УДК 661.87:519

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССА ДЕСУБЛИМАЦИИ UF₆

А.А. Орлов*, С.М. Кошелев, В.И. Вандышев, Л.Г. Чернов, Г.В. Шопен, И.В. Ильин, В.С. Гордиенко

*Томский политехнический университет ФГУП «Ангарский электролизный химический комбинат», г. Ангарск

E-mail: orlov@phtd.tpu.edu.ru

Создана математическая модель процесса десублимации гексафторида урана в контейнерах «48Y», «48G» и емкостях чертеж 322-06-0012 с целью оптимизации его технологических параметров и уменьшения энергозатрат. Установлено, что рассчитанные с использованием разработанной модели параметры процесса десублимации гексафторида урана хорошо согласуются с экспериментальными данными. Показано, что на основе разработанной модели можно создать гибкую систему автоматизированного управления технологическим процессом десублимации гексафторида урана.

Введение

Существующие установки десублимации отвала разделительных производств используют для десублимации гексафторида урана емкости объемом 2,5 м³. Основным хладагентом при этом является раствор хлористого кальция, охлаждаемый жидким азотом. В настоящее время для экспортных поставок сырьевого UF₆, а также для хранения обедненного UF₆ российской атомной промышленности, все чаще приходится использовать контейнеры типа 48Y, 48G объемом 4 м³ и емкости горизонтального исполнения, аналогичные этим контейнерам, поэтому возникла необходимость создания установки десублимации UF₆ в данные емкости. В связи с этим предложено десублимировать UF₆ в контейнеры «48Ү», «48G» и емкости чертеж 322-06-0012 (далее по тексту просто «емкость») с помощью водяного охлаждения их цилиндрической поверхности, так как вода является более дешевым и доступным хладагентом.

Из-за высокой стоимости тары горизонтального исполнения, существует необходимость максимально полного заполнения контейнеров и емкостей. При этом переполнения тары необходимо избегать. Задачей данной работы было создание математической модели процесса десублимации UF₆ в емкости с водяным охлаждением ее цилиндрической поверхности. Контейнеры «48У», «48G» и «емкость» были выбраны в качестве объекта моделирования, т.к. для этих конструкций имелись достоверные экспериментальные данные по десублимации UF₆, полученные на опытной установке, созданной в ФГУП "Ангарский электролизный химический комбинат". Особенностью контейнеров «48У», «48G» и «емкости» является их горизонтальное расположение в процессе десублимации. Входной клапан у них расположен в верхней части передней торцевой поверхности.

Основной задачей при построении модели процесса десублимации являлось определение степени заполнения пустых контейнеров «48Ү», «48G» и «емкости» гексафторидом урана в режиме реального времени.

1. Определение аналитической зависимости скорости конденсации гексафторида урана

В основе расчетной модели принимались следующие допущения:

- Процесс конденсации UF₆ происходит в основном на цилиндрической, орошаемой охлаждающей водой поверхности «емкости» (контейнера). Конденсация UF₆ на торцевых стенках «емкости» (контейнера) в силу слабого теплообмена с окружающей воздушной средой происходит незначительно.
- Сконденсированный UF₆ в каждый момент времени представляет собой цилиндр с осевой симметрией. Осевая симметрия обусловлена равномерным распределением давления газообразного UF₆ внутри «емкости» (контейнера), а также незначительным изменением температуры охлаждающей воды по мере ее ламинарноволнового обтекания боковой стенки «емкости» (контейнера).
- Температура наружной поверхности цилиндрической стенки «емкости» (контейнера) постоянна и равна температуре охлаждающей воды в рассматриваемый момент времени. Температура внутренней стенки сконденсированного гексафторида урана равна температуре фазового перехода (десублимации) UF₆ для текущего давления в «емкости» (контейнере).
- Процесс десублимации UF₆ в «емкости» (контейнере) является квазистатическим, т.е. распределение температур и толщина слоя сконденсировавшегося UF₆ линейны и очень слабо изменяются во времени.

Формула для расчета теплового потока через цилиндрическую поверхность слоя UF₆ при квазистатическом процессе теплопередачи [1] имеет вид:

$$\frac{dQ}{dt} = K\pi L(T_p - T_c), \qquad (1)$$

где: dQ — количество тепла, проходящего через данную поверхность за время dt, Дж/(м²с); L — протяженность поверхности (длина цилиндрической стенки), м; T_c — температура охлажденного слоя

UF₆, равная температуре орошающей воды, °C; T_p – температура фазового равновесия на границе десублимации UF₆ в градусах Цельсия, связанная с соответствующим давлением *P* в мм рт.ст. газообразного UF₆ в «емкости» (контейнере) в диапазоне температур от 0 до 64 °C [2, 3] формулой:

$$T_{P} = \frac{\lg P - 7,7661648 + \sqrt{(7,7661648 - \lg P)^{2} - -0,0301508 \times \times(228,09988 - 183,416\lg P)}}{0,0150754},$$

где K — коэффициент теплопередачи через двухслойную поверхность [4] в Дж/(с·м·К), равный:

$$K = \frac{1}{\frac{1}{\lambda_{CT}} \ln \frac{R_H}{R} + \frac{1}{\lambda_U} \ln \frac{R}{R-x} + \frac{1}{\alpha_T (R-x)}},$$

где λ_U – теплопроводность твердого UF₆, Дж/(с·м·К); λ_{CT} – теплопроводность стенки «емкости» (контейнера), Дж/(с·м·К); R_H и R – внешний и внутренний радиус стенки емкости, м; α_r – коэффициент теплопередачи на границе фазового перехода в Дж/(с·м²·К), полученный по экспериментальным данным.

Количество теплоты Q [5], проходящей через поверхность «емкости» (контейнера):

$$Q = Q_{\phi.\Pi} + Q_{OXI.} + Q_{IA3}$$

где $Q_{\phi,\Pi}$ – количество теплоты, выделившееся при переходе газообразного UF₆ в твердое состояние, Дж; $Q_{0X\Pi}$ – количество теплоты, выделившееся при охлаждении десублимированного UF₆ при изменении температуры от температуры фазового перехода, до температуры, соответствующей стационарному состоянию, Дж; Q_{IA3} – количество теплоты, переданное газообразным UF₆ при фазовом переходе, Дж. Так как Q_{IA3} незначительно (теплоемкость и плотность газообразного UF₆ много меньше этих характеристик UF₆ в твердой фазе), будем считать его равным нулю. Тогда:

$$Q = Q_{\phi,\Pi} + Q_{OX\Pi}.$$
 (2)

Для упрощения вычислений преобразуем выражение для Q_{0XI} исходя из того, что толщина слоя десублимированного UF₆ по сравнению с диаметром контейнера мала, следовательно, зависимость температуры *T* от толщины слоя *x* можно считать линейной. Тогда при увеличении толщины слоя на величину *dx* количество теплоты Q_{0XI} , будет равно половине количества теплоты выделившейся при остывании слоя толщиной *dx* от температуры T_p до температуры наружной стенки T_c .

Таким образом, выражение (2) примет вид:

$$\frac{dQ}{dt} = \left[\Delta H + \frac{C_U (T_P - T_C)}{2}\right] \frac{dm_U}{dt},$$
(3)

где ΔH — удельная теплота десублимации UF₆, Дж/кг; dm_t/dt — скорость изменения массы десублимированного UF₆, кг/с; C_U – удельная теплоемкость твердого UF₆ при постоянном давлении, Дж/(кгК).

Так как количество теплоты, отданное системой, равно количеству теплоты, образовавшемуся в системе, то с учетом ур. (1) и (3) можно записать:

$$K\pi L(T_p - T_c) = \frac{dm_U}{dt} \left(\Delta H + \frac{C_U(T_p - T_c)}{2}\right).$$
 (4)

Выражение для скорости изменения массы гексафторида урана можно записать в виде следующего дифференциального уравнения:

$$\frac{dm_U}{dt} = 2\rho\pi L(R-x)\frac{dx}{dt}.$$
(5)

Подставив (5) в (4) и выразив *dx/dt*, получим основное расчетное дифференциальное уравнение:

$$\frac{dx}{dt} = \frac{1}{\left(\Delta H + \frac{C_U(T_P - T_C)}{2}\right)} \times \frac{1}{\left[\frac{1}{\lambda_{CT}} \ln \frac{R_H}{R} + \frac{1}{\lambda_U} \ln \frac{R}{R - x} + \frac{1}{\alpha_T(R - x)}\right]} \times \frac{(T_P - T_C)}{2\rho(R - x)}.$$
(6)

При решении ур. (4) численным методом Рунге-Кутта четвертого порядка [6] получена зависимость толщины слоя UF₆ от времени: x=f(t). Зная толщину слоя, можно определить массу сконденсированного UF₆ в контейнере по формуле:

$$m = \rho \pi L [R^2 - (R - x)^2].$$

Кроме того, была введена поправка на ограничение пропускной способности клапана на емкости по газу. Клапан можно рассматривать как расходную диафрагму, для которой можно записать:

$$G = 0,06667P + 23,333$$

где G — расход газа через клапан, г/с; P — давление перед клапаном, мм рт.ст.; 0,06667 и 23,333 — эмпирические коэффициенты.

2. Сравнение результатов моделирования и экспериментальных данных

С помощью созданной модели были проведены расчеты параметров процесса десублимации UF₆ в рассмотренные емкости.

На первом этапе было проведено сравнение результатов расчетов с результатами взвешивания емкостей при их заполнении до 12000 кг, табл. 1.

На втором этапе проведено сравнение расчетных данных с результатами инвентаризации UF₆. В качестве входных параметров использовались усредненное по времени давление в секционном коллекторе 250 мм рт.ст. и температура охлаждающей воды 3 °C, расход воды 2 м³/ч. Сравнительные данные расчетов и результатов взвешивания приведены в табл. 2.

Давле- ние, мм рт.ст.	Темпера- тура во- ды, °С	Время работы, ч	Расчетная масса, кг	Данные взвеши- вания, кг	Разность масс, кг
251	1	229	12016	11754	262
400	1	184,5	11881	11758	123
250	67	273,2	12056	11981	75
254	1617	350	11624	11528	96
254	12	230	12000	11790	210

Таблица 1. Расчетные и экспериментальные данные по десублимации ИГ₀ при заполнении емкостей до 12000 кг

Таблица 2. Расчетные и экспериментальные данные по десублимации UF₀ при заполнении емкостей при давлении в секционном коллекторе 250 мм рт.ст., температуре охлаждающей воды 3 °С, расходе воды 2 м³/ч

Время работы,	Расчетная мас-	Данные взве-	Разность масс,
Ч	са, кг	шивания, кг	КГ
141	9296	9280,2	16,2
109	8123	8093,4	29,4
78	6755	6675,5	79,5
40	4485	4363	122
6	788	763	25

На третьем этапе расчетов в качестве входных параметров использовались реальные тренды давления UF_6 в коллекторе и температура охлаждающей воды, полученные из сводки автоматизированной системы управления "Фобос", расход воды 2,5 м³/ч. Полученные теоретические результаты сравнивались с данными взвешивания, табл. 3.

Таблица 3. Расчетные и экспериментальные данные по десублимации UF₆ при заполнении емкостей при расходе воды 2,5 м³/ч

Время работы,	Расчетная мас-	Данные взве-	Разность масс,
Ч	са, кг	шивания, кг	КГ
258	12490,4	12488,2	2,2
200	11037,3	10980,4	56,9
141	9330,4	9280,2	3,2
109	8119,3	8093,4	25,9
78	6734,2	6675,5	58,1
40	4470,0	4363,0	101,0
6	764,9	764,0	2,0

Анализ результатов показал, что при расходе охлаждающей воды 2,5 м³/ч емкости заполняются практически с одинаковой скоростью, табл. 3. Следовательно, динамика их заполнения при расходе охлаждающей воды выше 2,5 м³/ч практически не зависит от типа емкости.

Результаты моделирования и экспериментальные данные при среднем давлении в секционном коллекторе 250 мм рт.ст., температуре охлаждающей воды 3 °С, расходе воды 2,5 м³/ч представлены на рисунке.

Как видно из графика, расчетная и экспериментальная зависимости конденсационной способности хорошо согласуются. Максимальное отклонение не превышает 2,4 %. В ФГУП "Ангарский электролизный химический комбинат" уже несколько лет в составе автоматизированной системы управления технологическим процессом десублимации успешно функционирует программа расчета степени заполнения пустых емкостей (контейнеров) в режиме реального времени, реализованная на базе разработанной нами модели. За время эксплуатации данной программы отклонение расчетных данных от результатов взвешиваний при давлении газообразного UF₆ \leq 250 мм рт.ст., температуре охлаждающей воды 16...17 °С и ее расходе 2,5 м³/ч составляло от 0,04 до 0,83 % в большую сторону, что является гарантией недопущения превышения пределов заполнения емкостей (контейнеров).

Рисунок. Расчётные и экспериментальные данные по конденсационной способности контейнеров «48Y», «48G» и «емкости»

Выводы

- Создана математическая модель, которая адекватно описывает процесс десублимации UF₆ в различных емкостях и позволяет оптимизировать технологические параметры данного процесса, определить степень заполнения емкостей (контейнеров) UF₆ в режиме реального времени и, как следствие, уменьшить энергозатраты при заполнении емкостей.
- Выявлено, что динамика заполнения практически не зависит от типа емкости при давлении в коллекторе 250 мм рт.ст., температуре охлаждающей воды 3 °С и расходе воды 2,5 м³/ч.
- Проведено моделирование процесса десублимации UF₆ в различных емкостях. Установлено, что рассчитанные с использованием этой модели параметры процесса десублимации UF₆ в емкостях хорошо согласуются с экспериментальными данными.
- Показано, что на основе разработанной модели можно создать гибкую систему автоматизированного управления технологическим процессом десублимации UF₆.

СПИСОК ЛИТЕРАТУРЫ

- Владимиров В.С., Жаринов В.В. Уравнения математической физики. – М.: Физматлит, 2000. – 398 с.
- Кац Дж., Рабинович Е. Химия урана. Т. 1. М.: Изд-во иностр. лит-ры, 1954. – 490 с.
- Зуев В.А., Орехов В.Т. Гексафториды актиноидов. М.: Энергоатомиздат, 1991. 240 с.
- Теплообменные аппараты холодильных установок. Изд. 2-е, перераб. и доп. / Под общ. ред. Г.Н. Даниловой. – Л: Машиностроение, 1986. – 303 с.
- 5. Матвеев Г.А. Теплотехника. М.: Высшая школа, 1981. 480 с.
- Данилина Н.И., Дубровская Н.С., Кваша О.П. Численные методы. М.: Высшая школа, 1976. 368 с.

УДК 66.023.2

РАЗДЕЛИТЕЛЬНЫЙ КАСКАД ИЗ ОБМЕННЫХ ЭЛЕМЕНТОВ

И.А. Тихомиров, Д.Г. Видяев, А.А. Гринюк

Томский политехнический университет E-mail:orlov@phtd.tpu.edu.ru

Выведено дифференциальное уравнение каскада из разделительных элементов. Анализ работы каскада в безотборном режиме и режиме с отбором показал, что минимальный поток для каскада из элементов совпадают с минимальным потоком для каскада.

Одной из важных характеристик амальгамно-обменного каскада является величина потока амальгамы, которая не должна быть меньше, чем *J*_{min} [1].

Чтобы снизить величину J_{\min} надо уменьшить разность $C_k - C$, т.е. разбить длинную колону с большим раздвижением $C_k - C$ на ряд мелких элементов, достигая с помощью каскада из таких элементов желаемого суммарного раздвижения.

Представляет интерес рассмотреть каскад из обменных элементов [2, 3], состоящих из одной или нескольких теоретических тарелок.

Проанализируем характеристики каскада из обменных элементов и сравним их с каскадом из обменных колонн, рисунок:

Рисунок. Каскад из обменных элементов

На рисунке показаны прямые и обратные потоки с необходимыми для анализа работы каскада обозначениями: J_n – поток амальгамы, J_{n-1} – поток амальгамы на n-1 элементе, J'_n – поток раствора, J'_{n+1} – поток раствора на n+1 элементе, C_n , C_{n-1} и C'_n , C'_{n+1} – концентрации изотопов в амальгаме и в растворе на n, n-1 и n+1 обменных элементах. С целью вывода дифференциального уравнения каскада из таких элементов составим для сечения AA' систему уравнений материального баланса без учета потерь в каскаде:

$$J_n - J'_{n+1} = q_k$$
 – отбор по веществу,

$$J_n C_n - J'_{n+1} C'_{n+1} = q_k C_k$$
 – отбор по изотопу,

где C_k – концентрация отбора.

Из системы получаем:

$$V_n(C_n - C'_{n+1}) = q_k(C_k - C'_{n+1}).$$
(1)

Если из левой части ур. (1) вычесть и прибавить величину $J_n C_{n+1}$, то получим:

$$J_n(C_{n+1} - C'_{n+1}) - J_n(C_{n+1} - C_n) = q_k(C_k - C'_{n+1}).$$
(2)

Т.к. $C_{n+1} - C_n = \frac{\Delta C}{\Delta n} \approx \frac{dC}{dn}$, а $C_{n-1} - C'_{n+1} = \Delta C$, то ур. (2), с учетом того, что $C_{n+1} \cong C_n$, перепишется в виде:

$$J_n \Delta C - J_n \frac{dC}{dn} = q_k (C_k - C_n),$$

откуда:

$$\Delta C - \frac{dC}{dn} = \frac{q_k(C_k - C_n)}{J_n}.$$
(3)

Перенос легкого изотопа за счет обмена на n-1 элементе определяется соотношением [4]:

$$J_n C_n - J_{n-1} C_{n-1} = J_0 [\alpha C'_n (1 - C_n) - C_n (1 - C'_n)],$$

где J_0 – плотность обменного потока, α – коэффициент разделения.

Примем:

$$(J_n C_n - J_{n-1} C_{n-1}) \cong J_n \frac{dC}{dn}$$

С учетом: $\alpha = 1 + \varepsilon$; $J_{n-1} \cong J_n$; $C_{n-1} \cong C_n$; $C_n - C'_n = \Delta C$, то будем иметь:

$$J_n \frac{dC}{dn} = J_0 [\varepsilon C_n (1 - C_n) - \Delta C], \qquad (4)$$

где ε – коэффициент обогащения.

Из ур. (4) следует: