Tom 211 1970

СРАВНЕНИЕ ТРАНСФОРМАТОРОВ ПРЕДЕЛЬНОЙ МОЩНОСТИ С КАТУШЕЧНЫМИ И МНОГОСЛОЙНЫМИ ОБМОТКАМИ ВН

И. Д. КУТЯВИН, Г. В. ДЕЛЬ, Л. И. ДЕЛЬ

В статье изложены результаты поискового сравнения трансформаторов предельной мощности с одинаковой винтовой обмоткой НН и с концентрическими многослойными и спиральными катушечными обмотками ВН.

Катушечные обмотки (винтовая, спиральная, дисковая) имеют очень высокий коэффициент заполнения медью своей площади и поэтому этот

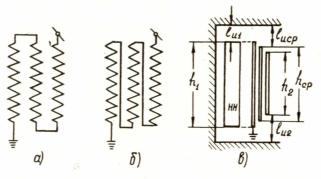


Рис. 1.

класс обмоток оказывается экономичным для напряжений (6—220) κs . При более высоких номинальных напряжениях обмотки ВН применение для нее катушечной обмотки оказывается невыгодным из-за больших изоляционных расстояний между обмотками НН и ВН, малой электродинамической устойчивости ее и т. д. В этом случае многослойная концентрическая обмотка ВН оказывается значительно выгоднее катушечной. Поскольку сети 110 κs и выше работают с наглухо заземленной нейтралью, то один конец внутреннего слоя будет заземлен, поэтому изоляционное расстояние между обмотками НН и ВН может быть минимальным, соответствующим напряжению на другом конце слоя. При m слоев в обмотке напряжение между соседними слоями, соединенными по схеме рис. 1, а, равно

$$U_{\rm ch} = \frac{1.1 \, U_{\rm H}}{\sqrt{3} \, m} \,. \tag{1}$$

При соединении слоев по схеме рис. 1, б.

$$U_{\rm c_{\rm J}} = \frac{2.2 \, U_{\rm H}}{\sqrt{3} \, m} \,. \tag{2}$$

Изоляция наружного слоя обмотки ВН от обмотки НН каскадно нарастает за счет междуслойной изоляции и большие изоляционные проме-

жутки нужны только до ярем и между обмотками ВН разных фаз. Осевая высота слоя уменьшается от внутреннего слоя к наружному с учетом нарас-

тания напряжения слоев (рис. 1,в).

Для определения предельной мощности стержня трансформаторов использован метод, основанный на максимизации формулы мощности стержня и предполагающий максимальное использование активных материалов и допустимых железнодорожных габаритов. Этот метод в упрощенном виде $(x_1 = x_3; y_1 = y_2; b_1 = b_2)$ для трансформаторов с катушечными обмотками НН и ВН описан в [1]. Здесь же предполагается $x_1 \neq x_2; b_1 \neq b_2$ и $y_1 = y_2 = 1,45$.

Тогда выражения для предельного диаметра стержня d и предельной высоты обмотки h будут иметь вид (все обозначения совпадают с [1]): $d = A - 2 (b_1 + b_2); h = E + 2 (b_1 + b_2).$ (3)

Остальные размеры обмоток находились совместным решением уравнений, полученных из формулы для напряжения к. з., равенства намагничивающих сил (НС) и соотношения (17) [1].

Уравнение из формулы для напряжения к. з. при подстановке d из (3):

$$\kappa_{c}BU_{p} [A - 2 (b_{1} + b_{2})]^{2} \cdot 10^{4} - 2.4 \kappa_{R} (A - 2b_{2} + 2\delta_{01} + \delta_{12}) (b_{1} + b_{2} + 3\delta_{12}) \varphi_{2} = 0,$$

$$(4)$$

где φ_2 на основании (10) и (11) [1].

$$\varphi_2 = \sqrt{\frac{\alpha_2 P_2 b_2 x_2 y}{k_{r2} (x_2 + i_2) (y + \delta_2)^2}}.$$
 (5)

Равенство НС для равновысоких обмоток при $y_1=y_2=y=1,\!45$ имеет вид

$$\frac{\alpha_1 P_1 b_1 x_1 y}{k_{r_1} (x_1 + i_1) (y + \delta_1)^2} = \frac{\alpha_2 P_2 b_2 x_2 y}{k_{r_2} (x_2 + i_2) (y + \delta_2)^2} = \varphi_2^2 . \tag{6}$$

Из соотношения (17) [1] находим b_1 :

$$b_1 = \frac{3(x_1 + i_1)(y + \delta_1)}{Cx_1^2 y \sqrt{\frac{2x_1}{i_1} + 3}}.$$
 (7)

Каждому b соответствует определенное оптимальное x, определяемое соотношением (17) [1], или (7).

Из уравнения (4) находим зависимость b_1 (b_2). Для этого задаемся рядом значений b_2 в конструктивных пределах, находим для них, пользуясь методикой [1], соответствующие оптимальные x_2 , κ_{r2} , ϕ_2 и т. д., и

строим кривую b_1 (b_2).

Из (7) находим ряд зависимостей b_1 (x_1), которые последовательно подставляем в (6), пока не удовлетворится это равенство при каждом значении b_2 и ϕ_2 и не найдем, таким образом, новую зависимость b_1 (b_2). Пересечение кривых b_1 (b_2) позволит найти оптимальные b_1 и b_2 и соответствующие им x_1 и x_2 для каждого заданного значения u_p . После чего определяются значения d и h, а по ним и предельная мощность стержня из выражения

$$S_{\rm c} = K_{\rm c} d^2 h \, \varphi_1, \tag{8}$$

$$K_{\rm c} = 1.11 f K_{\rm c} \pi B \cdot 10^{-7}. \tag{9}$$

Предельные мощности стержня для этого сочетания обмоток трансформаторов 500 и 750 *кв* показаны в таблице.

Для определения предельной мощности стержня с винтовой обмоткой НН и многослойной — ВН можно воспользоваться материалами [2, 3].

Равенство HC с учетом трапецеидальности площади сечения многослойной обмотки BH (рис. 1)

$$\varphi_1 = \frac{h_{\rm cp}}{h} \ \varphi_2 = \frac{C_2 + 2 (b_1 + b_2)}{C_1 + 2 (b_1 + b_2)} \ \varphi_2 \ ; \tag{10}$$

$$C_1 = H_B - l_{H1} - A;$$
 $C_2 = H_B - (l_{H1} + l_{H2}) - A;$ (11)

$$A = D_{\rm B} - 2 \, \delta_{12} - 2 \, \delta_{10}; \qquad B = H_{\rm B} - 2 l_{\rm W} - A.$$
 (12)

Удельная НС многослойной обмотки из (6) и (8) [2]:

$$\varphi_2 = \frac{q_{M2} \Delta_2}{h_{cp}} = m_2 \sqrt{\frac{\alpha_2 x_2 y_2}{k_{r_2} (y_2 + i_2)}};$$
 (13)

$$b_2 = m_2 x_2 M \rho_2 (m_2 - 1) \tag{14}$$

Коэффициент увеличения активного сопротивления меди многослойной обмотки из (23) [3]:

$$k_{r2} = 1 + \frac{1}{3\,\rho^2}.\tag{15}$$

Оптимальное значение толщины меди слоя [3]:

$$x_2 = \sqrt{\frac{1,73(y_2 + i_2)}{Cm_2y_2}}. (16)$$

Задавшись несколькими значениями m_2 в пределах (4—12), находим для них x_2 из (16) и b_2 из (14). Пользуясь соотношением (27) [3], находим соответствующие значения I_2 и p_2 . Затем определяем κ_{r2} из (15) и ϕ_2 из (13), после чего можно решить совместно (4), (6) и (7) для отыскания оптимальных b_1 , b_2 и x_1 .

Предельные мощности стержня 500 и 750 кв для второго сочетания типов обмоток приведены в последних 3-х столбцах таблиц.

Таблица 1

Обозначение величин u_p отн. един.	Спиральная одноконцентрная обмотка ВН			Многослойная обмотка ВН		
	0,10	0,15	0,20	0,10	0,15	0,20
			500 кв			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7,4 10,5 185 215 — 298	9,9 13,8 174,5 225,5 — 348	11,8 16,3 166 234 — 380	10,1 19,4 180 246 6,3 410	12,0 23,8 165 261 7,5 426	13,6 27,0 155 271 8,7 436
- K		•	750 кв			Lenon .
b_1 , cM b_2 » d » b_1 » m_2 » m_2 » m_2 »	6,1 10,7 182 192 — 220	8,2 14,2 171 203 — 256	9,9 17,2 162 212 — 282	9,3 21,2 175 251 6,6 370	11,1 25,0 164 266 7,9 396	13,0 29,0 155 271 9,1 412

Для составления таблицы были приняты исходные данные: общие и для обмотки $\mathrm{HH}\ D_{\mathrm{B}}=260;\ H_{\mathrm{B}}=450;\ B=1,7\ m\mathscript{m}\ \kappa_{\mathrm{C}}=0,83;\ y_1=1,45;\ \delta_1=0,8;\ i_1=0,1;\ \delta_{01}=5;\ C=0,95;\ \alpha_1=25\cdot 10^4;\ \epsilon_1=0,3;\ \kappa_{\Pi}=0,78;\ \kappa_{\mathrm{V}}=0,9.$ Для обмотки 500 кв катушечной: $i_2=0,3;\ y_2=1,45;\ \delta_2=1,2;\ \delta_{12}=14;\ l_{\mathrm{W}}=25,\ \epsilon_2=0,3;\ \kappa_{\Pi}=0,78;\ \alpha_2=25\cdot 10^4;\ д\ \mathrm{Л}\ \mathrm{M}\ \mathrm{M}\ \mathrm{O}\ \mathrm{C}\ \mathrm{D}\ \mathrm{M}\ \mathrm{H}\ \mathrm{O}\ \mathrm{C}\ \mathrm{D}\ \mathrm{H}\ \mathrm{D}\ \mathrm{H}\ \mathrm{D}\ \mathrm{D}\ \mathrm{E}\ \mathrm{D}\ \mathrm{D}\ \mathrm{E}\ \mathrm{$

округлено и размеры проводников не приведены в соответствие с нормаля-

ми намеренно.

Сравнение мощностей стержня для трансформаторов 500 и 750 кв с катушечными и многослойными обмотками ВН, приведенных в таблице, говорит в пользу многослойных, несмотря на то, что междуслойное расстояние принято нами с большим запасом ($\delta_2 = 3 \, c_M$).

ЛИТЕРАТУРА

1. И. Д. Кутявин, Л. И. Дель. О предельной мощности трансформатора. «Известия ТПИ», том 172, 1967.
2. И. Д. Кутявин, Л. И. Дель. О предельной мощности трансформаторов с многослойными обмотками. «Известия ТПИ», том 191, 1969.
3. И. Д. Кутявин. Проектирование обмоток трансформаторов с минимальными

потерями в меди. «Электротехника», № 7, 1969.