УДК 620.17

ВЛИЯНИЕ ПРЕДВАРИТЕЛЬНОГО НАНОСТРУКТУРИРОВАНИЯ ПОВЕРХНОСТНОГО СЛОЯ НА ИЗНОСОСТОЙКОСТЬ ТИТАНОВОГО СПЛАВА ВТ6, ПОДВЕРГНУТОГО ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКЕ

А.Е. Колгачев*, С.В. Панин, Ю.И. Почивалов, Н.А. Антипина

Институт физики прочности и материаловедения СО РАН, г. Томск *Томский политехнический университет

E-mail: svp@ms.tsc.ru

Представлены результаты сравнительного исследования поведения при трении и износе образцов титанового сплава ВТ6 с наноструктурированным поверхностным слоем и последующей химико-термической обработкой. Показано, что подобная комплексная обработка позволяет увеличить микротвердость приповерхностного слоя с 3800 до 4800...5600 МПа, а также существенно повысить износостойкость. Полученный результат связывается с формированием поверхностных упрочненных слоев с повышенной микротвердостью и толщиной 50...150 мкм, имеющих профиль границы раздела «упрочненный слой – матрица», отличный от плоского.

Введение

В последнее время было показано, что наноструктурирование поверхностного слоя металлических материалов может обеспечить повышение прочностных характеристик при одновременном увеличении их пластичности [1]. Подобное модифицирование сопровождается созданием так называемого барьерного подслоя, который представляет собой материал с полосовой дислокационной субструктурой, препятствующей проникновению дефектов с поверхности в объем нагружаемого материала.

Одним из методов создания наноструктурного состояния в поверхностном слое и обеспечения градиентного изменения характеристик прочности по глубине обработанного материала [1] является ультразвуковая обработка (УЗО) поверхности. В работах А.В. Панина [2] и соавторов было показано, что характерной особенностью структуры поверхностного слоя холоднокатаного титана, подвергнутого УЗО, является наличие полосовой дислокационной субструктуры в виде параллельных дислокационных субграниц. Расстояние между ними составляет 0,2...0,5 мкм. Материал между микрополосами фрагментирован на субзерна неравноосной формы, вытянутые в направлении микрополос. При статическом нагружении (растяжении) образцов, подвергнутых подобному виду поверхностного упрочнения наблюдалось повышение как пластичности, так и предела прочности.

Однако УЗО без последующей химико-термической обработки не позволяет существенно повысить износостойкость, что весьма актуально в приложении к титановым сплавам.

В большинстве случаев в результате химико-термической обработки на поверхности материала формируется высокопрочный слой, имеющий плоский профиль границы раздела «покрытие-подложка». В наших предыдущих работах было показано, что более эффективным, с точки зрения снижения риска локализации деформации, является формирование неплоской границы раздела. В ряде случаев это обеспечивало повышение предела прочности при одновременном повышении пластичности поверхностно-упрочненного образца. Актуальность создания неплоской границы раздела между упрочненным поверхностным слоем и основой активно обсуждается в литературе [3, 4]. Показано, что неплоский профиль границы раздела позволяет диспергировать мощные концентраторы напряжений макромасштабного уровня за счет возникновения большого количества стохастически распределенных мезоконцентраторов напряжений меньшей мощности либо за счет образования неупорядоченной сетки микротрещин в покрытии [3].

В настоящей работе ставилась задача отработки технологического режима поверхностного упрочнения образцов титанового сплава ВТ6, основанного на комплексной механо-химико-термической обработке. Предполагалось, что в результате ее проведения удастся сформировать упрочненный поверхностный слой с неплоской границей раздела и большей толщиной (по сравнению с образцами, подвергнутыми химико-термической обработке без предварительного наноструктурирования поверхностного слоя). Поскольку одним из применений титанового сплава является изготовление лопаток паровых турбин, основным видом деградации которых является кавитационный - капельной фракцией, исследовали поведение образцов титанового сплава ВТ6 после комплексной обработки в условиях трения и износа.

Эксперимент

Испытания проводились на образцах титанового сплава ВТ6 в форме параллелепипеда 7×7×10 мм³ по схеме "вал — колодка" в условиях граничной смазки на машине трения СМТ-1. В качестве смазки использовали индустриальное масло И-20. Образцы для исследований были разделены на две партии: в первой в приповерхностных слоях образцов создавали наноструктурное состояние, а во второй нет. Для последующей обработки поверхности были использованы 3 режима химико-термической обработки и один режим ионно-плазменного поверхностного упрочнения. Поскольку в ближайшее время предполагается патентование данных методов, мы опустим их подробное описание. Обработка по режимам № 1 и № 2 различалась временем выдержки и проводилась при более низкой температуре. Режим № 3 отличается от предыдущих как меньшей продолжительностью обработки, так и более высокой температурой.

Контртело диаметром 62 мм изготавливали из стали ШХ-15. Испытания на трение проводили при начальной нагрузке на образец 25,8 Н и скорости вращения вала 150 об/мин. Продолжительность нагружения, как правило, составляла 70 мин. Интенсивность изнашивания оценивали путем измерения ширины дорожки трения по оптическим изображениям, записывавшимся с помощью оптического микроскопа Carl Zeiss Stemi 2000-С. Характер модификации поверхностного слоя при различных режимах поверхностного упрочнения оценивали путем измерения микротвердости на приборе ПМТ-3 с нагрузкой на пирамидку Виккерса 100 г, а также путем травления. Оценка толщины унесенного слоя δ_v проводилось по монтажам оптических изображений, снятым на поверхности трения, путем пересчета ее величины через измеренное значение ширины дорожки трения по формуле [3]:

$$\delta_y = R - \sqrt{R^2 - l^2/4}, \qquad (1)$$

где R – радиус вала, l – ширина дорожки трения на образце.

Результаты и обсуждение

1) Образцы сплава ВТ6 в исходном состоянии

В течение первых пяти минут испытаний на рабочей части образцов сплава ВТ6 в исходном состоянии сформировалась дорожка трения шириной ≈ 3000 мкм (рис. 1, *кривая* 1). Коэффициент трения $f_{\rm Tp}$ за это время снизился от значения $\approx 0,4$ до 0,1. Дальнейшее нагружение не показало существенной скорости роста ширины дорожки трения. За полное время испытаний 70 мин ширина дорожки трения возросла до 4500 мкм (рис. 1, *кривая* 1; рис. 2, *а*). Расчет толщины унесенного слоя, проведенный согласно выражению (1), показал, что за первые 5 мин работы была унесена толщина слоя, равная $\delta_j \approx 36$ мкм, в то время как на момент окончания испытаний его величина составила $\delta_j \approx 81,8$ мкм. При этом на стадии установившегося изнашивания изменений значения $f_{\rm TD}$ не изменялось: $f_{\rm TD} \approx 0,1$.

Рис. 1. Зависимость ширины дорожки трения от времени нагружения образцов титанового сплава ВТ6: 1) в исходном состоянии; 2) с наноструктурированным приповерхностным слоем; 3) после химико-термической обработки по режиму № 1 без предварительного наноструктурирования и 4) с таковым

Образцы сплава ВТ6 с наноструктурированным поверхностным слоем

При испытаниях образцов с предварительно наноструктурированным поверхностным слоем за первые 5 мин на рабочей поверхности сформировалась дорожка трения шириной 2500 мкм (что соответствует толщине унесенного слоя $\delta_y \approx 25,2$ мкм). Дальнейшее нагружение не привело к существенному увеличению ширины дорожки трения: за 70 мин работы ширина дорожки трения возросла до 3800 мкм, при этом толщина унесенного слоя увеличилась до $\delta_y \approx 58,3$ мкм (рис. 1, *кривая* 2; рис. 2, δ). Изменение значения $f_{\rm тр}$ имеет следующую зависимость: за первые 5 мин работы его значение падает от 0,12 до 0,06 (и таковым остаётся до конца испытаний).

3) Химико-термическая обработка по режиму № 1

После испытаний в течение первых 5 мин на рабочей поверхности образцов, обработанных по данному режиму, формировалась дорожка трения шириной \approx 2200 мкм, что соответствует толщине унесенного слоя $\delta_{\gamma} \approx$ 19,5 мкм. При дальнейшем нагру-

Рис. 2. Изображения поверхностей трения образцов титанового сплава ВТ6: а) в исходном состоянии; после: б) наноструктурирования поверхностного слоя; в) химикотермической обработки № 1; г) химико-термической обработки № 1 с предшествующим наноструктурированием поверхности; д) химико-термической обработки № 2. Время нагружения 70 мин

жении интенсивность изнашивания образцов, подвергнутых только наноструктурированию приповерхностных слоев и обработке по рассматриваемому режиму, была подобна (рис. 1, *кривая* 3, рис. 2, *в*). За 70 мин испытаний ширина дорожки трения возросла до 3600 мкм (что соответствует толщине унесенного слоя $\delta_{\gamma} \approx 52,3$ мкм). За первые 10 мин работы значение $f_{\tau \tau}$ колеблется от 0,06 до 0,1. В течение следующих 5 мин нагружения $f_{\tau \tau}$ выходит на значение 0,06 и в дальнейшем остается таковым до конца испытания.

Различие ширины дорожки трения образцов, обработанных по режимам № 1–3, становится более очевидной при сопоставлении оптических изображений их поверхностей трения (рис. 2). В то же время, несмотря на некоторое различие в величине интенсивности изнашивания, характер последнего для всех вышеперечисленных образцов является подобным, что свидетельствует о подобии процессов и механизмов износа, реализующихся при их трибонагружении.

Химико-термическая обработка по режиму № 1 образцов с предварительно наноструктурированным поверхностных слоев

Обработка образцов в данном режиме приводила к увеличению микротвердости в приповерхностном слое примерно на \approx 800 МПа (рис. 3, *a*). Однако, предварительное наноструктурирование поверхностного слоя позволяло увеличивать толщину слоя с максимальной микротвердостью до 50 мкм (рис. 3, *a*, *кривая* 1).

Рис. 3. Графики распределения микротвёрдости по глубине образцов, подвергавшихся химико-термической обработке: а) № 1; б) № 2; 1) подвергнутых наноструктурированию поверхностных слоев; 2) без предварительного поверхностного наноструктурирования

За время испытаний (70 мин) на поверхности образца не было обнаружено следов износа, проявляющихся в виде образования дорожки трения (рис. 1, *кривая* 4). Заметны только небольшие "потёртости" (на рис. 2, *г*, обозначены стрелками). Значения коэффициента $f_{\rm тр}$ изменяется практически подобно всем вышерассмотренным образцам: в начале испытания его значение равно 0,18 и за 15 мин трения выходит на значение 0,1, которое остается до конца испытания.

5) Химико-термическая обработка по режиму № 2

Обработка образцов сплава ВТ6 по данному режиму не приводит к повышению микротвердости на поверхности, однако возрастает глубина упрочненного слоя (что проявляется на глубине до 150 мкм – рис. 3, *б*, *кривая* 2). Следует отметить, что выдержка образцов ВТ6 при повышенной температуре не приводит к изменению зеренной структуры в объеме, однако формирование в приповерхностном слое высокопрочных дисперсных фаз позволяет модифицировать (упрочнить) поверхностный слой без потери прочностных свойств всего образца.

Предварительное наноструктурирование поверхностного слоя не приводит к увеличению микротвердости приповерхностного слоя после последующей химико-термической обработки: $H_{\mu}>4500$ МПа. Однако наблюдается увеличение глубины приповерхностного слоя с максимальным (повышенным) значением микротвердости до ~150 мкм (рис. 3, *б*, *кривая* 1).

Проведенные испытания на трение показали, что износостойкость образцов сплава ВТ6, поверхностно упрочненных химико-термическим методом № 2, даже без предварительного наноструктурирования поверхности, повышается по сравнению со всеми вышеописанными режимами обработки: за время испытаний 70 мин на поверхности трения не удалось зафиксировать следов формирования дорожки трения – рис. 2, ∂ (подобно тому, что наблюдалось для описанного выше образца, обработанного в режиме № 2 с предварительным поверхностным наноструктурированием – рис. 2, г). В то же время характер изменения значения коэффициента трения остается подобным для всех вышеописанных режимов обработки: значение $f_{\rm TP}$ за первые 5 мин работы падает от 0,18 до 0,1 и в дальнейшем стабилизируется.

Полученные результаты свидетельствуют о том, что использование предварительного наноструктурирования приповерхностных слоев и последующей химико-термической обработки поверхности позволяют в значительной степени увеличить износостойкость титанового сплава BT6 (по крайней мере, в использованном диапазоне нагрузок).

6) Химико-термическая обработка по режиму № 3

Следует, прежде всего, отметить, что использование подобного режима термообработки является нежелательным, поскольку используемая повышенная температура не всегда может быть использована в технологических циклах термообработки. Однако обработка при повышенных температурах позволяет сформировать более прочные приповерхностные слои, что должно положительно сказаться на увеличении их износостойкости.

На рис. 4, *а*, показаны распределения микротвердости в приповерхностном слое образцов, обработанных в режиме № 3 без предварительного наноструктурирования поверхности (1) и с применением такового (2). Видно, что увеличение температуры приводит к повышению микротвердости до H_{μ} =5600 МПа, однако влияние наноструктурного состояния на повышение данного параметра практически не проявляется (рис. 4, *а*, кривые 1, 2). Данный факт, по всей видимости, связан с высокой температурой обработки, что, фактически, нивелирует предыдущее наноструктурирование (вследствие протекающей при этом рекристаллизации).

На рис. 5, a, показана зеренная структура образцов сплава ВТ6 в исходном состоянии. Видно, что зерна имеет вытянутую форму без преимущественной текстуры. После обработки по указанному режиму около поверхности формируется высокопрочный слой толщиной около 150 мкм (рис. 5, δ).

Рис. 4. Графики: а) распределения микротвердости; б) зависимости момента трения от продолжительности испытаний образцов титанового сплава ВТ6 режим № 3 (1) и с наноструктурным состоянием поверхности, предшествовавшим химико-термической обработке (2); нагрузка 4000 Н

Испытания на трение показали следующие результаты. Нагрузка, прикладывавшаяся к образцам, увеличивалась от 500 до 4000 Н. При испытании образцов без наноструктурированного поверхностного слоя, обработанных по режиму № 3, последовательное увеличение нагрузки приводило к снижению коэффициента трения. Величина последнего при P=4000 Н составила f_{rp} =0,16. При времени нагружения $t\approx$ 20 мин происходил отрыв упрочненного поверхностного слоя, чему соответствует резкое увеличение момента трения (рис. 4, *б*, *кривая* 1).

Рис. 5. Микроструктура образцов сплава ВТ6: а) в исходном состоянии и б) после обработки по режиму № 3

При испытании упрочненных образцов, подвергавшихся предварительному поверхностному наноструктурированию, при величине нагрузки 4000 Н не наблюдалось увеличение ширины дорожки трения, что сопровождалось постепенным снижением момента трения (рис. 4, *б*, *кривая* 2). При последующем повышении нагрузки до 5000 Н было выявлено, что время до отрыва модифицированного слоя составляет 37 мин. Среднее значение *f*_{тр} при этом составляло 0,14.

По всей видимости, наблюдавшийся эффект увеличения износостойкости при примерно одинаковой микротвердости приповерхностного слоя связан с предварительным наноструктурированием приповерхностных слоев и последующим формированием зубчатой структуры между упрочненным поверхностным слоем и основой в процессе химикотермического воздействия. Исследованию данного вопроса будет посвящена наша следующая работа. Ионно-плазменное поверхностное упрочнение и предшествующее наноструктурирование поверхностного слоя

На рис. 6. а. показаны кривые изменения микротвердости при удалении от поверхностноупрочненного слоя упрочненных образцов, обработанных (1) и не подвергавшихся наноструктурированию поверхностного слоя (2). Видно, что предварительное наноструктурирование поверхностных слоев и последующая обработка по режиму № 4 увеличивают микротвердость на поверхности (до $H_{\mu} \approx 5450$ МПа, т.е. примерно на 2000 МПа выше по сравнению с материалом сердцевины рис. 6, кривая 1). При отсутствии предварительной механической обработки с целью создания наноструктурного состояния в приповерхностных слоях микротвердость на поверхности была лишь немного ниже ($H_{e}\approx 5200$ МПа). В целом же, характер распределения микротвердости по поперечному сечению в образцах обоих типов является подобным (рис. 6, кривая 2), хотя толщина слоя с максимальной микротвердостью на поверхности предварительно механически обработанного образца выше.

Рис. 6. а) Распределение микротвердости по толщине образцов сплава ВТ6, упрочненных в режиме № 4 (2) и с предшествующим наноструктурированием (1); б) зависимость момента трения от продолжительности испытаний образцов титанового сплава ВТ6 без обработки поверхности (1), с химико-термической обработкой № 4 (2) и в условиях комбинированной обработки (3)

Для исследования износостойкости образцов сплава ВТ6 в исходном состоянии и с упрочненным поверхностным слоем использовали нагрузку *P*=4000 Н. Следует отметить, что скорость вращения контртела при испытаниях покрытий данного типа была снижена и составляла 100 об/мин. При этом в образцах в исходном состоянии практически с самого начала нагружения момент трения составлял *М*≈2,3 Н·м. В случае химико-термически упрочненных образцов без предварительного наноструктурирования поверхностного слоя, существенное увеличение момента трения М (соответствовавшего срыву упрочненного слоя) наблюдалось при продолжительности испытаний ≈60 с, в то время как в образцах с комбинированной обработкой резкое увеличение М фиксировалось только после ≈ 120 с испытаний (рис. 6, б). По всей видимости, подобный эффект достигается именно за счет формирования неплоской границы раздела между упрочненным поверхностным слоем и матрицей вследствие предварительного наноструктурирования приповерхностных слоев материала.

Заключение

- Экспериментально показано, что предварительное наноструктурирование поверхностного слоя и последующая химико-термическая обработка образцов сплава ВТ6 при небольших величинах нагрузки в условиях трибонагружения исключает формирование на поверхности трибоконтакта дорожки трения.
- Предварительное наноструктурирование образцов сплава ВТ6 при комбинированной механохимико-термической обработке позволяет значительно повысить износостойкость, при этом влияние первого эквивалентно увеличению времени химико-термической обработки.
- Ионно-плазменное поверхностное упрочнение не позволяет существенно повысить износостойкость образцов сплава ВТ6, однако предварительное наноструктурирование увеличивает время эффективного сопротивления образца уносу упрочненного поверхностного слоя, что может быть связано с формированием неплоской границы раздела «упрочненный слой-подложка».

Авторы выражают искреннюю благодарность академику В.Е. Панину за постановку задачи исследований и обсуждение результатов. Работа выполнена при финансовой поддержке программы фундаментальных исследований ОЭММПУ РАН «Накопление поврежденности, разрушение, изнашивание и структурные изменения материалов при интенсивных механических, температурных и радиационных воздействиях» (руководитель академик И.Г. Горячева).

СПИСОК ЛИТЕРАТУРЫ

- Панин В.Е., Панин Л.Е. Масштабные уровни гомеостаза в деформируемом твердом теле // Физическая мезомеханика. – 2004. – Т. 7. – № 4. – С. 5–23.
- Панин А.В., Панин В.Е., Почивалов Ю.И. и др. Особенности локализации деформации и механического поведения титана ВТ1-0 в различных структурных состояниях // Физическая мезомеханика. – 2002. – Т. 5. – № 4. – С. 73–84.
- Панин С.В., Коваль А.В., Трусова Г.В., Почивалов Ю.И., Сизова О.В. Влияние геометрии и структуры границы раздела на характер развития пластической деформации на мезомасштаб-

ном уровне борированных образцов конструкционных сталей // Физическая мезомеханика. – 2000. – Т. 3. – № 2. – С. 99–115.

- Панин С.В., Клименов В.А., Сейфуллина М.П. и др. Влияние обработки ультразвуком в процессе оплавления газотермических покрытий на характер деформирования и разрушения композиций с напыленными покрытиями при трехточечном изгибе // Физическая мезомеханика. – 2004. – Т. 7. – № 2. – С. 105–115.
- Кукареко В.А., Белый А.В., Панин С.В., Шаркеев Ю.П. и др. Влияние высокоинтенсивной имплантации ионов азота на структуру и поведение стали 40Х в условиях трения и износа // Физическая мезомеханика. – 2002. – Т. 5. – № 1. – С. 71–80.

УДК 539.121.8.04:621.9.047.7

ТРИБОМЕХАНИЧЕСКИЕ СВОЙСТВА И СТРУКТУРА НАНОКОМПОЗИТНЫХ ПОКРЫТИЙ Ті_{1-х}АІ_хN

В.П. Сергеев, М.В. Федорищева, А.В. Воронов, О.В. Сергеев, В.П. Яновский, С.Г. Псахье

Институт физики прочности и материаловедения CO PAH, г. Томск E-mail: techimpl@mail.tomsknet.ru

Исследованы трибомеханические свойства и структурные характеристики покрытий T_{h-x}Al_xN, полученных при магнетронном напылении в условиях ионной бомбардировки и без нее. Установлен характер влияния ионной обработки на твердость, модуль упругости, износостойкость покрытий, определены стойкостные характеристики режущих пластин из твердого сплава T15К6 с покрытием. На основании анализа фазового и химического состава покрытий и определения уровня внутренних упругих напряжений, параметра решетки, среднего размера и кристаллографической ориентировки зерен обсуждается взаимосвязь свойств покрытий с их структурно-фазовым состоянием.

1. Введение

С целью повышения износостойкости режущего инструмента широкое применение получили покрытия на основе нитрида титана (TiN). Однако в процессе более детального исследования свойств выяснилось, что они имеют ряд недостатков, ограничивающих перспективу их использования в промышленности. Так, они имеют низкую окислительную стойкость. При нагреве выше 550 °С на поверхности покрытия TiN начинает расти хрупкий с низкой адгезией слой оксида титана в фазе рутила, который быстро разрушает защитную стойкость покрытия [1]. Недостаточными для современного уровня развития техники и технологии оказались механические и триботехнические свойства этого покрытия.

В настоящее время на основе TiN разрабатывается новый класс покрытий — нанокомпозитные со средним размером зерен менее 100 нм, в частности, двухфазные покрытия на основе нитридов титана и алюминия [2–5]. Вследствие значительного увеличения объемной доли границ раздела такие покрытия проявляют в ряде случаев уникальное сочетание свойств: высокую твердость, износостойкость, окислительную стойкость и, одновременно, высокий коэффициент упругого восстановления и низкий коэффициент трения. Механизм образования нанокомпозитных структур связывают с сегрегацией одной фазы по границам зерен другой фазы, в результате которой прекращается рост кристаллитов. Этот процесс реализуется путем введения в состав растущего конденсата легирующих элементов или с помощью бомбардировки растущего конденсата потоком ионов, а также различными комбинациями этих методов. Управление структурой и фазовым составом покрытия осуществляется обычно подбором режимов осаждения, изменением концентрации легирующих элементов, парциальных давлений рабочей газовой смеси и температуры подложки, приложением к подложке отрицательного напряжения смещения или бомбардировкой ее пучками газовых ионов с высокой энергией.

Целью настоящей работы является исследование триботехнических и механических свойств, структурных характеристик магнетронных нанокомпозитных покрытий на основе нитридов титана и алюминия, а также проведение их сравнительного анализа при осаждении в условиях ионной бомбардировки и без нее.

2. Методика эксперимента

Осаждение покрытий проводили на установке вакуумного напыления типа "Квант" [6] с помощью магнетрона с мишенью из сплава титана (57 ат. %) и алюминия (43 ат. %) диаметром 120 мм, работающего от источника постоянного тока, оснащенного системой защиты от микродуг. Мощность разряда магнетрона равна 2,2 кВт. Покрытия осаждали в реактивной среде из смеси газов аргона и азота при общем давлении 0,2 Па и парциальном давлении азота – 0,03 Па. Нагрев образцов в вакуумной камере пе-