ИЗВЕСТИЯ ТОМСКОГО ОРДЕНА ОКТЯБРЬСКОЙ РЕВОЛЮЦИИ И ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА ИМЕНИ С. М. КИРОВА

Том 215.

ИССЛЕДОВАНИЯ СТАБИЛЬНОСТИ ПРОТОЭНСТАТИТА В СТЕАТИТОВЫХ МАТЕРИАЛАХ

П. Г. УСОВ, В. И. ВЕРЕЩАГИН

(Представлена научным семинаром кафедры технологии силикатов)

Для стеатитовых материалов характерно такое нежелательное явление, как старение [1]. К одной из причин старения относят нестабильность кристаллической фазы стеатитовой керамики [2]. Кристаллическая фаза получаемых в настоящее время стеатитовых материалов представлена протоэнстатитом, который является равновесной высокотемпературной модификацией метасиликата магния [3]. Низкотемпературной модификацией MgSiO₃ выступает клиноэнстатит. Определенно, стабилизации протоэнстатита в черепке стеатитовой керамики способствует стеклофаза, которой около 30%, но представляет интерес, с точки зрения теории и практики, насколько устойчиво метастабильное состояние протоэнстатита в керамике и какие факторы влияют на его стабильность. В работе изложен метод определения нестабильности протоэнстатита в стеатитовом материале на базе рентгеноструктурного анализа. Применение рентгеновского анализа в распознавании модификации MgSiO₃ имеет большие преимущества в сравнении с петрографическим, который прежде для этого использовался, а именно:

1) не является помехой тонкая структура материала и тесное сра-

стание кристаллов MgSiO₃ со стеклом;

2) не обязательно растирать образец (что иногда очень важно);

3) выше объективность результатов анализа.

Долгое время существование протоэнстатита как самостоятельной фазы метасиликата магния отрицалось. Это было доказано с помощью рентгеноструктурного анализа, после чего были определены оптические константы протоэнстатита. В нашей работе петрографический анализ использован для определения микроструктуры исследуемых материалов.

Рентгеновские константы чистых модификаций приведены в табл. 1

(дифрактометр УРС 50-И, антикатод — Си).

По данным рентгеновского анализа исследуемых образцов керамики характеризовалась степень несовершенства (дефектность) структуры протоэнстатита. Для этого мы пользовались полушириной рентгеновской дифракции протоэнстатитовых линий $d-2,70;\ d-1,96;\ d-1$

1,49 и d-1,31A, практически не взаимодействующих с максимумами дифракционных отражений клиноэнстатита. Такой метод был применен В. А. Броном [4] при исследовании структуры периклаза. Полуширину рентгеновской интерференции подсчитывали как частное от деления площади шика на его высоту. Количественная оценка образую-

Таблица 1 Рентгеновские константы чистых модификаций MgSiO₃ (антикатод — Cu)

Протоэнстатит		Клиноэнстатит		Протоэ	нстатит	Клиноэнстатит		
d(Å)	I/I_1	$d(ext{Å})$	I/I_1	d(Å)	I/I_1	d (Å)	I/I_1	
4,05 3,49 	1,0 2,3 4,0 10,0 4,0 2,5 3,5 2,0 2,0 1,0 1,0 0,5 0,5 5,0 —	3,50 3,26 3,17 2,96 2,86 2,52 2,45 2,33 2,28 2,20 2,10 2,00 1,97 1,93	1,5 3,5 7,0 5,0 10,0 2,5 2,5 1,0 0,5 1,0 0,5 1,0 0,5 1,0 0,5 1,0 0,5 1,0 0,5 1,0 0,5 1,0 0,5 1,0 0,5 1,0 0,5	1,80 1,71 1,65 1,64 1,61 1,58 1,56 1,51 1,49 1,46 1,40 1,37 1,35 1,31	0,5 2,0 1,5 2,0 1,5 0,5 0,5 0,5 4,0 3,0 1,0 0,7 1,0 2,0	1,78 1,74 1,68 1,64 1,60 1,52 1,47 1,45 1,36 1,34 1,32	2,0 1,5 0,5 0,5 4,0 - 3,0 1,0 4,6 - 3,5 0,9 1,0	

щегося в результате превращений клиноэнстатита проводилась по соотношению площадей дифракционных максимумов d=1,96 Å и d=2,10 Å. Максимумы эти средней интенсивности, но они имеют то преимущество перед более интенсивными отражениями, что не взаимодействуют между собой, когда проба представляет собой смесь модификаций MgSiO3. По данным рентгеновского анализа смесей с известными соотношениями модификаций была получена зависимость количеств протоэнстатита в пробе от соотношения площадей Sd=1,96 и Sd=2,10 (рис. 1), которая использовалась в наших исследованиях в качестве эталона.

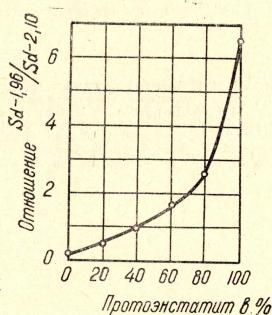


Рис. 1. Зависимость величин отношения площадей рентгеновской дифракции для $d=1,96~\mathrm{A}$ и $d=2,10~\mathrm{A}$ от количественных соотношений протоэнстатита и клиноэнстатита в пробе

Некоторую качественную оценку в соотношении модификаций метасиликата магния дает интервал углов 2 О на рентгенограмме между главными отражениями d=3.17 A; $d=2.90\div2.86$ A. Так, для 100%-ного протоэнстатита этот интервал $\Delta 2 \Theta = 2^{\circ}38' \pm 2'$, а для клиноэнстатита $\Delta = 3^{\circ}00'$. В пробах со смесью этих модификаций максимумы $d=2,90~{\rm A}$ й $d=2,86~{\rm A}$ взаимодействуют между собой, и расстояние суммарного индекса от индекса d=3,17 A в некоторой степени характеризует соотношение модификацией MgSiO₃. Все эти показатели были использованы в комплексе. Нестабильность протоэнстатита в черепке стеатитовой керамики обнаруживается при растирании черепка, а именно: часть протоэнстатита превращается в клиноэнстатит; увеличивается несовершенство (дефектность) структуры сохранившегося протоэнстатита, что предполагает возможность его превращений в дальнейшем. (Пробы растирались до прохождения через сито № 0060; размер частиц меньше 60 микрон).

Наши исследования показали, что стабильность протоэнстатита в черепке стеатитовой керамики находится в прямой зависимости от микроструктуры материала, являясь функцией размера кристаллов MgSiO₃. Было исследовано несколько проб с различными микроструктурами (табл. 2). В более грубозернистом материале (проба 1) растирание способствует превращению большего количества протоэнстатита, и несовершенство структуры сохранившегося выражения сильнее. Растирание стеатитового материала с тонкой структурой, где размер кристаллов MgSiO₃ около одного микрона, не приводит к изменению фазового состава пробы и не влияет на состояния внутренней структуры протоэнстатита (проба 3). Полуширина рентгеновской интерференции характерных протоэнстатиту максимумов остается постоянной.

Выводы

1. Сравнивая результаты рентгеновского анализа стеатитовой керамики с неразрушенного образца и растертой пробы, можно оценить материал в отношении стабильности его кристаллической фазы, что имеет большое значение при исследовании явления старения керамики.

2 . Предлагаемый метод можно успешно использовать для контроля качества материала готовых стеатитовых изделий.

ЛИТЕРАТУРА

- 1. Н. П. Богородицкий и др. Радиокерамика. Госэнергоиздат, М., 1963.
- 2. А. Палацкий. Техническая керамика. Госэнергоиздат. 1959.
- 3. Н. А. Торопов, В. П. Барзаковский и др. Диаграммы состояния сили-

катных систем. Справочник. «Наука», М.-Л., 1965. 4. В. А. Брон, М. И. Дисперова, Л. П. Судакова. Влияние температуры нагрева на дефектность кристаллической решетки окиси магния и способность ее к спеканию. «Неорг. материалы». Изв. АН СССР, «Наука», 1965.

Таблица 2°

0,0

0,0

		S/h максимумов протоэнстатита $(d \stackrel{\circ}{\mathrm{A}})$				Δ2Θ°	Количество клиноэнстатита
Микроструктура материала	Вид пробы	2,70	1,96	1,49	_1,31	$\begin{vmatrix} d_1 - 3,17\text{Å} \\ d_2 - 2,90 \div 2,86\text{Å} \end{vmatrix}$	в пробе по Sq-1,96/Sd-2,10 (%)
Средний размер кристаллов 8—10 мк отдельные 25 мк	диск порошок — 60 <i>мк</i>	0,53 0,63	0,6 0,67	0,67 0,75	0,65 0,85	2°39′ 2°47′	0,0 25
Средний размер кристаллов 5—7 мк отдельные 15—20 мк	диск порошок — 60 мк	0,51 0,63	0,57 0,65	0,56 0,68	0,61	2°39′ · 2°45′	0,0

Размер кристаллов не более і ми-

крона

диск

порошок — 60 мк

0,42

0,43

0,58

0,56

0,58

0,57

0,58

0,56

2°39′

2°39′

Данные обработки рентгенограмм стеатитовых материалов различной микроструктуры