УДК 665.64

МОДЕЛИРОВАНИЕ ПРОЦЕССА ДЕГИДРИРОВАНИЯ H-ПАРАФИНОВ C_9 - C_{14} В АДИАБАТИЧЕСКОМ РЕАКТОРЕ С НЕПОДВИЖНЫМ СЛОЕМ Pt-КАТАЛИЗАТОРА

Е.Н. Михайлова, А.В. Кравцов, Э.Д. Иванчина, Д.И. Мельник

Томский политехнический университет E-mail: ied@zmail.ru

Предложена принципиально новая кинетическая модель процесса дегидрирования н-парафинов С₉-С₁₄ на промышленном платиновом катализаторе в адиабатическом реакторе с неподвижным слоем катализатора, которая учитывает изменение состава сырья и технологических условий процесса. Определены численные значения кинетических параметров. Исследовано влияние состава сырья на селективность целевых реакций.

Н-моноолефины C_9 - C_{14} , получаемые посредством дегидрирования н-парафинов, являются сырьем для процесса получения линейных алкилбензолов и алкилбензосульфонатов — основы для синтетических моющих средств (СМС) [1]. Годовое потребление линейных алкилбензолов в мире к 2005 г. составило 2,8 млн т. В Азии и в странах тихоокеанского региона (Китай, Индия) наблюдается устойчивый рост спроса линейных алкилбензолов, который составляет 6...8 % в год [1].

В 1996 г. ПО "Киришинефтеоргсинтез" ввел в эксплуатацию комплекс по производству линейного алкилбензола и линейной алкилбензолсульфокислоты (ЛАБ-ЛАБС) с биоразлагаемостью 95 %. Этот продукт поставляется практически всем российским и ряду зарубежных производителей синтетических моющих средств [2].

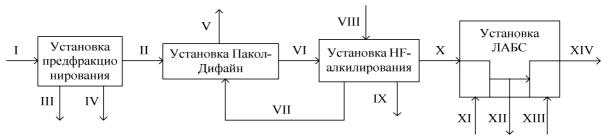
Дегидрирование парафинов в олефины — обратимая эндотермическая реакция, поэтому степень превращения увеличивается с подъемом температуры, что приводит к сокращению срока службы катализатора. В связи с этим необходимо выбирать оптимальный вариант, при котором наряду с определенной степенью превращения обеспечивается полный срок службы катализатора.

В настоящее время для расчета и прогнозирования различных производственных технологий широко применяются методы математического моделирования. Успех применения этих методов определяется, в первую очередь, правильностью и глубиной знаний о механизме протекания реакций на поверхности катализаторов, условиями термодинамического равновесия и количественными кинетическими закономерностями с оценкой макрокинетических осложнений. В связи с этим целью данной работы явилась разработка математической модели процесса получения н-моноолефинов путем дегидрирования н-парафинов как основы для производства синтетических моющих средств, реализованного посредствам технологии Пакол-Дифайн.

Первым этапом производства СМС является выделение нормальных парафиновых углеводородов из керосиновых и дизельных фракций с числом углеродных атомов от 10 до 20, так называемых жидких парафинов. Наиболее совершенным способом выделения жидких парафинов является ад-

сорбционный — с помощью цеолитов. Для этих целей используется технология Парекс, получившая наибольшее распространение в нашей стране.

Следующим этапом является собственно про-изводство ЛАБ и ЛАБС.


Основным экономически наиболее выгодным методом производства ЛАБ является дегидрирование н-парафинов в олефины с последующим алкилированием ими бензола в присутствии катализатора — фтористого водорода. ЛАБ является сырьем для производства анионоактивного ΠAB — сульфонола и некоторых других, используемым в настоящее время в промышлености, поэтому его подвергают сульфированию — присоединению молекулы серного ангидрида SO_3 , в результате чего получается ABCK — алкилбензолсульфокислота.

АБСК может использоваться как компонент СМС только после ее нейтрализации различными щелочами, например, триэтаноламином, с целью получения нейтрального или слегка щелочного продукта.

Блок-схема потоков комплекса производства ЛАБ, ЛАБС представлена на рис. 1.

После блока предварительного фракционирования, целевая фракция — н-алканы C_{10} - C_{13} — поступает в следующую секцию комплекса производства ЛАБ — блок дегидрирования до нормальных моноолефинов, которые необходимы для алкилирования ими бензола с получением линейного алкилбензола. Из-за жестких условий процесса (высокая температура порядка $800~\rm K$, низкое давление) дегидрогенизация происходит не только до нормальных моноолефинов, но и до ди- и триолефинов. При этих условиях возможно также образование ароматических углеводородов и крекинг парафинов с образованием кокса и легких углеводородов.

Процесс Пакол, основной целью которого является получение н-моноолефинов посредствам дегидрирования н-парафинов, проводится на высокоселективном и активном платиносодержащем катализаторе ДЕН-7 (разработка фирмы UOP), способном произвести специфическое превращение при очень высоких объемных скоростях. В обычных условиях для процесса Пакол при использовании этого катализатора степень превращения н-парафинов в олефины — 12...13 %, селективность к образованию моноолефинов поддержи-

Рис. 1. Блок-схема потоков комплекса производства ЛАБ, ЛАБС. Потоки: I) н-парафины с установки Парекс; II) н-парафины C_{0} - C_{13} ; III) фракция н-парафинов C_{14} - C_{17} ; IV) фракция н-парафинов C_{18} и выше; V) водородсодержащий газ; VI) смесь н-парафинов и моноолефинов; VII) рециркулирующие н-парафины; VIII) бензол с установки ЛГ-35-8/300Б [2]; IX) тяжелый алкилат; X) ЛАБ; XI) сера с установки элементарной серы; XII) ЛАБС; XIII) щелочь; XIV) ЛАБСNа

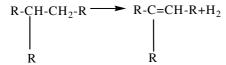
вается на уровне 90 %. Оставшиеся 10 % представляют собой смесь водорода, легких продуктов крекирования, диолефинов и алкилароматических углеводородов. Значительное количество нормальных парафинов после алкилирования возвращаются в качестве рециркулята в блок Пакол.

Превращение до моноолефинов проходит при низком давлении, которое не изменяется по ходу процесса. Для обеспечения высокой селективности катализатора (90 % к образованию моноолефинов) и его стабильности выбирается оптимальное рабочее давление порядка 0,2 МПа.

Катализатор ДЕН-7 позволяет работать с большой объемной скоростью — порядка $20...23~{
m q}^{-1}$; необходимая селективность при постоянной объемной скорости достигается изменением температуры в реакторе.

В процессе Пакол для обеспечения оптимальных условий нормируется мольное соотношение количества водорода и суммарного сырья процесса. Проектом оно определено 6:1. Фактически, при освоении комплекса принято соотношение 7:1, что позволяет при снижении степени превращения до 10 % обеспечить срок службы катализатора 5–6 мес. вместо 45 сут.

Для процесса должно использоваться сырье (сырьевая смесь) с разницей в 4 углеродных атома, например C_{10} - C_{13} или C_{11} - C_{14} . Фракция C_{10} - C_{14} уже не подходит. Это ограничение обусловлено возможностью превращения легких н-парафинов без увеличения побочных реакций крекирования более тяжелых парафинов.

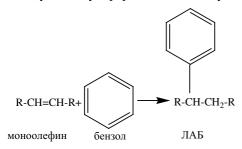

Процесс Дифайн был разработан фирмой UOP и является неотъемлемой частью процесса превращения нормальных парафиновых углеводородов в моноолефины. Его назначение — увеличение выхода моноолефинов, т.е. селективности процесса, за счет гидрирования побочных продуктов Пакол-процесса, в частности диолефинов в моноолефины. Наличие диолефинов при попадании их в реактор алкилирования приводит к образованию более тяжелого алкилата, к снижению количества ЛАБ и к ухудшению его качества. Поэтому жидкие продукты Пакол-процесса, перед тем, как попасть в ректификационную колонну, направляются в блок Дифайн, где в присутствии водорода после предварительного

нагрева до 190...200 °C на алюмоникелевом катализаторе при давлении 0,9...1,0 МПа в жидкой фазе происходит избирательное гидрирование диолефинов в моноолефины. Далее с блока Дифайн продукты реакции возвращаются в блок Пакол на ректификацию и затем направляются в блок алкилирования. Из 90 % диолефинов, поступивших в процесс Дифайн, 50 % гидрируется до моноолефинов, оставшаяся часть – до н-парафинов. Таким образом, небольшое количество полученных н-парафинов с рециркулятом возвращается в блок Пакол для повторного дегидрирования. Скорость превращения зависит от концентрации водорода, ди- и моноолефинов. Давление в процессе должно быть таким, чтобы водород находился в растворенном состоянии. На практике при проектной производительности блока оно поддерживается в интервале 0,9...1,2 МПа. Температура в реакторе (180...220 °C) зависит от активности катализатора. В начальной стадии работы блока, когда катализатор еще свежий, она поддерживается на уровне 180...190 °C. По мере отработки катализатора и снижения его активности она поднимается и может достигать 220...230 °C. Мольное соотношение "водород; диолефины" влияет на селективность превращения. При значении этого соотношения 1,35 степень превращения диолефинов составляет 90 %, при этом селективность по моноолефинам составляет 50 %. Блок Дифайн работает при объемной скорости подачи сырья 5 ч-1. Полученные таким образом н-моноолефины поступают в блок алкилирования, где в присутствии катализатора фтористоводородной кислоты – производится алкилирование бензола линейными моноолефинами (фракции C_{10} - C_{13}). В результате этого процесса получаются ЛАБ. Полученный в результате алкилирования линейный алкилбензол является сырьем для производства одного из активнейших компонентов и основного составляющего СМС – линейных алкилбензолсульфонатов натрия. Для их получения ЛАБ подвергают сульфированию. Сульфирование производят серным ангидридом SO₃.

Выполненные исследования механизма превращения углеводородов на Pt-катализаторе в указанном интервале рабочих условий показали, что целевыми реакциями процесса Пакол являются реакции дегидрирование н-парафинов C_9 - C_{14} . К побочным реакциям Пакол-процесса относятся:

- образование диолефинов из моноолефинов, эта реакция обратима;
- образование ароматических углеводородов из образовавшихся диолефинов;
- расщепление (крекинг) нормальных парафинов с образованием продуктов уплотнения и легких углеводородов.

Поскольку сырье процесса может содержать некоторое количество нелинейных парафиновых соединений — изопарафинов, алкилциклопарафинов, последние также могут превращаться в моноолефины, алкилциклоолефины, например:



В результате этих реакций образуются побочные продукты, которые при поступлении в блок алкилирования способствуют увеличению количества тяжелых алкилатов и приводят к ухудшению качества основного продукта алкилирования — ЛАБ — за счет ухудшения его биоразлагаемости.

Важнейшими реакциями процесса Дифайн являются превращение диолефинов в моноолефины и моноолефинов в н-парафины.

Например:

Заключительной стадией получения ЛАБ-ЛАБС является алкилирование бензола н-моноолефинами с последующим сульфированием по следующей схеме:

Таким образом, на основании анализа экспериментальных данных, полученных на промышленной установке завода ЛАБ-ЛАБС ПО «Киришинефтеоргсинтез» нами предложена общая схема превращения веществ в процессе производства ЛАБ, ЛАБС, которая выглядит следующим образом:

Рис. 2. Схема превращения веществ в процессе производства ЛАБ, ЛАБС, где Г – газообразные продукты крекинга

Более подробную схему превращений веществ в процессе Пакол-Дифайн можно представить следующим образом:

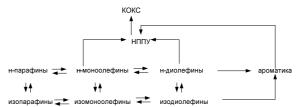


Рис. 3. Схема превращений веществ в процессе Пакол-Дифайн, где НППУ – непредельные промежуточные продукты уплотнения (обратимый кокс); Кокс – кокс графитообразной структуры

В качестве исходных параметров для разработки математической модели процесса были использованы реальные данные о составах исходного сырья и получаемых продуктов блоков Пакол и Дифайн, а также основные рабочие условия ведения процесса (температура, давление, объемная скорость подачи сырья, мольное соотношение «водород:сырье»).

При этом учитывалось изменение числа молей при разбавлении смеси компонентов циркулирующим водородсодержащим газом. Изменение концентрации i-ого компонента при разбавлении его водородосодержащим газом в соотношении $1:\lambda$ определяется как:

$$n_i(x) = \frac{n_{is}(x)}{1+\lambda},\tag{*}$$

где λ — мольное соотношение водород:сырье, равное 7 и 1,35 для реакций дегидрирования и гидрирования соответственно (исходные данные); $n_i(x)$ — мольная доля компонента с учетом разбавления; $n_{is}(x)$ — мольная доля компонента в исходном сырье. Формула (*) справедлива для x>5.

Одним из важнейших этапов при построении математической модели процесса является оценка таких термодинамических параметров, как энергия Гиббса и константа равновесия для определения термодинамической вероятности протекания той или иной химической реакции. Для основных реакций процесса данная работа была проведена; показано, что для реакций гидрирования, в отличие от реакций дегидрирования н-парафинов, константы равновесия имеют значения порядка 106. Из этого следует, что подобные реакции практически необратимы, т.е. протекают только в прямом направлении. В то же время реакции дегидрирования обратимы, что необходимо учесть при составлении кинетических уравнений.

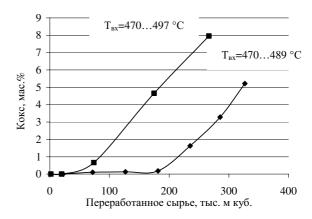
Для основных реакций процесса, соответствующих выбранной схеме превращений, были составлены кинетические уравнения. Так, например, для дегидрирования н-декана схема превращения и кинетическая модель выглядит следующим образом:

$$C_{10}H_{22} \xrightarrow{k_1 \atop k_2} C_{10}H_{20} + H_2$$

$$\begin{split} W_1 &= k_1 C_{\text{C}_{10}\text{H}_{22}}; \\ W_2 &= k_2 C_{\text{C}_{10}\text{H}_{20}} \cdot C_{\text{H}_2}; \\ W_{\text{C}_{10}\text{H}_{22}} &= \frac{dC_{\text{C}_{10}\text{H}_{22}}}{dt} = -k_1 C_{\text{C}_{10}\text{H}_{22}} + k_2 C_{\text{C}_{10}\text{H}_{20}} \cdot C_{\text{H}_2}; \\ W_{\text{C}_{10}\text{H}_{20}} &= \frac{dC_{\text{C}_{10}\text{H}_{20}}}{dt} = k_1 C_{\text{C}_{10}\text{H}_{22}} - k_2 C_{\text{C}_{10}\text{H}_{20}} \cdot C_{\text{H}_2}; \\ W_{\text{H}_2} &= \frac{dC_{\text{H}_2}}{dt} = k_1 C_{\text{C}_{10}\text{H}_{22}} - k_2 C_{\text{C}_{10}\text{H}_{20}} \cdot C_{\text{H}_2}. \end{split}$$

Здесь W_1 , W_2 , k_1 , k_2 — скорости и константы скоростей прямой и обратной реакций соответственно; $C_{\mathsf{C_{10}H_{20}}}$, $C_{\mathsf{C_{10}H_{20}}}$ — концентрации н-декана и н-децена соответственно; $W_{\mathsf{C_{10}H_{20}}}$, $W_{\mathsf{C_{10}H_{20}}}$, $W_{\mathsf{H_2}}$ — скорости реакций по соответствующему веществу.

Таблица 2. Исследование влияние состава углеводородного сырья на выход конечного продукта при температуре входа 470 °C


Углеводородный состав сырья, мас. %				
Парафины				
C9	0,01	0,01	0,01	0,02
C10	13,28	16,56	12,52	15,21
C11	31,26	33,00	31,20	33,25
C12	28,64	26,77	32,67	27,28
C13	22,07	20,14	19,40	19,85
C14	0,56	0,33	0,44	0,43
Изопарафины	4,18	3,19	3,76	3,96
Углеводородный состав продукта				
Олефины, мас. %	7,62	7,09	7,38	7,11
Ароматика, мас. %	0,82	0,62	0,73	0,69
Диолефины, мас. %	0,44	0,40	0,42	0,40
Водород, об. %	91,44	94,68	91,73	93,59
Углеводородные газы, об. %	8,56	5,32	8,27	6,41

При решении обратной кинетической задачи найдены численные значения кинетических параметров: энергии активации, констант скоростей основных реакций, протекающих в ходе данного процесса. Так для реакции дегидрирования н-декана при температуре 472 °С константы скорости прямой и обратной реакций равны соответственно 8·10⁻³ и 3·10⁻⁴. Константы скоростей реакций гидрирования диолефинов до моноолефинов при температуре 230 °С принимают значения порядка 0,3...0,4.

СПИСОК ЛИТЕРАТУРЫ

- 1. Баннов П.Г. Процессы переработки нефти. М.: ЦНИИТЭнефтехим, 2001.-625 с.
- 2. Гоголев А.Г., Бровко А.В. Экологическиек аспекты производства ЛАБ-ЛАБС // Нефтепереработка и нефтехимия. -2001. № 4. C. 38-39.

Было проведено исследование влияния состава углеводородного сырья на выход конечного продукта (табл. 2).

Рис. 4. Выход кокса на катализаторе в зависимости от количества переработанного сырья и температуры (расчет на модели)

Из представленной на рис. 4 зависимости видно, что при более высокой температуре ведения процесса на катализаторе отлагается гораздо больше кокса, что в свою очередь приводит к сокращению срока его службы. Так, при конечной температуре входа в реактор 497 °C выход кокса составил 7,96 мас. %, тогда как при 489 °C - 5,22 %. Расхождение между экспериментальными и рассчитанными на модели значениями не превышает 5 %.

Заключение

На основании анализа экспериментальных данных предложена схема превращения углеводородов в ходе процесса Пакол-Дифайн. Разработана кинетическая модель процесса получения н-моноолефинов C_9 - C_{14} путем дегидрирования н-парафинов на Pt-катализаторе, найдены численные значения кинетических параметров, позволяющие описать опытные данные в пределах погрешности эксперимента: энергии активации, констант скоростей основных реакций, протекающих в ходе данного процесса, а также исследовано влияние состава углеводородного сырья на выход целевого продукта.

Бокин А.И., Балаев А.В. Моделирование процесса дегидрирования метилбутенов в адиабатическом реакторе с неподвижным слоем железосодержащего катализатора // Катализ в промышленности. – 2004. – № 6. – С. 25–29.