F_n(i)$ является синусоидальной функцией времени. Временной интервал между моментами перехода синусоиды напряженности (тока) $F_n(i)$ и индукции $B_{1,2}$ через нуль выражается отрезком O— а на оси ωt .

Заменим теперь контролируемое полукольцо 2 на полукольцо, имеющее динамическую петлю перемагничивания 4 (рис. 2). При такой замене при неизменной полной м. д. с. происходит перераспределение м. д. с., приходящихся на каждое из полуколец. В данном случае максимальное значение индукции в полукольцах уменьшилось и петля 1 перешла в петлю 3. Обратим внимание на то, что петля 4 по сравнению с петлей 2 имеет значительно большую коэрцитивную силу, но такую же остаточную индукцию. Проведя аналогичные предыдущему случаю (при том же самом амплитудном значении F_{nm}) построения, получим кривые м. д. с. F₃ и F₄ соответственно петлям 3 и 4 и индукции В₃, 4. Из рассмотрения полученных построений видно, что временной интервал между моментами перехода м. д. с. или, что то же самое, напряженности и индукции значительно возрос. Отсюда можно сделать вывод, что увеличение коэрцитивной силы материала контролируемого полукольца 2 привело к увеличению измеряемого временного интервала между моментами перехода через нуль индукций и напряженности.

Однако остался невыясненным вопрос о том, не влияет ли на указанный интервал изменение остаточной индукции материала полуколец. (в последнем случае был выбран материал с петлей 4, имеющей ту же остаточную индукцию, что и петля 3). Для выяснения этого вопроса заменим полукольцо 1 на полукольцо, имеющее петлю 5 с той же коэрцитивной силой, что и петля 3, но с большей остаточной индукцией. На рис. 2 показана только нижняя часть петли. Выполнив снова такие же построения, получаем кривую м. д. с. F₅, соответствующую петле 5, F'. соответствующую петле 4, и кривую индукции В₅, 4. Из рисунка видно, что если в предыдущем рассмотренном случае кривая F₄ пересекала ось ωt слева от нуля, то теперь соответствующая той же петле 4 кривая F'_4 пересекает ось wt правее нуля. Также поменялись местами кривые F₃ и F₅, однако временной интервал между моментами перехода через нуль индукции и напряженности не изменился и остался равным в масштабе отрезку О — б. Таким образом, можно сделать вывод, что изменение остаточной индукции материала любого из полуколец к изменению временного интервала не приводит; временной интервал изменяется только при изменении коэрцитивных сил.

Если измерять коэрцитивную силу контролируемого полукольца как величину, пропорциональную мгновенному значению намагничивающего тока или м. д. с. F_n в момент прохождения через нуль индукции, то для случая полуколец с петлями 3 и 4 мы бы получили, что она выражается отрезком $\delta - \partial$ (рис. 2 — нижняя часть). М. д. с. F_c , выраженную этим отрезком, можно представить как некоторую «результирующую» для обоих полуколец напряженности H_{pc} , умноженную на общую длину полуколец $l_1 + l_2 = 2l$:

$$F_c = H_{pc} \cdot 2l.$$

Но полная м. д. с. состоит из двух частей, распределенных по полукольцам: $F_c = F_{c3} + F_{c4} = H_{c3} \cdot l_1 + H_{c4} \cdot l_2$, где H_{c3} , H_{c4} – коэрцитивные силы, соответствующие петлям 3 и 4. Но так как $l_1 = l_2 = l$, то

$$F_{c} = H_{pc} \cdot 2l = (H_{c3} + H_{c4})l,$$

откуда

$$H_{pc}=\frac{H_{c3}\cdot H_{c4}}{2},$$

т. е. измеряемая "результирующая" коэрцитивная сила равна среднему арифметическому коэрцитивных сил полуколец, составляющих последовательную магнитную цепь.

В коэрцитиметре переменного тока измеряется временной интервал, выраженный на рис. 2 отрезком $0-\delta$. Обозначим $0-\delta = \varphi$. Из рис. непосредственно следует, что $F_c = F_{nm} \cdot \sin \varphi$, где $F_{nm} -$ амплитудное значение полной м. д. с. Для многих, подлежащих контролю сталей, угол φ довольно мал, так что можно считать, что $\sin \varphi \simeq \varphi$. Поэтому можно записать

$$\varphi = \frac{F_c}{F_{nm}} = \frac{H_{pc} \cdot 2l}{F_{nm}} \,.$$

Подставив в полученную формулу выражение для H_{oc} , записанное через H_{c3} и H_{c4} , и заменив F_{nm} на $H_{nm} \cdot 2l$, где H_{nm} – амплитуда "результирующей напряженности", получим

$$\varphi = \frac{H_{c3} + H_{c4}}{2 \cdot H_m}$$

Таким образом, установлена непосредственная связь между измеряемым интервалом и коэрцитивными силами. Из нее следует также, что чем меньше коэрцитивная сила магнитопровода по сравнению с коэрцитивной силой контролируемого материала, тем с большей точностью будет произведено измерение. Другой вывод, вытекающий из последней формулы, говорит о том, что интервал φ уменьшается с увеличением амплитуды намагничивающего поля H_m или тока I_m . Однако вопрос о выборе величины намагничивающего поля в задачу данной работы не входит и рассматривать его мы здесь не будем.

Все вышесказанное относится к режиму работы магнитной цепи, который в электротехнике принято называть режимом заданного тока. В этом режиме синусоидальным является намагничивающий ток и несинусоидальной — индукция. При обратном соотношении форм кривых тока и индукции имеем режим заданного напряжения: при заданном синусоидальном напряжении, приложенном к намагничивающей обмотке, амплитуда индукции *B*_n в полукольцах является постоянной величиной и изменение индукции во времени происходит по закону синуса при любой форме петли перемагничивания каждого из полуколец (рис. 1 б). 8. Заказ 7028 Для получения такого режима необходимо, чтобы индуктивное сопротивление намагничивающей обмотки было много больше активного сопротивления обмотки и источника тока.

Рассмотрим работу намагничивающего устройства (рис. 1 б) при тех же условиях, которые были приняты для режима заданного тока. Пусть петля 1 на рис. З относится к полукольцу 1 (магнитопроводу), а петля 2 - к полукольцу 2 из контролируемого материала. Так как магнитная цепь по-прежнему является последовательной, то значения индукции в любой момент времени будут одинаковы в каждом из полуколец. В нижней части буквой В обозначено синусоидальное изменение индукции во времени (в зависимости от *wt*). Построение кривых м. д. с. (или напряженностей) осуществляется примерно также, какив случае режима заданного тока. Проведем через петли перемагничивания при каком-то определенном значении индукции линию, параллельную оси Н. По точкам пересечения ее с ветвями петель можно определить напряженность в определенный момент времени в каждом из полуколец. Умножая ее на длину l₁=l₂=l=1, получаем м. д. с. F₁, F₂, необходимые для создания выбранного значения индукции в каждом из полуколец. Сложив эти м. д. с., найдем значение полной м. д. с. F₂, 1, необходимой для проведения магнитного потока через оба полукольца. В другом масштабе полная м. д. с. выражает изменение во времени тока і в намагничивающей обмотке. Проведя такие же операции при других значениях индукции, по полученным значениям F_{n2,1}, F₂ при соответствующих им индукциях В строим зависимости $F_{n2,1} = f(\omega t)$ и $F_2 = f(\omega t)$ от времени — нижняя часть рис. З. Временной интервал между переходом через нуль индукции и тока *i* выражается при этом отрезком A – a.

Заменим правое полукольцо 2 (рис. 1 б), зависимость индукции от напряженности которого описывается петлей 2, на полукольцо с петлей 3. Обратим внимание сразу на то, что коэрцитивная сила петли 3 значительно больше коэрцитивной силы петли 2 ($H_{c3} > H_{c2}$), а их остаточные индукции одинаковы. Выполнив аналогичные предыдущему случаю построения, получим кривые $F_{n1,3} = f(\omega t)$ и $F_3 = f(\omega t)$. Видим, что кривые $F_{n1,3} = f(\omega t)$ и $F_{n1,2} = f(\omega t)$ пересекают ось ωt в одной точке a, т. е. интервал между моментами перехода через нуль тока и индукции остался тем же самым, и это несмотря на то, что коэрцитивная сила полукольца 3, поставленного взамен полукольца 2, значительно возросла. Следовательно, в режиме заданного напряжения временной интервал между моментами перехода через нуль тока и индукции от изменения коэрцитивной силы контролируемых изделий не зависит.

Пересечение кривых $F_{n'1.2}$ и $F_{n \ 1.3}$ с осью ω t происходит при значениях индукций, при которых напряженность поля в одном полукольце равна по абсолютной величине и противоположна по знаку напряженности в другом: $H_1 = -H_2$ (рис. 3, вверху).

Представим себе, что полукольцо из контролируемого материала имеет петлю, пересекающую ось B в точке δ . В верхней части рис. З изображена только часть этой петли, обозначенная цифрой 4. Линия, при которой $H_4 = -H_1$, переместится вверх, переместится и точка d пересечения кривой м. д. с. осью ω t в сторону меньших значений ω t, т. е. временной интервал увеличится. На основании этого можно прийти к выводу, что временной интервал изменяется в зависимости от изменения остаточной индукции полуколец.

Мы рассмотрели петлю 4, участок нисходящей ветви которой вблизи оси В имеет такой же наклон к оси В, как и петли 3. Однако возможен такой случай, когда петля пересекает ось индукции B в точке G, а наклон ее к оси В таков, что она пересекается с петлей 3 в точке C, в 114

8*.

которой выполняется условие: $H_3 = -H_1$. Часть такой петли обозначена цифрой 5. При помещении полукольца с такой петлей вместо полукольца 3 мы не заметим изменения временного интервала. Поэтому при выяснении возможности измерения остаточной индукции в режиме заданного напряжения необходимо прежде установить, как изменяются от из-

делия к изделию ветви петель вблизи пересечения их с осью индукций В.

Полученные выше выводы для обоих режимов работы магнитной цепи будут верны только в том случае, если индукция насыщения полукольца, являющегося магнитопроводом, значительно

больше индукции насыщения испытуемого материала. Это означает, что при насыщении испытуемого полукольца магнитопровод далек от насыщения и м. д. с., необходимая для проведения потока через него, мала.

На рис. 3 (в нижней части) отрезок AC в масштабе выражает м. д. с. $F_{n,1,2}$ в момент прохождения индукции через нуль. Из построения вытекает, что он равен сумме отрезков AB и BC, отражающих м. д. с., затрачиваемые на проведение потока по каждому полукольцу. Переходя к напряженностям, как и в случае режима заданного тока, получим

$$H_{pc}=\frac{H_{c1}+H_{c2}}{2}.$$

Таким образом, в режиме заданного напряжения можно измерять коэрцитивную силу динамической петли перемагничивания, если измерять напряженность намагничивающего поля (или ток) в момент прохождения индукции через нуль.

Коэрцитиметр, работающий на этом принципе, может быть построен по блок-схеме, приведенной на рис. 4. По катушке 1 протекает намагничивающий ток. Блок 2 вырабатывает импульс в момент прохождения индукции через нуль. Импульс подается на вход «Вх. 1» блока 3, производящего за время действия импульса измерение мгновенного значения напряжения, снимаемого с сопротивления R и пропорционального намагничивающему току. ПП — показывающий прибор, который может быть проградуирован в единицах коэрцитивной силы.

ЛИТЕРАТУРА

1. И. Г. Лещенко, В. А. Малин. Установка для разбраковки деталей по коэрцитивной силе. Передовой научно-технический и производственный опыт. М., 1964. № 2-64-282/8 (ГОСИНТИ).