T O M 111

1961

УЛЬТРАФИОЛЕТОВЫЕ СПЕКТРЫ ПОГЛОЩЕНИЯ ЭФИРОВ 4(5)-АМИНОИМИДАЗОЛ-5(4)-КАРБОНОВОЙ КИСЛОТЫ

В. Р. КОРОЛЕВА

(Представлено профессором доктором химических наук Л. П. Кулевым)

В ранее опубликованной работе [1] сообщалось о синтезе ряда эфиров 4(5)-аминоимидазол-5(4)-карбоновой кислоты, представляющих интерес в фармакологическом отношении. С целью изучения спектральных характеристик полученных продуктов нами были сняты их спектры

поглощения в ультрафиолетовой и видимой частях спектра.

Из литературных данных известно [2], что 4 (5) -аминоимидазол-5 (4) - карбоновая кислота имеет максимум поглощения при $\lambda = 260$ m μ ($\epsilon = 9300$) в щелочной среде (pH=9). Исследовались также спектры поглощения в ультрафиолете хлоргидрата этилового эфира 4 (5) -амино-имидазол-5 (4) - карбоновой кислоты и некоторых его производных (3). Найдено, что хлоргидрат этилового эфира 4 (5) -аминоимидазол-5 (4) - карбоновой кислоты имеет максимум поглощения при $\lambda = 274$ $m\mu$ ($\epsilon = 14400$). О спектрах поглошения других эфиров 4 (5) -аминоимидазол-5 (4) - карбоновой кислоты сведений в литературе найдено не было.

Исходным продуктом для получения эфиров 4 (5)-аминоимидазол—5(4)-карбоновой кислоты является 4(5)-нитроимидазол — 5(4)-кар-

боновая кислота. Синтез проводился по следующей схеме:

Ввиду того, что в литературе не было найдено данных о спектрах поглощения исходной 4(5)-нитроимидазол-5(4)-карбоновой кислоты, проведено спектроскопическое исследование в ультрафиолете этой ки-

слоты и двух ее эфиров.

Спектры поглощения снимались на кварцевом спектрофотометре СФ-4 в области 220-480~m р. Источниками света являлись водородная лампа и лампа накаливания с естественным охлаждением. Толщина поглощающего слоя 1~cm. Рабочая концентрация 1.10^{-4} М- $2,5.10^{-5}$ М. В качестве растворителей применялись специально очищенные вода и этиловый спирт. Кривые строились в системе, где по оси абсцисс откладывались длины волны (λ) в mр, а по оси ординат — логарифмы молярного коэффициента погашения (ε). Полученные результаты сведены в таблицы 1 и 2.

ROOC-C-NH
$$0_2N+C-N$$

Таблица 1

No	R	$\lambda_{ ext{max}} \stackrel{\circ}{A}$	εmax	Растворители	
1 2 3	H $iso-C_3H_7$ $iso-C_4H_9$	3050 2220 28 2 0 2220 2820	10840 91600 57400 69200 30600	вода спирт спирт	

Таблица 2

No.	R	R ¹	Основание		Хлоргидраты		Пикраты	
			$\lambda_{\max} \stackrel{\circ}{A}$	ε _{max}	$\lambda_{\max} \stackrel{\circ}{A}$	ε _{max}	$\lambda_{ ext{max}} \stackrel{\circ}{A}$	ε _{max}
1	CH_3	Н		_	2720	14100	2600	17500
2	C_2H_5	Н	2720	12600	27 2 0	13100	3550—3600 2600 3550—3600	13000 16800 12850
.3	n—C ₃ H ₇	Н	2720	12420	2720	11470	2600 3550—3600	25900
4	$iso-C_3H_7$	Н	2720	12700			2600 3550 3600	18920 17280
.5	$n-C_4H_9$	Н	2700	10250	2710	11750	2600	12900 27000
6	$iso-C_4H_9$	Н	2720	13300	2720	12300	3550—3600 2600	21600 27100
7	180-C ₅ H ₁₁	Н			2710	12100	3550—3600 2600	19400 1 5 500
8*	C_2H_5	C ₆ H ₅ CO	23 2 0 2 9 20	112500 104700		_	3550—3600	12200

Как видно из приведенной табл. 2, длина волны $\lambda_{\rm max}$ для оснований и хлоргидратов аминоэфиров колеблется в пределах 2700—2720 А. Как уже упоминалось выше, для хлоргидрата этилового аминоэфира максимум поглощения описан при $\lambda_{\rm max}$ =2740 $m_{\rm P}$, при этом в качестве растворителя использовался спирт. Мы проводили исследование

^{*} Растворитель — спирт. Для всех остальных веществ растворителем служит вода.

в водной среде, возможно, этим и объясняется небольшая разница в длине волны максимума поглощения и в величине молярного коэффициента

Как видно из табл. 1, этерификация 4(5)-нитроимидазол — 5(4)карбоновой кислоты приводит к гипсохромному эффекту на 230 А. В то же время для этой кислоты и ее эфиров наблюдается большая разница в величине интенсивности поглощения.

Как указывают Гиллем и Штерн [4], сама нитрогруппа дает одну

слабую полосу поглощения ($\varepsilon = 15$) в области 2700—2800 Å.

При замене нитрогруппы на аминогруппу происходит изменение в положении величины максимума поглощения. Основания и хлоргидраты эфиров 4(5)-аминоимидазол — 5(4)-карбоновой кислоты дают максимум поглощения при $\lambda_{\text{max}} = 2700 - 2720$ A, сдвигаясь на 100—120 A относительно нитроэфиров и на 330—350 А относительно 4(5)-нитроимидазол — 5(4)-карбоновой кислоты в сторону более коротких длин

Как было указано выше, сама 4(5)-аминоимидазол-5(4)-карбоновая кислота имеет $\lambda_{\text{max}} = 260 \ \text{mp} \ \text{(при рH} = 9)$. Этерификация приводит к смещению λ_{max} на 100—120 A в сторону более длинных волн. В этом проявляется отличие от 4(5)-нитроимидазол-5(4)-карбоновой жислоты, этерификация которой приводит к смещению диах в сторону более коротких волн.

Введение в аминогруппу этилового эфира 4(5)-аминоимидазол-5(4)-карбоновой кислоты бензоильного радикала вызывает появление двух максимумов поглощения при 2320 А и 2920 А. По-видимому, здесь происходит сдвиг полосы поглощения на 200 А в сторону более длинных волн по сравнению с этиловым эфиром 4(5)-аминоимидазол-5(4)-карбоновой кислоты, и появляется новая полоса поглощения, характерная для бензольного кольца.

Пикраты аминоэфиров дают два максимума поглощения: при $\lambda = 2600 \text{ A}$, характерного для имидазольного кольца, и при $\lambda = 3550 -$ 3600 А, характерного для пикриновой кислоты. При этом обнаруживается сдвиг максимума поглощения на 100—120 А по сравнению с основаниями и хлоргидратами. Вероятнее всего, этот сдвиг обусловлен возникновением комплексной связи между пикриновой кислотой и аминоэфиром.

Выводы

Изучено поглощение в ультрафиолетовой и видимой части спектра 4(5)-нитроимидазол-5(4)-карбоновой кислоты , ее эфиров, а также оснований, хлоргидратов и пикратов эфиров 4(5)-аминоимидазол-5(4)-карбоновой кислоты. Наблюдаются смещения в положении длины волны максимума поглощения при замене нитрогруппы на аминопруппу, этерификации, при образовании ликратов и при бензоилировании аминогруппы. ЛИТЕРАТУРА

^{1.} Л. П. Кулев и В. Р. Королева. ЖОХ, XXIX, 2401, 1959. 2. G. C. Rabinowitz J. biol. Chem., 218, 175, 1956. 3. Н. Bader, J. D. Downer. J. Chem. Soc., 2775, 1949. 4. А. Гиллем и Е. Штерн. Электронные спектры поглощения органических соединений, Инлит, Москва, 1957.