КОМПЛЕКСООБРАЗОВАНИЕ НИТРОПРОИЗВОДНЫХ И ГАЛОГЕННИТРОПРОИЗВОДНЫХ АРОМАТИЧЕСКОГО РЯДА С АМИНАМИ

В. М. МОРОЗОВА

(Представлено профессором доктором химических наук Б. В. Троновым)

Целью настоящей работы являлось выяснение закономерностей влияния заместителей на комплексообразующую способность нитро- и аминогрупп.

Амины как комплексообразователи хорошо изучены. Они являются

комплексообразователями электронодонорного типа.

Особенностью нитросоединений как комплексообразователей является

их двойственный характер, связанный со строением нитрогруппы.

При образовании комплексов между нитросоединениями и аминами комплексная связь возникает за счет притяжения положительно заряженного азота нитрогруппы к неподеленной паре электронов аминной группы. [1].

Экспериментальная часть

Методы исследования. В работе использовались как препаративные методы, так и методы физико-химического анализа (колори-

метрический анализ и криоскопия).

Методика выполнения колориметрического анализа. В работе применялся колориметр марки КМ-1. Растворителем служил бензол. Концентрация растворов выбиралась в зависимости от растворимости исходных веществ и с учетом получения интенсивности окраски удобной для проведения колориметрического анализа. Брались растворы с концентрацией 0.5М, 0,15М и 0,1М. Из растворов исходных компонентов приготовлялись смеси, отличающиеся по составу на десять молекулярных процентов. Окраска большинства растворов комплексов была желто-зеленой и в некоторых случаях желтой, оранжевой или красной.

При колориметрическом анализе каждой отдельной системы за эталон принималась окраска смеси растворов исходных веществ с молекулярным

соотношением 1:1.

Для систем галогеннитробензол — амин проводились анализы на ионизированный галоген. Во всех случаях анализ дал отрицательные ре-

зультаты.

Проведен колориметрический анализ 86 бинарных систем нитросоединений (нитробензол, о- и п-нитротолуолы, п-нитранизол, м-нитробензальдегид, м- и п-динитробензолы, о-, м- и п-хлор-и о-, м- и п-бромнитробензолы, 1. 2. 4—хлор—и 1. 2. 4—бромдинитробензолы) с аминами (анилин, диметиланилин, о- и п-толуидины, о- и п-анизидины, дифениламин). Наличие у ряда систем одинакового оттенка окраски позволило нам сравнивать интенсивности окраски таких систем.

Для комплексов изомерных хлор и бромнитробензолов, 1. 2. 1—хлор— и 1. 2. 4—бромдинитробензолов с п-толуидином проводилось определение степени диссоциации комплекса криоскопическим методом в бензольном растворе. Для всех избранных комплексов степень диссоциации оказалась

равной единице.

Выделение и исследование комплекса п-динитробензол — бензидин. Эквимолекулярная смесь исходных сухих веществ растворялась в небольшом количестве бензола при нагревании (35—40°). При охлаждении из раствора выпадали кристаллы комплекса в виде пластинок темно-фиолетового цвета. Для перекристаллизации комплекс растворялся в бензоле при комнатной температуре и затем части бензола давали испариться. Температура плавления комплекса 108,5—109°. Перекристаллизация из нагретого бензола приводила к частичному разложению комплекса.

Разложение комплекса производилось растворением навески его в разбавленной соляной кислоте. Перешедший в раствор солянокислый бензидин отфильтровывался и бензидин выделялся действием соды. п-Динитробензол оставался на фильтре.

Результаты анализа комплекса п-динитробензол — бензидин.

N≥	Навеска	Вес п-динит	Вес бен-	Число молей			
ан гл иза	комплекса в г	робензола в г	вес оен- зидина в г	п-пинитро- бензола	бензидина		
1 2	0;4770 1,6815	0,1952 0,7709	0,1990 0,8400	0,00116 0,00458	0,00108 0,00456		

Результаты анализа показывают, что полученный комплекс имеет мо-

лекулярный состав 1:1.

Сравнение комплексообразующей способности некоторых нитросоединений методом действия паров более летучего комплексообразователя на кристаллы менее летучего вещества. Сравнение комплексообразующей способности некоторых нитросоединений производилось по отношению к п-толуидину. Бюксы с навесками нитросоединений (0,001 граммолекулы) помещались в эксикатор, на дно которого насыпался летучий комплексообразователь. Через определенные промежутки времени производились взвешивания; по привесу судили о комплексообразующей способности нитросоединения (содержимое бюксов регулярно перемешивалось). Температура помещения, в которой находились эксикаторы, колебалась от 16 до 27°. Общая продолжительность опытов была до трех лет.

Сравнение комплексообразующей способности по отношению к п-толуидину проводилось для следующих нитросоединений: для м- и п-динитробензолов, 1. 2. 4-динитронизола, 1. 2. 4-, 1. 2. 5- и 1. 2. 6-динитрофенолов и симметричного тринитробензола.

Изомерные хлор- и бромнитробензолы, нитрофенолы в парах п-толуи-

дина давали окрашенную расплывающуюся массу.

Для 1. 2. 4-хлор- и 1. 2. 4-бромдинитробензолов в парах п-толуидина проходила реакция конденсации с отщиплением хлористого водорода.

м-Динитробензол при стоянии в атмосфере паров п-толуидина в течение первых суток уже приобретал бурую окраску, но затем постепенно про-исходило расплывание м-динитробензола.

п-Динитробензол и 1. 2. 4-динитранизол не изменяли цвета и не увеличивались в весе.

Обсуждение результатов

Комплексообразующая способность в основном изучалась колориметрическим методом.

Комплексы ряда нитросоединений с некоторыми аминами в бензольном растворе имели одинаковый при сравнении в колориметре оттенок окраски, но отличались ее интенсивностью. Одинаковый оттенок окраски

мы объясняли одинаковым механизмом комплексообразования, а различную интенсивность окраски принимали за большую или меньшую склонность участвующих во взаимодействии групп к комплексообразованию.

Метод сравнения интенсивности окраски систем, имеющих в окраске растворов комплексов одинаковый оттенок, дал нам возможность провести сравнение комплексообразующей способности отдельных аминов и нитросоединений и сделать частные выводы о влиянии заместителей на комплексообразующую способность амино- и нитрогрупп.

Основываясь на данных колориметрического анализа, можно сделать вывод, что введение в анилин в качестве второго заместителя метильной группы или метоксильной группы ослабляет оттягивание бензольным

кольцом пары электронов от аминного азота.

Влияние второго заместителя сильнее сказывается тогда, когда он находится в пара-положении, чем тогда, когда он находится в орто-положении.

Метоксильная группа в большей степени усиливает электронодонорные свойства аминогруппы, чем радикал метил.

По данным колориметрического анализа выбранные для исследования амины по возрастанию их электронодонорных свойств могут быть расположены в следующий ряд: анилин, о-толуидин, п-толуидин, о-анизидин, п-анизидин.

Колориметрическим анализом во всех выбранных системах вновь обнаружено или подтверждено образование комплексов с соотношением компонентов 1:1.

Сравнение интенсивности окраски растворов комплексов некоторых нитросоединений по отношению к выбранным аминам позволяет расположить нитросоединения в следующие ряды по убыванию электроноакцепторных свойств.

Амин	Порядок расположения нитросоединений по убывающей электроноакцепторной способности							
Анилин	м-нитро- бензаль- деги д	нитро- бе н зол	п-нитро- толуол	п-нитр- анизол	о-нитро-			
о-Толуи- дин	м-нитро- бензаль- дегид	нитро- бензол	п-нитро- толуол	п-нитр- анизол	о-нитро толуол			
п-Толуи- дин	м-нитро- бензаль- дегид	нитро- бензол	п-нитр-	п-нитро толуол	о-нитро- толуол			
о-Анизи- дин	м-нитро- бензаль- дегид	п-нитро-	нитро- бензол	п-нитр- анизол	о-нитро толуол			
п-Анизи- дин	п-нитро- толуол	м-нитро- бензаль- дегид	нитро- бензол	п-нитр- анизол	о-нитр толуол			

. 1		2					
Дифенил- амин	м-нитро- бензаль- дегид	нитро- бензол	п-нитро-	п-нитр- анизол	о-нитро- толуол		
Диметил-	нитро-	о-нитр-					
анилин	бензол	анизол					

Сопоставление этих данных показывает, что метоксильная группа в п-положении к нитрогруппе ослабляет электроноакцепторные функции

Метильная группа в о-положении к нитрогруппе также уменьшает электроноакцепторные функции последней. В меньшей мере ослабление электроноакцепторных функций нитрогруппы наблюдается под влиянием метильной группы, находящейся в п-положении, а по отношению к таким аминам, как о- и п-анизидины, метильная группа в п-положении даже усиливает электроноакцепторные функции нитрогруппы.

Вторая нитрогруппа как в м-, так и в п-положении усиливает электроноакцепторные функции нитрогруппы. Для м-динитробензола обнаружено и выделено сравнительно большое число комплексов с аминами. Комплексы м-динитробензола с аминами более устойчивы, чем для нитробензола.

Вторая нитрогруппа в п-положении тоже усиливает электроноакцепторные функции нитрогруппы и по данным колориметрического анализа, выполненного нами, усиливает в большей степени, чем вторая нитрогруппа в м-положении.

В литературе описан комплекс м-динитробензол — бензидин [3], [1]. Нами осаждением из бензольных растворов получен комплекс п-динитробензол — бензидин. Первый термический более устойчив, его можно перекристаллизовать из нагретого бензола, а второй при таких условиях разлагается на компоненты.

Поведение галогензамещенных нитробензола, как комплексообразователей электроноакцепторного типа, подтверждается работами Меншуткина [2], обнаружившего термическим анализом комплексы изомерных хлорнитробензолов с хлористым и бромистым алюминием. Термическим анализом бинарных систем изомерных хлорнитробензолов с анилином получена простая эвтектика.

Одинаковые оттенки окраски комплексов для целого ряда систем галогеннитробензолов с аминами позволили провести сравнение интенсивности окраски этих систем и на этой основе сделать выводы о влиянии галогена на реакционную способность нитрогруппы.

Ниже приводятся ряды, в которых соединения располагаются в порядке убывания электроноакцепторных свойств по отношению к соответствующему амину.

Амин	Порядок расположения нитросоединений по убывающей электроноакцепторной способности						й
1				2			
Анилин	м-хлор- нитро- бензол	п-хлор- нитро- бензол	п-бром- нитро- бензол	о-хлор- нитро- бензол	м-бром- нитро- бензол	нитго- бензол	о-бром- нигро- бензол
Диметил- анилин x/	м-хлор- нитро- бензол	п-хлор- нитро- бензол	м-бром- нитро- бензол	п-бром- ни т ро- бензол	нитро- бензол	·	

х/о-хлорнитробензол и о-бромнитробензол отличались по окраске.

				2			
о-толуи- дин	м-хлор- нитро- бензол	п-х ло р- нитро- бензол	о-хлор- нитро- бензол	м-и п-бром- нитро- бензолы	нитро- бензол	о-бром- нитро- бензол	
п-Толуи- дин	м-хлор- нитро- бензол	п-хлор- нитро- бензол	о-хлор- нитро- бензол	п-бром- нитро- бензол	нитро- бензол	м-бром- нитро- бензол	о-бром- нитро- бензол
о-Анизи- дин	м-и п-бром- нитро- бензолы	м-хлор- нитро- бензол	п-хлор- нитро- бензол	о-бром- нитро- бензол	нитро- бензол	о-хлор- нитро- бензол	
п-Анизи- дин	м-и п-бром- нитро- бензолы	м-и о-хлор- нитро- бензолы	нитро- бензол	о-хлор- и о-бром- нитро- бензолы			
Дифенил- амин	м-хлор- нитро- бензол	м-и п-бром- нитро- бензолы	н-хлор- нитро- бензол	о-бром- нитро- бензол	нитро- бензол	о-хлор- нитро- бензол	

Сопоставление этих рядов показывает, что введение галогена безусловно оказывает влияние на комплексообразующую способность нитрогруппы, чаще усиливая электроноакцепторные функции последней и реже ослабляя. При этом сказывается как характер введенного галогена, так и положение его по отношению к нитрогруппе.

По отношению к сравнительно простым по строению аминам (анилин, о- и п-толуидины) электроноакцепторные свойства нитрогруппы усиливались введением хлора, причем большее усиление наблюдалось, когда хлор введен в м-положение, усиление меньшее, когда хлор занимал параположение и еще меньшее, когда хлор занимал орто-положение.

Для брома закономерность получилась менее четкой.

Полученные криоскопическим методом указания на полную диссоциацию (что соответствует отсутствию комплексообразования) комплексов галогеннитробензолов, 1. 2. 4-хлор- и 1. 2. 4-бромдинитробензолов свидетельствуют о меньшей чувствительности криоскопического метода по сравнению с методом колориметрическим.

Методом действия паров более летучего комплексообразователя на кристаллы менее летучего нам удалось сравнить реакционную способность 1. 2. 4-, 1. 2. 5-, 1. 2. 6-динитрофенолов и симметричного тринитробензола по отношению к п-толуидину.

Реакционная способность этих комплексообразователей убывала в следующем ряду: 1. 2. 5-динитрофенол, 1. 2. 6-динитрофенол, симм.тринитробензол, 1. 2. 4-динитрофенол.

Широкому использованию этого метода для сравнения комплексообразующей способности различных нитросоединений мешало, с одной стороны, образование некоторыми нитросоединениями жидких эвтектик и, с другой стороны, высокая плотность упаковки молекул в кристаллах твердых компонентов, затрудняющая проникновение амина в глубь кристалла. Так попытка определения активности различных твердых нитросоединений по взаимодействию с парами 1-нафтиламина не дала положительных результатов, так как увеличение в весе твердого компонента за счет поглощения 1-нафтиламина очень быстро прекращалось.

Отсутствие взаимодействия кристаллов п-динитробензола с парами п-толуидина следует объяснить особенно плотной упаковкой молекул п-ди-

нитробензола в кристаллической решетке.

В бензольном растворе для системы п-динитробензол — п-толуидин колориметрическим методом обнаружен комплекс с соотношением компонентов 1:1.

Система 1. 2. 4-динитранизол — п-толуидин колориметрически не исследовалась, так как бензольные растворы 1. 2. 4-динитранизола сами по себе интенсивно окрашены. Поэтому отсутствие комплексообразования между кристаллами 1.2.4-динитранизола и парами п-толуидина, которое предположительно приписывается влиянию метоксильной группы на нитрогруппы, не подтверждено дополнительными исследованиями. Некоторым подтверждением понижения электроноакцепторных свойств нитрогруппы в динитранизоле под влиянием метоксильной группы является такого же рода влияние последней на комплексообразующую способность нитрогруппы в п-нитранизоле.

Выводы

1. Методом колориметрического анализа обнаружено 82 новых комплекса ароматических нитро- и динитросоединений (электроноакцепторы) с ароматическими аминами с соотношением компонентов 1:1.

2. Методом осаждения выделен комплекс п-динитробензол-бензидин.

3. Высказаны соображения о влиянии хлора, брома, нитро-, карбонильной, метильной и метоксильной групп в качестве заместителей на комплексообразующую способность нитрогруппы.

4. Высказаны соображения о влиянии метильной и метоксильной групп

на комплексообразующую способность аминогруппы.

ЛИТЕРАТУРА

1. Тронов Б. В. и Стрельникова Н. Д. Изв. ТПИ, 71, 63—99, Томск. 1952.

2. Меншуткин Б. Н. Chem. Zbl. 164 и 1240, 1910. 3. С. А. Виећ l еги А. G. Heap. Chem. Zbl. 1013, 1927.